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Abstract This paper proposes a new locking alleviation technique for absolute nodal coordinate formulation
(ANCF) beam and plate elements based on a strain split approach. The paper also surveys classical finite
element (FE) and ANCF locking alleviation techniques discussed in the literature. Because ANCF beam
elements, which allow for the cross-sectional stretch fully capture the Poisson effect, Poisson locking is
an issue when such beam elements are considered. The two-dimensional fully parameterized ANCF beam
element is primarily used in this investigation because such an element can serve as a good surrogate model
for three-dimensional ANCF beams and plates as far as membrane, bending and transverse shearing behavior
is concerned. In addition to proposing the strain split method (SSM) for ANCF locking alleviation, this work
assesses the ANCF element performance in the cases of higher-order interpolation, enhanced assumed strain
method, elastic line method, and the enhanced continuum mechanics approach, and demonstrates the design
of the enhanced strain interpolation function by using the shape functions of higher-order ANCF elements.
Additionally, a new higher-order ANCF two-dimensional beam element is proposed in order to compare its
performance with other finite elements that require the use of other locking alleviation techniques proposed and
reviewed in the paper. Finally, several numerical examples are shown to demonstrate the effectiveness of the
locking alleviationmethods applied to ANCF elements. The purpose of this investigation, apart from proposing
a new locking alleviation technique, a new higher-order beam element, and comparing several existing locking
alleviation techniques, is to show that dealing with locking in fully parameterized ANCF elements is feasible
and that several methods exist to effectively improve the ANCF element performance without sacrificing
important ANCF element properties and features including position vector gradient continuity. Because of the
use of ANCF position vector gradients as nodal coordinates, complex stress-free initially-curved geometries
can be systematically obtained. Such initially-curved geometries require special attention when attempting to
solve locking problems, as will be discussed in this paper.

1 Introduction

The absolute nodal coordinate formulation (ANCF) was proposed as a new FE formulation designed for
correctly and efficiently capturing large deformation and rotation effects in a non-incremental solution frame-
work [74]. Over the past two decades, a significant amount of research has been conducted on ANCF elements
and its applications. ANCF element technology includes several different types of beam, plate/shell and solid
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elements based on standard polynomial basis functions [45,53,54,76,95], rational basis functions [58,71],
and with rotations as degrees of freedom instead of gradient vectors [57,101]. ANCF elements have been
used in a diverse range of applications like tracked vehicles, tires, satellites, and pantograph–catenary sys-
tems [28,38,41,59]. However, like classical finite elements, ANCF elements can suffer from the locking
phenomenon. ANCF locking has been studied by several authors in the past, and solutions have been pro-
posed. Detailed reviews on ANCF formulation and elements can be found in the work of Gerstmayr et al. [27]
and Nachbagauer [47].

The aim of this paper is multi-fold; however, the overall focus of the work is on locking alleviation
techniques in ANCF. Two-dimensional ANCF beam elements are primarily used in this work to demonstrate
the effectiveness of the locking alleviation techniques proposed and discussed in this paper since they can be
considered as a good surrogate to understand and quantify themembrane, bending, and transverse shear-related
response of three-dimensional beam and plate elements. This paper is organized as follows: Locking alleviation
techniques in the classical FE literature are reviewed and discussed in Sect. 2 in order to emphasize the fact
that locking is a commonly occurring phenomenon in most FEs and can be dealt with in the case of fully
parameterized ANCF elements by identifying the cause of the locking and studying previous contributions in
this area. Existing ANCF locking alleviation techniques are briefly reviewed in Sect. 3, while ANCF element
kinematics and the general continuum mechanics approach are briefly discussed in Sect. 4. The materials
reviewed in Sect. 4 will be repeatedly used in the following sections of the paper. A new two-dimensional
higher-order beamelement is also proposed in Sect. 4, followedby a short discussion on the effect of constitutive
model assumptions on the planar ANCF beam element. A new locking alleviation technique called the strain
split method (SSM) is proposed in Sect. 5 for two-dimensional beam elements and is generalized for three-
dimensional beam and plate elements. The enhanced continuum mechanics approach and the elastic line
approach are briefly reviewed in Sect. 6. The enhanced assumed strain approach is also reviewed in Sect. 6, and
a method of incorporating higher-order ANCF shape functions in lower-order beams through enhanced strains
is demonstrated. Section 7 compares the locking alleviation techniques proposed and discussed in Sects. 5 and
6 using five numerical examples. These include three static and two dynamic examples. Conclusions drawn
from this investigation are presented in Sect. 8.

2 Locking alleviation in classical finite elements

Because many classical finite elements suffer from locking problems, locking has been thoroughly investigated
by the FE community, and numerous techniques have been proposed over the years for effectively eliminating
its effect on the element solution. Some of the locking mechanisms that affect classical finite elements include
shear, Poisson, curvature thickness, membrane and volumetric locking. A significant amount of literature
exists for locking alleviation techniques in case of commonly used elements like the classical beam, shell, and
hexahedral elements. These techniques typically include improvement in element kinematics, modification of
constitutive models, usage of mixed formulations, or a specifically tailored numerical fix. This section will
review some of the general locking alleviation techniques used in the classical FE theory and locking alleviation
methods specifically designed for classical beams. Due to the immense amount of literature available on the
topic of FE locking, only a tiny fraction of it pertaining to specific locking alleviation techniques will be
presented in this section.

One of the most widely used techniques to alleviate locking is reduced integration, and two of the earliest
investigations on this topic are by Zienkiewicz et al. [102,103] where the performances of the shell element,
isoparametric quadrilateral element, and the beam element are improved. Reduced and selective integration
was applied to plate elements by Hughes et al. [30] to alleviate shear locking in the thin regime. Malkus and
Hughes [42] demonstrated the equivalence of certain mixed formulations and the displacement formulation
using reduced integration and showed that reduced integrated elements can match the performance of their
mixed formulation counterpart.Hughes et al. [31] used reduced integration to significantly improve the behavior
of a bilinear plate element in bending applications. Noor and Peters [51] used reduced and selective integration
for curved beams and discussed the equivalence and ‘near equivalence’ of mixed and displacement-based beam
models by comparing their stiffness matrices.

The B-bar and the F-bar methods are popular strategies for dealing with volumetric locking. The B-bar
method is a generalized extension of selectively reduced integration where the strain displacement matrix is
split into deviatoric and dilatational parts and the dilatational part is modified to help alleviate volumetric
locking [32]. The F-bar approach is similar to the B-bar approach, but also applicable in the nonlinear regime.
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In the simplified F-bar approach, the deformation gradient is scaled using its determinant at the integration
point and at the centroid of the element [14].

Mixed methods have been extensively used in FE literature for tackling issues, including incompressibility,
excessive bending stiffness, and shear locking. Sussman and Bathe [88] used a mixed displacement and
pressure formulation to alleviate volumetric locking in the incompressible regime. Pian [60] proposed a mixed
element based on theHellinger–Reissner variational principle and consistently assumed stress anddisplacement
fields to improve the bending behavior of beams and plates. Liu et al. [40] proposed the so-called flexurally
super-convergent elements which are based on the Veubeke–Hu–Washizu variational principle, showing good
accuracy in coarse meshes. Dorfi and Busby [17] proposed a mixed curved composite beam element that
showed good convergence for displacements and stresses. Kim and Kim [37] proposed a mixed-hybrid curved
beam element with nodeless degrees of freedom that is free of locking and can accurately predict stresses.
Taylor et al. [91] proposed a mixed FE method for beam and frame problems that is locking-free and has
properties similar to the flexibility method. A popular locking alleviation technique that has its variational
basis in mixed methods is the enhanced assumed strain method that was proposed by Simo and Rifai [79] and
is a generalization of the method of incompatible modes that was proposed by Bazeley et al. [6] and studied by
Wilson et al. [96] and Taylor et al. [90] for rectangular elements. The enhanced strain method was extended to
geometrically nonlinear problems by Simo andArmero [78]. Furthermore, it was demonstrated that themethod
of incompatible modes is a special case of the enhanced strain approach [79]. The enhanced strain approach
was used in [80] to improve the performance of trilinear brick elements in the nearly incompressible regime.
Even though the enhanced strain technique can significantly improve the element behavior in incompressible
and bending deformations, the element might exhibit hourglassing in case of large strain compression [97].
Andelfinger and Ramm [1] developed two- and three-dimensional plate and shell elements using the enhanced
strain approach and showed their equivalence to the assumed stress elements based on the Hellinger–Reissner
approach [61]. Stolarski and Chen [85] improved the bending behavior of the two-dimensional isoparametric
quadrilateral element by studying the deformation modes of the element and enhancing the strains based on
physical considerations. Schwarze andReese [73] applied reduced integration and the enhanced strain approach
to the eight-node solid-shell element and demonstrated that the element can satisfy exactly the membrane and
bending patch tests. Bischoff and Romero [10] proposed a generalized method of incompatible modes which
is based on a pure displacement formulation, yet its elements are equivalent to the mixed formulation-based
enhanced strain elements.

There is also a significant amount of work on understanding locking in the FE literature. A seminal
work on understanding locking was carried out by Babuska and Suri [3] who provided quantification for the
FE tendency to exhibit locking and investigated the element robustness as certain parameters of the model
approached limiting values. As a specific case of a limiting parameter, Babuska and Suri [4] investigated
locking onset in two-dimensional elements as Poisson’s ratio approached 0.5 and studied the robustness
of h and p FE refinements. Armero [2] investigated the material instabilities of enhanced strain elements
under plane strain finite deformation and expanded on locking quantification in the finite deformation range.
Bathe [5] used a numerical inf-sup test to quantify the convergence properties of shell elements under bending
deformation. According to Bathe [5], satisfaction of ellipticity, consistency, and inf-sup conditions typically
means that the shell element will be robust and perform well in both membrane and bending dominated
problems. Prathap andBhashyam[64] explained locking in beamsas the presenceof spurious constraints related
to certain deformations like pure bending in case of conventional elements which might be field-inconsistent.
Prathap and Babu proposed field consistent elements by using reduced integration or field consistent strain
interpolation [62]. Rakowski [65,66] explained the phenomena of shear locking in linear and quadratic beam
elements by showing that using their shape functions leads to the solution of differential equations that are
different from those arising from beam theory. Stolarski and Belytschko [84] studied shear and membrane
locking in curved C0 beam elements and demonstrated that shear and membrane locking are interrelated,
reduced integration weakens the flexural-membrane coupling that exists in curved elements, and mixed curved
elements could also suffer from membrane and shear locking.

Another method for tackling locking is improving the element itself. There is a significant amount of
literature on beam elements where the improved element targets specific locking mechanisms. Heyliger and
Reddy [29] proposed a higher-order shear-deformable beam element specifically for bending and vibration
problems that can correctly account for the parabolic shear stress distribution in the cross section, thus eliminat-
ing the need for a shear correction coefficient. Lee and Sin [39] made use of curvatures as degrees of freedom
in order to alleviate locking in curved beam structures and accurately represent their bending energy. The
rotations and radial and tangential displacements can be retrieved from relationships between the curvature
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derivatives and beam strain measures in the Lee and Sin element. Yunhua [100] used the field consistence
approach to explain shear and membrane locking in low-order beam elements and consequently used the field
consistence approach to improve element performance. Friedman and Kosmatka [22] developed a locking-
free two-node shear-deformable beam element by using cubic and quadratic polynomials for transverse and
rotational degrees of freedom, respectively, and having them satisfy Timoshenko’s beam differential equa-
tions. Raveendranath et al. [67] proposed a shear-deformable curved beam element that produces no spurious
constraints in thin regimes, hence showing excellent performance for thin curved beam structures. A detailed
review on shear-deformable beam theory and beam elements associated with it can be found in the work of
Reddy [68] and Reddy et al. [69]. Furthermore, shear and membrane locking-free beam elements can be found
in the works of Prathap and Babu [63], Reddy [68], and Choi and Lim [13].

Some other methods to alleviate locking include stress projection methods and stiffness scaling methods.
Belytschko et al. [7] used the mode decomposition method to remove shear and membrane locking in beam
elements. The mode decomposition method which is a special case of stress projection methods essentially
projects the nodal displacements on a subspace of displacements such that certain modes of deformation
like inextensional bending can be correctly captured. Stolarski and Belytschko [82,83] demonstrated the
equivalence of the mode decomposition method and mixed finite elements based on the Hellinger–Reissner
principle. Carpenter et al. [12] utilized shear scaling factors to alleviate shear locking in C0 beam elements by
splitting the stiffness matrix into bending and shear parts and modifying the shear part using a shear scaling
factor that is computed using the elementmaterial and dimensional parameters. The shear scaling factormethod
was also used by Tessler and Hughes [92] to accurately represent the transverse shear energy in case of plate
elements. Furthermore, they demonstrated that the modified stiffness matrices remain well conditioned for
almost the entire range of length-to-thickness ratios. It must be noted that shear scaling is different from the
shear correction factor. The shear correction factor that was proposed by Timoshenko [93] and discussed in
detail by Dong et al. [16] is a standard technique used in all lower-order beam elements in order to capture a
good approximation of the shear energy within the element.

3 Locking alleviation in ANCF elements

Like classical finite elements, ANCF elements are not, in general, locking-free. The locking mechanisms
affecting classical finite elements also affect ANCF elements, including shear, Poisson, curvature thick-
ness, and volumetric locking. While this section will review some of the investigations on the quantifica-
tion and alleviation of locking in ANCF elements with emphasis on beams, for a detailed review on ANCF
elements and their locking mechanisms the reader may also refer to Gerstmayr et al. [27] and Nachba-
gauer [47].

Sopanen and Mikkola [81] studied the fully parameterized ANCF three-dimensional beam element for
bending, shear, and torsional deformations using three different elastic force formulations and concluded
that the element does not suffer from significant shear locking and that modifying the constitutive model
for the beam element based on continuum mechanics approach can improve its performance. Schwab and
Meijaard [72] compared the modal properties of the ANCF three-dimensional beam element with the classi-
cal beam element by improving the ANCF beam bending deformation through the elastic line approach and
shear deformation through independent shear stress and strain fields introduced via the Hellinger–Reissner
and the Veubeke–Hu–Washizu principles, respectively. Gerstmayr and Matikainen [25] developed a higher-
order beam element that is of fifth order in the longitudinal direction and linear in the cross section and
demonstrated improvement in the prediction of axial and shear stress when compared to the solution from
a commercial FE code. Garcia-Vallejo et al. [23] explained the phenomena of curvature thickness locking
and shear locking in the two-dimensional ANCF beam element by studying the kinematics of the element.
Furthermore, they proposed a quadratic beam element that has good bending characteristics. Dufva et al. [18]
used a mixed displacement and shear strain interpolation to alleviate the two-dimensional ANCF beam ele-
ment of shear locking by considering a linear distribution of the shear deformation along the longitudinal
axis and improving its bending behavior by neglecting the Poisson coupling between the longitudinal and
transverse normal strains. Gerstmayr and Irschik [24] studied the axial and bending deformation of ANCF
beams in detail using the elastic line approach and proposed corrections to the strain measures in order to
improve element accuracy in bending deformation. Hussein et al. [34] used the elastic line approach without
Poisson coupling and a Hellinger–Reissner-based independent shear stress interpolation in the dynamic anal-
ysis of stiff and thin beams. Gerstmayr et al. [26] improved the performance of the original two-dimensional
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ANCF beam element by forming the elastic forces using two distinct and separate methods: the first is the
enhanced continuummechanics approach which is like selectively reduced integration and the second is based
on the Reissner or Simo–Vu Quoc beam theory. In order to deal with volumetric locking in case of nearly
incompressible materials, Orzechowski and Fraczek [55] resorted to selectively reduced integration and the
generalized F-bar approach in the three-dimensional ANCF beam element. In the past decade, several ANCF
beam elements with specific locking alleviation strategies have been proposed. Kerkkanen et al. [36] proposed
a two-dimensional linear ANCF beam element and used selectively reduced integration on the shear energy
in order to avoid shear locking. Sugiyama et al. [87] proposed a curved gradient deficient ANCF beam ele-
ment with normal strain and curvature measures described with respect to the curved reference configuration
such that tangential and radial deformations can be correctly captured. Matikainen et al. [43] improved the
original ANCF beam element by introducing a trapezoidal deformation mode in the cross-sectional kinemat-
ics, thus alleviating Poisson locking. Nachbagauer et al. [48,50] proposed two- and three-dimensional linear
and quadratic beam elements that used a structural mechanics approach and enhanced continuum mechan-
ics formulation to alleviate locking. Shen et al. [77] proposed a higher-order three-dimensional ANCF beam
element that had quadratic interpolation for the cross-sectional deformation. The higher-order element effec-
tively eliminated Poisson locking and could capture the warping effect in beams. This higher-order beam
element was further analyzed by Orzechowski and Shabana [56] in case of buckling, torsional deforma-
tion, and different cross-sectional geometries. Ebel et al. [19] developed and analyzed several higher-order
beam elements that can completely avoid Poisson locking due to improved cross-sectional deformation and
showed the efficacy of the elements via the Princeton beam experiment. Hurskainen et al. [33] developed a
hybrid ANCF beam element with an independently interpolated shear deformation field and demonstrated
good convergence for bending problems. Mohamed and Liu [46] developed a gradient deficient beam ele-
ment that uses a combination of plane strain and elastic line approach, thus exhibiting less locking than the
pure continuum mechanics approach. Locking alleviation techniques similar to those used with ANCF beam
elements have also been proposed for ANCF plate/shell elements. Dmitrochenko et al. [15] extended the
work of Hussein et al. [34] to three-dimensional beam and plate elements. Mikkola and Matikainen [44]
extended the mixed interpolation approach to three-dimensional plate elements and demonstrated its superior
performance in bending scenarios compared to the original element. Ebel et al. [20] developed higher-order
plate elements that alleviate shear and Poisson locking by making use of higher-order interpolation in the
cross section. Yamashita et al. [99] proposed a bilinear ANCF shell element and improved its membrane and
bending behavior by using the assumed natural strain and the enhanced assumed strain approach. In case
of membrane dominated problems, Sanborn et al. [70] identified the issue of curve-induced distortion and
membrane locking that occurs in thin plate elements and proposed a method known as flat mapped exten-
sion modeling to modify the axial strain by systematically excluding the effect of the curvature. Valkeapää et
al. [94] used an elastic middle surface approach which is analogous to the elastic line approach along with
assumed natural strain and the enhanced assumed strain methods in order to alleviate locking in the ANCF
shell element.

4 ANCF finite elements

This section briefly describes the nonlinear absolute nodal coordinate formulation (ANCF) and the continuum
mechanics approach for formulating the elastic forces. This brief review presents some of the basic equations
that will be used repeatedly and/or referred to in the paper. One of the contributions of this paper is to introduce
a new higher-order beam element which will be used as the basis for comparison with lower-order ANCF
elements. In addition to introducing this element in this section, the effect of the constitutive model selection
on the behavior of the planar ANCF beam elements is also discussed.

In addition to using global nodal position vectors, ANCF has the distinguishing feature of using the position
vector gradients as nodal coordinates. The position vector gradients are tangents to the element coordinate lines,
and therefore, their transformation when the elements are assembled differs from the conventional coordinate
transformation used in the classical FE literature. Furthermore, ANCF beams differ from their classical FE
counterparts which do not allow for the cross-sectional deformations. Because of the use of the transverse
gradient vectors as degrees of freedom, ANCF elements allow for the stretch of the cross section. For this
reason, the Poisson effect is fully captured when ANCF elements are used, and as a consequence, ANCF beam
elements may experience Poisson locking which is not observed when conventional beam elements are used,
as will be discussed in Sect. 5 of this paper. The use of the gradient vectors allows for obtaining complex
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geometries including initially-curved geometries that require special attention when attempting to solve the
locking problem, as will be discussed in this investigation.

4.1 ANCF kinematics

In the absolute nodal coordinate formulation, the global position vector of an arbitrary point on the flexible
body can be written as r (x, t) = S (x) e (t), where S (x) is the matrix of shape functions and e (t) is the vector
of nodal position and gradient vectors that are defined in the global coordinate system. Depending on the
element, e(t) can also consist of curvature vectors. The ANCF formulation leads to a constant mass matrix
and zero Coriolis and centrifugal forces. Furthermore, in order to avoid computationally expensive matrix
inversion or LU decomposition, Cholesky decomposition can be applied to obtain an identity generalized mass
matrix associated with the ANCF Cholesky coordinates. Over the past two decades several researchers have
proposed a wide range of ANCF elements. These elements include several beam, plate/shell, hexahedral, and
tetrahedral elements [75]. For ANCF elements, no distinction is made between plate and shell elements since
initially curved structures can be systematically obtained using an appropriate vector of nodal coordinates in
the reference configuration. The constant ANCF element mass matrix can be written as M = ∫

V0
ρSTSdV0,

where ρ and V0 are, respectively, the mass density and volume in the reference configuration. The ANCF
generalized external force vector due to a given force fe can simply be written as Qe = S(x)T fe.

4.2 General continuum mechanics approach

The general continuummechanics approach can be used to formulate the elastic forces of the ANCF elements.
Using the Green–Lagrange strain and second Piola–Kirchhoff stress tensors which are defined with respect to
the reference configuration, the virtual work of the elastic forces can be written as δWk = − ∫

V0
σP2 : δεdV0

where σP2 is the second Piola–Kirchhoff stress tensor and ε is the Green–Lagrange strain tensor. This general
approach allows for incorporating any type of material and geometric nonlinearities in the FE analysis. The
stress tensor σP2 can be defined as σP2 = 2 (∂U/∂Cr ), where U is the strain energy potential function
that is typically written in terms of the invariants of the right Cauchy deformation tensor Cr , defined as
Cr = JT J. [11,52,75]. Alternatively, the elastic forces can be derived directly from the strain energy potential
as Qk = (∂U/∂e), where e is the vector of nodal coordinates.

4.3 Higher-order planar beam element

One method for dealing with some locking types is using higher-order elements that have richer displacement
interpolations that can capture certain important deformationmodes in the element, including pure bending. The
use of such higher-order elements has the advantage of being able to accurately capture complex geometries
that cannot be captured with low-order elements that fail to satisfy some continuity conditions for beam-
like structures where curvatures have significant effects. The ANCF two-dimensional shear-deformable beam
element proposed by Omar and Shabana [54] can be considered to be a higher-order element considering
the fact that there are other ANCF beam elements proposed by Nachbagauer et al. [50] in the literature that
are of lower-order. The Omar and Shabana element is cubic in the longitudinal direction and linear in the
transverse direction, whereas the elements proposed by Nachbagauer et al. [50] are linear in the transverse
direction and linear and quadratic in the longitudinal directions. All these elements, however, suffer from
severe locking when used with the general continuum mechanics approach and a nonzero Poisson ratio. One
must resort to using specialized elastic force formulations like the enhanced continuum mechanics approach
and the Reissner–Simo–Vu Quoc structural mechanics-based approach in order to achieve good performance
from these elements. One of the main reasons for the poor performance of these elements with the general
continuum mechanics approach is the linear interpolation considered in the transverse direction. As explained
by Shen et al. [77] and Orzechowski and Shabana [56], the use of Hooke’s law in this case leads to a stiff
behavior in the element response to non-uniform strain distribution like bending. One approach explored in
previous investigations is refining the displacement polynomial of the lower-order elements to be quadratic in
the transverse directions to allow the element to deform in a way that correctly captures the Poisson coupling
effect within the element. A new higher-order element is hence proposed here in order to explore the efficacy
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of this approach in the two-dimensional analysis and to later compare the use of the higher-order element
approach with other locking alleviation approaches. The higher-order element, which is quadratic in the beam
transverse direction, has the following interpolating polynomial:

r =
[
a0 + a1x + a2y + a3xy + a4x2 + a5y2 + a6xy2 + a7x3

b0 + b1x + b2y + b3xy + b4x2 + b5y2 + b6xy2 + b7x3

]

. (1)

The vector of nodal coordinates of a node i for the new higher-order element is given as ei =
[
riT riTx riTy riTyy

]T
, where r is the global position vector, rα = ∂r/∂α is a gradient vector where α = x, y, and

ryy = ∂2r/∂y2 is a curvature vector. The vectors r, rα , ryy are two-dimensional vectors. The shape functions
for the element based on the polynomials of Eq. (1) are provided in “Appendix A.1.” As can be noticed from
the displacement polynomial and the shape functions, the element is quadratic in the y coordinate, and hence
the normal transverse strain will no longer be constant in the y direction, allowing reducing the Poisson locking
effect specifically in bending situations. This element can be considered as a special (two-dimensional) case
of the three-dimensional higher-order element proposed by Shen et al. [77] and analyzed by Orzechowski
and Shabana [56]. Even though the shape functions of this two-dimensional element can be considered as a
subset of the set of the three-dimensional higher-order element shape functions, its performance, as will be
demonstrated in the next section, is dependent on the constitutive model and on plane stress or plane strain as
used in the case of linear materials.

4.4 Plane stress and plane strain assumptions

The use of the appropriate constitutive model and stress and strain conditions is important in the two-
dimensional analysis of ANCF beams. The two sets of stress and strain conditions available for use with
the linear constitutive model are the plane strain and the plane stress models. Plane strain assumes the strain
components εzz = εxz = εyz = 0, whereas plane stress assumes the stress components σzz = σxz = σyz =
0 [11,52,75]. Even though several previous ANCF investigations suggest that the analyst may choose either
of the two assumptions, the effect of these assumptions on ANCF element performance has not been previ-
ously investigated. This study also examines the effect of plane strain versus plane stress assumption on the
ANCF two-dimensional beam elements using the general continuum mechanics approach. Since in case of a
beam typically the thickness of the structure is not larger than the length, plane stress is recommended as the
appropriate assumption. The effect of the constitutive model and assumed stress or strain conditions can be
demonstrated by a simple example of a beam undergoing small deformation. Two types of elements are con-
sidered in this case: the original two-dimensional beam element that was proposed by Omar and Shabana [54]
and the higher-order element proposed in this investigation. A cantilever beam problem is considered with
material properties E = 2 × 1011 Pa, ν = 0.3, beam length of 1m, height of 0.01m, and thickness of 0.01m.
The cantilever beam, shown in Fig. 1, is subjected to a vertical tip load of −10N. The results for plane strain
and plane stress static analysis on the two element types are shown in Table 1. Since this is a thin beam, the
classical Euler–Bernoulli beam theory predicts the analytical vertical tip deformation to be −0.02 m.

As can be seen from Table 1, the plane stress assumption leads to accurate results with the higher-order
beam element and some under-prediction of deformation with the Omar and Shabana element. The plane strain
assumption on the other hand results in significant under-prediction of deformation in both beam models as
they cannot achieve the analytical solution. This simple analysis demonstrates that the constitutive model and
the assumed stress and strain conditions also affect the element performance and such a constitutive model, and
the corresponding stress and strain conditions must be carefully selected in case of two-dimensional ANCF
beam analysis.

Fig. 1 Slender cantilever beam problem (deformation with respect to undeformed state is magnified for graphical purposes)
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Table 1 Effect of using plane stress and plane strain (Om–Sh: Omar and Shabana beam)

Number of elements Plane strain Plane stress

Om–Sh (m) Higher-order (m) Om–Sh (m) Higher-order (m)

5 −0.014690096 −0.017941054 −0.017979431 −0.019726994
10 −0.014817360 −0.018138433 −0.018148212 −0.019936221
20 −0.014845969 −0.018181342 −0.018183872 −0.019979401
50 −0.014853811 −0.018193062 −0.018193509 −0.019991023

5 ANCF strain split method

In this section, the ANCF strain split method (SSM) for solving the ANCF beam and plate locking problems
is proposed and discussed. The basic differences between this method and other locking solution methods
proposed in the literature will also be discussed in this paper.

5.1 Strain split method (SSM)

A new method is proposed in this study in order to address the locking problem in ANCF beams and plates.
The basic idea is to analyze the element kinematics and then decouple the higher-order terms found in the
axial strain and the transverse strain through an additive decomposition of the Green–Lagrange strain tensor
and the constitutive law. According to the analysis performed by Sugiyama et al. [86], the two-dimensional
shear-deformable beam element position field and gradients can be written, respectively, as

r = rc + yry, rx = rcx + yryx , ry = ry (2)

where c corresponds to the centerline. Accordingly, the matrix of position vector gradients can be written as
J = [

rx ry
] = [

rcx + yryx ry
]
. The matrix of position vector gradients can be additively decomposed as

J =
[
rcx ry

]
+

[
yryx 0

]
= Jc + Jk (3)

where Jc = [
rcx ry

]
is associated with the centerline, and Jk = [

yryx 0
]
is associated with the curvature

and shear deformation of the element. Thus, the Green–Lagrange strain and the right Cauchy deformation
tensors can be written, respectively, as

ε = 1
2

[
JT J − I

] = 1
2 [Cr − I]

Cr = JcT Jc + JcT Jk + JkT Jc + JkT Jk

}

(4)

where each matrix that appears in the Cr expression can be written as

JcT Jc =
[
rcTx rcx rcTx ry
rTy r

c
x rTy ry

]

, JcT Jk =
[
yrcTx ryx 0

yrTy ryx 0

]

,

JkT Jc =
[
yrTyxr

c
x yrTyxry

0 0

]

, JkT Jk =
[
y2rTyxryx 0

0 0

]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (5)

Accordingly, the strain tensor can be written as

ε =
[

ε11 ε12

ε12 ε22

]

= 1

2

([
rcTx rcx + 2yrcTx ryx + y2rTyxryx rcTx ry + yrTyxry
rTy r

c
x + yrTy ryx rTy ry

]

−
[
1 0
0 1

])

. (6)

The strain tensor can be split into two parts, one associatedwith the beamcenterline and the other part associated
with the higher-order terms that contribute to cross-sectional deformation, bending, and curvature definition
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as ε = εc + εk where

εc = 1

2
(JcT Jc − I) = 1

2

([
rcTx rcx rcTx ry
rTy r

c
x rTy ry

]

−
[
1 0
0 1

])

εk = 1

2
(JcT Jk + JkT Jc + JkT Jk) = 1

2

[
2yrcTx ryx + y2rTyxryx yrTyxry
yrTy ryx 0

]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (7)

In order to alleviate locking, Poisson coupling can be used only in the lower-order terms of the normal strains
that are contained in the expression of εc. Thus, the second Piola–Kirchhoff stress can be written in Voigt form
as σv = Ecεcv +Ekεkv , where the strains are also in Voigt form. With an assumption of plane strain the matrices
of elastic coefficients can be defined as

Ec =
⎡

⎣
λ + 2μ λ 0

λ λ + 2μ 0

0 0 μks

⎤

⎦ , Ek = diag (E, E, μks) (8)

where λ and μ are the Lamé parameters, E is Young’s modulus, ks is the shear correction coefficient defined
as ks = 10(1 + ν)/(12 + 11ν), and ν is Poisson’s ratio. This leads to uncoupling of the transverse normal
strain and the higher-order terms associated with bending that are contained in the longitudinal normal strain.
This type of uncoupling in the deformation modes can significantly improve the element bending behavior as
will be demonstrated in the numerical results section of this paper.

With regard to its treatment of the coupling between transverse normal and higher-order strains, SSM is
different from locking alleviation techniques proposed in classical FE literature like the enhanced assumed
strain [79] and the free formulation [8] that work with either element kinematics or the stiffness matrix to deal
with locking. In case of the enhanced assumed strain approach, an incompatible strain field is added to the
compatible strain field to improve element performance as will be discussed in Sect. 6 of this investigation. The
free formulation is based on the concept of using a nonconforming higher-order displacement field along with
the so-called basic displacement components which include the rigid body and constant strain element modes.
The stiffness in the free formulation iswritten as the sumof the basic stiffness and the higher-order stiffness [21].
Furthermore, the stiffness coupling between the basic element modes and higher-order modes is modified to
improve element convergence. It should be noted that this approach is different from the SSM approach since
the SSM approach relies on the strain decomposition and different constitutive models to alleviate locking. In
case of the free formulation, the same constitutive model is used in all stiffness calculations; hence, the method
relies purely on a kinematic enhancement approach. In the conclusion of Felippa’s paper [21] it is noted that
the free formulation has to do with “freedom” from element conformity requirements which can help improve
its performance. Since in the SSM approach no such requirement or assumption is exercised on the element in
order to alleviate locking, SSM is fundamentally different from the free formulation as a locking alleviation
technique.

The SSM approach is also different from the enhanced continuum mechanics approach that was proposed
by Gerstmayr et al. [26] from a numerical perspective wherein the former uses full integration, whereas the
latter uses selectively reduced integration as will be discussed in Sect. 6.3 of this paper. Another distinguishing
SSM feature is that in the evaluation of the stress, even though it uses similar matrices of elastic coefficients,
Ec and Ek , that are used by the enhanced continuum mechanics approach, it uses different strain tensors, εc

and εk , with the given matrices of elastic coefficients.

5.2 SSM generalization

The strain split method proposed for the two-dimensional beam element can be easily extended to the three-
dimensional beam and plate elements since these elements share similar features with the ANCF planar
elements considered in this paper. The behavior of the spatial beam and plate elements depends on the geometry
of the centerline ormid-surface and the definition of the transverse gradients. According to Sugiyama et al. [86],
in case of a three-dimensional ANCF beam element, the position field and gradients can be written as
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r = rc + yry + zrz
rx = rcx + yryx + zrzx
ry = ry , rz = rz

⎫
⎬

⎭
. (9)

The matrix of position vector gradients can be written as

J = [
rcx + yryx + zrzx ry rz

] = Jc + Jk (10)

where Jc = [
rcx ry rz

]
and Jk = [

yryx + zrzx 0 0
]
. Using this split of the matrix of position vector

gradients, the Green–Lagrange strain can be written as ε = εc + εk where

εc = 1

2

(
JcT Jc − I

)
, εk = 1

2

(
JcT Jk + JkT Jc + JkT Jk

)
, (11)

and finally, the second Piola–Kirchhoff stress can be defined in Voigt form as σv = Ecεcv + Ekεkv where

Ec =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ + 2μ λ λ 0 0 0

λ λ + 2μ λ 0 0 0

λ λ λ + 2μ 0 0 0

0 0 0 μ 0 0

0 0 0 0 μks2 0

0 0 0 0 0 μks3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ek = diag(E, E, E, μ, μks2, μks3).

(12)

In case of three-dimensional plate elements, the position field and gradients can be described using the element
mid-surface and transverse gradient vector as

r = rm + zrz, rx = rmx + zrzx ,
ry = rmy + zrzy, rz = rz

}

. (13)

Accordingly, the matrix of position vector gradients and its additive split can be defined as

J =
[
rmx + zrzx rmy + zrzy rz

]
= Jm + Jk . (14)

In this equation, Jm = [
rmx rmy rz

]
and Jk = [

zrzx zrzy 0
]
. The derivation for the plate element strains

and stresses follows the same procedure as discussed for the beam element.

5.3 SSM objectivity and initially curved geometry

In the case of initially curved stress-free geometry, the Green–Lagrange strain tensor can be written as ε =(
JT J − I

)
/2 where J = JeJ

−1
0 , Je = ∂r/∂x, J0 = ∂X/∂x, x are the element spatial coordinates in the straight

configuration, X = S (x) e0 are the element parameters in the stress-free reference configuration, and e0 is the
vector of the ANCF element coordinates in the reference configuration. Therefore, the Green–Lagrange strain

tensor can be written as ε =
(
J−T
0 JTe JeJ

−1
0 − I

)
/2. One can write the strain tensor in terms of the covariant

strain tensor ε̃ as

ε = J−T
0

(
1

2

(
JTe Je − JT0 J0

))

J−1
0 = J−T

0 (ε̃) J−1
0 . (15)

In this equation, ε̃ = (
JTe Je − JT0 J0

)
/2. The matrix of position vector gradients in the current and reference

configurations can be split into centerline and higher-order parts, respectively, as Je = Jce+Jke and J0 = Jc0+Jk0.
Using this split, the covariant strain tensor can be written as

ε̃ = 1

2

((
Jce + Jke

)T (
Jce + Jke

)
−

(
Jc0 + Jk0

)T (
Jc0 + Jk0

))

. (16)
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Thus, ε̃ can be split as the sum of two parts as ε̃ = ε̃c + ε̃k , where

ε̃c = 1
2

(
JcTe Jce − JcT0 Jc0

)

ε̃k = 1
2

(
JcTe Jke + JkTe Jce + JkTe Jke − JcT0 Jk0 − JkT0 Jc0 − JkT0 Jk0

)

}

. (17)

Finally, a push forward operation can be applied on the covariant strains to obtain εcand εk as ε =
J−T
0

(
ε̃c + ε̃k

)
J−1
0 , which can be written as

ε = εc + εk = J−T
0

(
ε̃c

)
J−1
0 + J−T

0

(
ε̃k

)
J−1
0 . (18)

Using this SSM procedure, curved structures can be easily analyzed. This method is also applicable to straight
structures as well because in straight structures J0 is an identity matrix and Jk0 is a null matrix.

In order to demonstrate that the strains remain objective, consider a rotation applied to Je such that J∗
e = RJe

where R is a proper orthogonal rotation matrix. Consequently, J∗
e can be written as J∗

e = R(Jce + Jke) and the
covariant strains as

ε̃c∗ = 1
2

(
JcTe RTRJce − JcT0 Jc0

) = 1
2

(
JcTe Jce − JcT0 Jc0

) = ε̃c

ε̃k∗ = 1
2

(
JcTe RTRJke + JkTe RTRJce + JkTe RTRJke − JcT0 Jk0 − JkT0 Jc0 − JkT0 Jk0

)

ε̃k∗ = 1
2

(
JcTe Jke + JkTe Jce + JkTe Jke − JcT0 Jk0 − JkT0 Jc0 − JkT0 Jk0

) = ε̃k

⎫
⎪⎬

⎪⎭
. (19)

That is, the strain split method does not affect the strain objectivity.

6 Other locking solution approaches

This section briefly discusses the enhanced assumed strain, elastic line, and enhanced continuum mechanics
approaches used in the numerical investigation performed in this paper to compare with the SSM results. The
brief description of these methods, which are well documented in literature, will shed light on the differences
between different locking solution techniques. Furthermore, an enhanced strain approach based on using
higher-order ANCF element shape functions with lower-order ANCF elements is demonstrated.

6.1 Enhanced assumed strain (EAS) and method of incompatible modes

Themethod of incompatiblemodeswas introduced byBazeley et al. [6] and studied byTaylor et al. [90] in order
to improve the bending behavior of the classical quadrilateral element. The enhanced assumed strain approach
proposed by Simo and Rifai [79] is a generalization of the method of incompatible modes. In fact Simo and
Rifai [79] demonstrated that the method of incompatible modes is a special case of the enhanced assumed
strain approach. In the enhanced strain approach, the incompatible strain field is defined using certain carefully
designed interpolations by ensuring that the set of interpolating polynomials meets a list of conditions that are
required for convergence and stability of the element. The basic idea is the enhancement of the element strain
field by enriching its strain components so that its performance improves in non-uniform strain conditions.
One disadvantage of this approach is the requirement of adding more variables to every element. Consider the
Veubeke–Hu–Washizu energy functional in the reference configuration [9]:


VHW (r, ε, σP2) =
∫

V0

U (ε) dV0 +
∫

V0

σP2 :
(
1

2

(
JT J − I

)
− ε

)

dV0 −Uext (20)

where σP2 is the second Piola–Kirchhoff stress tensor, ε is the Lagrangian strain tensor, and U and Uext are,
respectively, the internal and external potential energy functions. The strain field is enhanced as ε = εcom+εenh

where εcom is the compatible strain field obtained from the Green–Lagrange strain tensor, and εenh is the
enhanced strain field that is element-wise discontinuous. Substituting the enhanced strain in the Veubeke–Hu–
Washizu functional and making a design choice for the enhanced strain field such that

∫
V0

σP2 : εenhdV0 = 0
leads to


VHW
(
r, εenh

) =
∫

V0

U
(
εcom + εenh

)
dV0 −Uext. (21)



2934 M. Patel, A. A. Shabana

The position and enhanced strain fields can be discretized as r = S(ξ)e and εenh = Ms(ξ)α, where Ms
is a shape function matrix, α is a vector of additional enhanced strain variables called internal variables,
ξ = [

ξ η
]T , ξ = x/ l, η = y/ l are the dimensionless element parameters, and l is the length of the element.

Equating the variation of the Veubeke–Hu–Washizu functional to zero leads to the following set of equations:

f (e, α) =
∫

V0

(
∂εcom

∂e

)T
∂U

∂ε
dV0 − Qext = 0

g (e, α) =
∫

V0

(
∂εenh

∂α

)T
∂U

∂ε
dV0 = 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (22)

Newton’s method can be used to solve the above nonlinear system of equations. After linearization, the
equations used in the iterative Newton–Raphson procedure can be written in the following form:

[
K P
S G

] [
e
α

]

= −
[
f
g

]

(23)

where the submatrices in this equation are defined in “Appendix A.2.” Alternatively, the internal variables α
can be eliminated at the element level using a static condensation based on the second equation of Eq. (23),
α = −G−1(g + Se), which leads to the following system of equations:

(
K − PG−1S

)
e = −f + PG−1g. (24)

After applying the static condensation on the internal variables α, the equilibrium equations can be assembled
for the entire mesh, the boundary conditions applied, and the resulting system is solved for e. Once e is
determined, α can be updated for every element [78,99]. The procedure can be generalized to the dynamic
case in which the element coordinates e are assumed known from the numerical integration. These element
coordinates can be substituted into the equation g(e,α) = 0 which can be used to determine the internal
variables α to be used in the formulation of the strain energy and elastic forces. The guidelines for designing
and using the enhanced strain interpolation functions are briefly reviewed in “Appendix A.3.”

EAS strain interpolation

In case of the two-dimensional shear-deformable element [54], Poisson locking can cause poor convergence
even after significant mesh refinement. One way to alleviate this type of FE locking (as was discussed in
Sect. 4.3) is to consider a quadratic displacement interpolation in the element transverse direction that would
yield a linear transverse normal strain distribution which can be sufficient to account for stiffness coupling
resulting from the use of Hooke’s law. Therefore, onemethod to achieve this type of enhancement is to consider
the enhanced assumed strain interpolation to be linear in the element transverse direction. The interpolation
matrix and the enhanced strain in Voigt form can be written in the parametric domain as

ε̄enh = M̄α = [
0 η 0

]T
α. (25)

This leads to a linear enhancement of the transverse normal strain, and it can be shown that this type of assumed

strain interpolation satisfies Eq. (A.3) because
∫ 1
0

∫ h
2l

− h
2l

ηdηdξ = 0.

The fact that the higher-order two-dimensional ANCF beam element proposed in the preceding section is
quadratic in the element transverse direction suggests using its “higher-order” shape functions as the interpola-
tion polynomials for the enhanced strain field in order to improve the performance of the lower-order element.
Keeping this concept in mind, the enhanced strain field can be assumed to be the linearized strain tensor that
uses the “higher-order” shape functions that are sHO1 = l2

(
η2 − η2ξ

)
/2, sHO2 = l2η2ξ/2. It follows that the

higher-order shape function matrix can be written as SHO = [
sHO1 I sHO2 I

]
, and the matrix of higher-order

displacement gradients and enhanced strain tensor can be written using the element enhanced strain parameters
as

JHOd =
[
SHOx α SHOy α

]
, ε̄enh = 1

2

(
JHOd + (

JHOd
)T )

. (26)
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Furthermore, it can be shown that the enhanced strain in Voigt form can be written as

ε̄enh = M̄α =

⎡

⎢
⎢
⎣

SHOx1
SHOy2(

SHOx2 + SHOy1
)

⎤

⎥
⎥
⎦ α (27)

where SHOab corresponds to the bth row of the matrix SHOa = ∂SHO/∂a, and a = x, y. One issue with this type

of enhanced strain interpolation is that
∫ 1
0

∫ h
2l

− h
2l
sHO1,ξ dηdξ �= 0 and

∫ 1
0

∫ h
2l

− h
2l
sHO2,ξ dηdξ �= 0. This violates the

condition of Eq. (A.3). In order to address this problem, the method of the constant correction matrix proposed
by Ibrahimbegovic and Wilson [35] is used. The matrix of interpolating functions in the physical domain is
modified by adding a constant correction matrix such that M̃ = Ms + Mc, where the matrix M̃ satisfies the
second part of Eq. (A.3). The correction matrixMc can be defined using the equation

∫
V0

MsdV0+V0Mc = 0,
which leads to

Mc = − 1

V0

∫

V0

MsdV0. (28)

In this case, M̃ is used as the interpolation matrix to define the enhanced strain instead of Ms which violates
Eq. (A.3).

6.2 Elastic line approach

The ANCF elastic line approach, proposed by Schwab and Meijaard [72] and used by Hussein et al. [34], can
be an effective method for formulating the elastic forces for thin and stiff beams. Schwab and Meijaard [72]
considered the Poisson coupling of the normal strains in their work, whereas Hussein et al. [34] did not consider
this Poisson coupling. For details on the derivation of the elastic forces using the elastic line approach, the
reader may refer to the publications by Schwab and Meijaard [72] and Hussein et al. [34]. A mixed method
that was employed with ANCF elements in order to reduce shear locking in conjunction with the elastic line
approach was the Hellinger–Reissner principle, where the shear stress field was interpolated independently
within the element [34,72].

6.3 Enhanced continuum mechanics approach

As mentioned in Sect. 3, another method proposed in the ANCF literature to deal with Poisson locking is
the enhanced continuum mechanics approach that was proposed by Gerstmayr et al. [26]. The roots of this
method lie in the concept of classical FE selectively reduced integration. The matrix of elastic coefficients
is split into two parts, one that considers Poisson coupling between the normal strains and one that does not
consider this effect. While the strain split method proposed earlier in this paper is similar to the enhanced
continuum mechanics approach when considering the constitutive model split, as mentioned earlier there
are some fundamental differences between the two methods. In case of the enhanced continuum mechanics
approach, selectively reduced integration is used, and the same strain matrix is used, for the full integration
and reduced integration parts, whereas in case of the strain split method full integration is used and different
strain matrices are used with two different constitutive matrices. It will be demonstrated in the numerical
results section that the strain split method can be used to obtain comparable results to those of the enhanced
continuum mechanics approach without the need for using reduced integration.

7 Numerical examples

In order to demonstrate and compare the effect of the locking alleviation techniques on the performance of
ANCF beam elements, five numerical examples are considered: three static analysis examples and two dynamic
analysis examples. The first static example is that of a slender beam subjected to small deformation. The second
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Table 2 Locking alleviation technique abbreviations

Abbreviation Type

GCM General continuum mechanics
ECM Enhanced continuum mechanics
EAS-1 Single parameter enhanced assumed strain
EAS-2 Higher-order shape function-based enhanced assumed strain
SSM Strain split method
EL-SM Schwab–Meijaard elastic line
EL-HS Hussein et al. elastic line
ELHR-SM Schwab–Meijaard elastic line with Hellinger Reissner shear improvement
ELHR-HS Hussein et al. elastic line with Hellinger Reissner shear improvement
HOEL Higher-order beam element with GCM

Table 3 Small deformation of cantilever beam static example: tip vertical displacement (m)

TYPE 5 elements 10 elements 20 elements 50 elements 100 elements

GCM −0.01797943 −0.01814821 −0.01818387 −0.01819351 −0.018194876
ECM −0.01974402 −0.01994094 −0.01998069 −0.01999130 −0.019992806
EAS-1 −0.01974404 −0.01994095 −0.01998069 −0.01999130 −0.019992806
EAS-2 −0.01974414 −0.01994097 −0.01998069 −0.01999130 −0.019992806
SSM −0.01974403 −0.01994095 −0.01998069 −0.01999130 −0.019992806
HOEL −0.01972699 −0.01993622 −0.01997940 −0.01999102 −0.019992674
EL-SM −0.01974323 −0.01994464 −0.01998333 −0.01999130 −0.019991743
EL-HS −0.01974800 −0.01994487 −0.01998334 −0.01999130 −0.019991743
ELHR-SM −0.01973830 −0.01993950 −0.01997930 −0.01998984 −0.019991308
ELHR-HS −0.01974306 −0.01993973 −0.01997931 −0.01998984 −0.019991308
Analytical −0.02

static example is a thick beam subjected to large deformation. The third static example is that of a curved beam
subjected to large deformation. The first dynamic analysis example is a two-dimensional beam pendulum
subjected to gravity loading. The second dynamic analysis example is a three-dimensional cantilever beam
structure subjected to gravity loading. Because all the static examples are planar, the plane stress assumption
is used in all static analyses. Table 2 provides appropriate abbreviations that will be used to refer to different
locking alleviation techniques. All locking alleviation techniques in Table 2 with the exception of HOEL are
used with the Omar and Shabana (referred to as Om–Sh henceforth) beam element. HOEL refers to the higher-
order beam element proposed in this paper in Sect. 4.3. In all the examples, the shear correction factor is used
with the Om–Sh beam element and not with HOEL since HOEL has quadratic transverse interpolation, unless
specified otherwise.

7.1 Slender beam: small deformation

A slender cantilever beam subjected to a vertical tip force is considered with the same element dimensions and
material properties as those of the problem described in Sect. 4.4. As was mentioned previously, the analytical
solution is known in this case from the classical Euler–Bernoulli theory and is calculated to be −0.02m. The
results for the static analysis are reported in Table 3 which shows the converged beam tip vertical displacement.
As can be seen from these results, the Om–Sh beam element with general continuum mechanics approach
cannot converge to the correct solution due to excessive stiffness resulting from Poisson locking. All the other
cases can converge to the correct solution. The enhanced continuum mechanics approach, EAS-1, EAS-2, and
the strain split approach show almost identical convergence in this small deformation case. Based on the results
reported in Table 3, the Hellinger–Reissner principle did not improve the convergence or the solution.

7.2 Thick beam: large deformation

A thick beam example undergoing large deformation, shown in Fig. 2, is considered. The beam structure is
2m long and has a cross section that is 0.5m high and 0.1m wide. The modulus of elasticity is assumed as
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Fig. 2 Thick cantilever beam problem (actual deformation shown with respect to undeformed state)

Table 4 Large deformation of cantilever beam static example: tip vertical displacement (m)

TYPE 5 elements 10 elements 20 elements 50 elements 100 elements

GCM −0.65915558 −0.66424157 −0.66567545 −0.66620894 −0.66633102
ECM −0.70648069 −0.71210192 −0.71364032 −0.71421138 −0.71434336
EAS-1 −0.70749271 −0.71303640 −0.71458220 −0.71516154 −0.71529576
EAS-2 −0.70914733 −0.71423843 −0.71582370 − −
SSM −0.70703906 −0.71261927 −0.71416020 −0.71473509 −0.71486816
HOEL −0.69531347 −0.70527450 −0.70867124 −0.70994038 −0.71018834
EL-SM −0.68327030 −0.68431265 −0.68437627 −0.68439711 −0.68440429
EL-HS −0.68356363 −0.68475960 −0.68484925 −0.68487219 −0.68487886
ANSYS −0.713420 (converged)

E = 2.07×1011 Pa, and Poisson’s ratio is assumed ν = 0.3. A fully clamped boundary condition is applied at
the left end of the beam,whereas a vertical force of−5×108×h3 N is applied to the right end. For this example,
the curvature degrees of freedom at the beam clamped end are also constrained in case of the higher-order
beam element due to the large deformation nature of the problem and large cross section which could lead to
significant cross-sectional deformation at the clamped end. The results of a static analysis reported in Table 4
show the converged beam tip vertical displacement. The reference solution of −0.71342m, obtained using a
commercial FE code, was achieved with 10,000 quadratic quadrilateral elements.

As can be seen from Table 4, the general continuum mechanics approach without locking alleviation
converges to the incorrect solution. The higher-order beam element, enhanced continuummechanics approach,
SSM, and the EAS-1 approach can successfully alleviate locking in this example. The EAS-2method, however,
failed to converge when more than 25 elements are used. It was observed that as the element length-to-height
ratio significantly decreases, numerical instabilities similar to spurious modes or hourglassing were observed
when the EAS-2 method is used with the thick beam example. Recall that EAS-2 makes use of the correction
matrix along with the enhanced strain formulation. A possible explanation for this phenomenon is the ill-
conditioning of the stiffness matrix caused by correction matrices as the element ratio approaches zero. Such
numerical instability was not seen in the EAS-2 method in case of relatively thin beams. The critical element
length-to-height ratio is found to be around 0.15 for the EAS-2 method in this specific example. It should
be reported that if the height of the beam in this example was reduced to 0.1m, the numerical instability
disappeared in the EAS-2 method for meshes which have more than 25 elements. A similar type of numerical
instability was reported by Sussman and Bathe [89] when using incompatible mode elements in the case of
geometrically nonlinear analyses and small strain conditions.

7.3 Initially curved beam: large deformation

An initially curved beam structure is subjected to large deformation in this numerical example as shown in
Fig. 3. The beam is clamped at one end, and a constant tip force is applied in the global X direction. The value
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Fig. 3 Curved cantilever beam problem (actual deformation shown with respect to undeformed state)

Table 5 Large deformation of curved cantilever beam static example: tip X displacement (m)

TYPE 5 elements 10 elements 20 elements 50 elements 100 elements

GCM 0.15338680 0.16172381 0.16199009 0.16196139 0.16195412
ECM 0.16989437 0.17938015 0.17974234 0.17972820 0.17972255
EAS-1 0.16295031 0.17215697 0.17250459 0.17249109 0.17248574
EAS-2 0.16311305 0.17225897 0.17263943 0.17271119 0.17273819
SSM 0.16988736 0.17937894 0.17974213 0.17972815 0.17972252
HOEL 0.16298605 0.17213835 0.17247560 0.17246368 0.17246014
ECM-L 0.16409531 0.17247265 0.17258737 0.17250808 0.17249346
SSM-L 0.16408860 0.17247216 0.17258704 0.17250726 0.17249244
ANSYS 0.17291 (converged)

of the force is 1× 109 × h3 N. The initially curved beam arc length is 1m, and the arc radius is 0.6366m. The
beam height and width are 0.05m each. The material properties are E = 2.0 × 1011 Pa, ν = 0.3, and ks = 1.
The results from the static analysis are shown in Table 5which shows the beam tip horizontal displacement. The
reference solution of 0.17291m was obtained using a commercial FE code with 1000 classical beam element
mesh. The ANCF higher-order beam element, EAS-1 and EAS-2 methods can converge close to the reference
solution. Significant locking is observed in the beam with the general continuum mechanics approach. The
strain split and enhanced continuum mechanics methods slightly overpredict the deformation. The reason for
this is the loss of the constitutive coupling that occurs in curved structures between higher-order longitudinal
strain terms and transverse normal strain. Such a type of coupling is fully present in the general continuum
mechanics approach which is used with the ANCF higher-order beam element. One remedy to avoid the
overprediction of the solution in case of the strain split method for curved structures is the consideration of
coupling coefficients in theEk matrix that could represent weak coupling between the higher-order longitudinal
and transverse normal strains; however, it is still not yet clear how to determine such coupling coefficients
for the strain split method. For example, if the Ek matrix is modified such that Ek(1, 2) = Ek(2, 1) = Eν,
the SSM converged solution is 0.1705m, which is an improvement compared to the solution obtained without
modifying Ek .

Amore effectivemethod for improving the performance of the strain split and enhanced continuummechan-
ics methods in case of initially curved structures is based on giving a “local” meaning to the constitutive model
used in the SSMand ECMapproaches. This entails the transformation of either the constitutive coefficients into
the global framewith the understanding that the constitutive coefficients are defined with respect to the element
local frame or carry out strain and stress transformations between the global and element local frames [49].
Since the transformation of the constitutive coefficients is rather cumbersome, the Green–Lagrange strain
tensor used in the ECM approach and the εc and εk strain matrices used with the SSM approach can be first
transformed into the element local frame, the local stress can be evaluated within this element frame, and
then the resulting local stress can be transformed back into the global frame in order to evaluate the element
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Fig. 4 Comparison of beam tip vertical displacement for different formulations in case of plane stress ( GCM,
ECM, SSM, HOEL)

elastic forces [49]. Using such a procedure, the SSM and ECM techniques yield accurate results for initially
curved structures as can be seen in Table 5, where the results for the two approaches are labeled as SSM-
L and ECM-L referring to the local interpretation of the constitutive model used. A tangent element frame
can be defined in case of ANCF beam elements at the first node as A = [

i Ĩi
]
, where i = rx/|rx |, and

Ĩ = [
a1 a2

]
, a1 = [

0 1
]T

, a2 = [−1 0
]T . Similarly, a cross-sectional element frame can be defined as

A = [−Ĩj j
]
, where j = ry/

∣
∣ry

∣
∣. These frames are defined using the beam reference configuration and

hence do not change with time. It was observed that using either tangent frame or cross-sectional frame did
not make significant difference for the problem under investigation. In case of using the local interpretation for
the constitutive model, the coupling coefficients in the Ek matrix discussed previously are no longer required.
Furthermore, the local frame is also more appropriate to use with shear correction factors used with beams. It
must also be reported that the softening of the beam in case of initially curved structures discussed earlier is
dependent on the beam radius of curvature, that is, less softening for a larger radius of curvature in case of SSM.

7.4 Dynamic analysis: pendulum problem

A dynamic example is presented in order to demonstrate that the newly proposed strain split method can
contribute to locking alleviation in dynamic problems as well. A beam pendulum meshed with 30 elements
is considered, with a length of 1m, height of 0.25298m, and a width of 0.00632m as was presented in [54].
The material properties of the pendulum are E = 7.0× 105 Pa, ν = 0.3, and ρ = 5540 kg/m3. Gravity load is
considered to be the external force in this problem, and an assumption of plane stress was used in the analysis.
The vertical displacement of the beam tip is shown as a function of time in Fig. 4.

The Om–Sh element with general continuum mechanics approach, the strain split method, the enhanced
continuum mechanics approach, and the proposed ANCF higher-order beam element are compared in Fig. 4.
Results show good convergence between different models for a dynamic analysis. The deformation seen in the
higher-order element model is slightly larger than the other models since this element has curvature coordinates
that add additional cross-sectional flexibility to the element. Figure 5 shows the results of the beam tip vertical
displacement obtained using the general continuum mechanics approach and the strain split method using the
plane strain assumptions and the Om–Sh element. The effect of locking is more evident in case of plane strain
with the general continuum mechanics approach. Figure 6 shows the beam configurations at different times
during the plane strain dynamic analysis. The colored beam in Fig. 6 shows the axial strain in case of the strain
split model, whereas the gray beam shows the configuration of the beam obtained using the general continuum
mechanics approach.
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Fig. 5 Comparison of beam tip vertical displacement between general continuum mechanics and strain split method with plane
strain assumption ( GCM, SSM)

Fig. 6 Graphical representation of the pendulum motion in case of plane strain (gray: GCM; colored: SSM with axial strain
contours) (color figure online)

7.5 Three-dimensional dynamic analysis: cantilever beam

Finally, a dynamic analysis of a three-dimensional cantilever beam structure is presented. This problem is
identical to the one considered by Orzechowski and Shabana [56] where they compared the ANCF beam
element [98] with the Shen et al. [77] higher-order beam element. The higher-order three-dimensional beam
element does not have the locking seen in the relatively lower-order Yakoub and Shabana element. The beam
structure length is 1m, and the cross section height and thickness are 0.1 and 0.07m, respectively. The material
properties considered are E = 60 × 106 Pa, ν = 0.3, and ρ = 7200 kg/m3. Gravity loading is considered as
external force. Figure 7 shows the beam reference and deformed configurations.

Figure 8 compares the Yakoub and Shabana element with the general continuum mechanics approach,
strain split method, and the elastic line approach to the solution obtained from the higher-order Shen et al.
element that used the general continuum mechanics approach. A mesh of 10 elements is considered for all
models shown in Fig. 8. It can be seen from the results presented in Fig. 8 that the lower-order element with
general continuum mechanics approach exhibits significant locking, whereas the other models compare well
with the higher-order three-dimensional beam element. This example also demonstrates the effectiveness of
the strain split method in three-dimensional beam elements. The elastic line approach gives good results in
this case since the beam cross-sectional dimensions are much smaller than its length.
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Fig. 7 Three-dimensional cantilever beam dynamic analysis (gray: beam configuration at t = 0 s; colored: beam configuration
with axial strain contours at t = 0.32 s) (color figure online)

0.0 0.2 0.4 0.6 0.8 1.0
0.92

0.94

0.96

0.98

1.00

B
ea

m
 ti

p 
ho

riz
on

ta
l p

os
iti

on
 (m

)

Time (s)

Fig. 8 Comparison of cantilever beam tip horizontal position for different models ( Yakoub and Shabana beamwith GCM,
Yakoub and Shabana beam with SSM, higher-order Shen et al. beam with GCM, Yakoub and Shabana

beam with elastic line approach)

8 Conclusions

The ANCF beam element locking was the subject of this paper which presented a literature review of classical
FE andANCF locking alleviation techniques. This literature review shows the significant contributions reported
in the FE literature and clearly demonstrates that, while locking is a common problem in most FEs, it can
be dealt with relatively easily and effectively. ANCF locking alleviation techniques can be broadly classified
into two distinct categories: kinematics- and kinetics-based methods. Kinematics-based locking alleviation
techniques alter the kinematic description of the element in order to improve its performance. Such methods
include improvement in the displacement polynomials or improvement in the strain measures. Kinetics-based
methods operate at the elastic force level by modifying the stresses without directly affecting the basic element
kinematics. Such methods include different formulations of the strain energy function and reduced integration.
The locking alleviation techniques investigated and compared in this paper can be categorized in the afore-
mentioned two types. These include the new method that is proposed in this work to solve the ANCF beam
and plate locking problems, known as the strain split method (SSM). A new higher-order two-dimensional
ANCF beam element was also developed for the purpose of comparisonwith other locking alleviationmethods.
Implementation of the enhanced assumed strain method in ANCF beams using one parameter interpolation and
usingANCF higher-order beam shape functions was presented and discussed. Three planar static examples that
include a slender beam, a thick beam, and a curved beam structure undergoing small and large deformations,
one planar dynamic pendulum problem and one three-dimensional dynamic cantilever beam problem were
presented, and the locking alleviation techniques were compared. The newly proposed SSM concept in curved
structures was discussed, and its advantages and drawbacks were discussed.
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Appendix A

A.1 Higher-order ANCF planar element shape functions

The shape functions for the new higher-order two-dimensional element proposed in Sect. 4.3 are given as:

s1 = 1 − 3ξ2 + 2ξ3, s2 = l
(
ξ − 2ξ2 + ξ3

)
, s3 = l (η − ηξ) ,

s4 = l2
2

(
η2 − η2ξ

)
, s5 = 3ξ2 − 2ξ3, s6 = l

(−ξ2 + ξ3
)
,

s7 = lηξ, s8 = l2
2 η2ξ

⎫
⎪⎪⎬

⎪⎪⎭
(A.1)

where ξ = x/ l, η = y/ l are the dimensionless element parameters and l is the element length. The matrix of
shape functions can be written as S = [

s1I s2I s3I s4I s5I s6I s7I s8I
]
.

A.2 Enhanced strain submatrices

The submatrices used in Eq. (23) are given as follows:

K = ∂f
∂e

=
∫

V0

(
∂εcom

∂e

)T
∂2U

∂ε2

(
∂εcom

∂e

)

dV0 +
∫

V0

(
∂2εcom

∂e2

)T
∂U

∂ε
dV0,

P = ∂f
∂α

=
∫

V0

(
∂εcom

∂e

)T
∂2U

∂ε2

(
∂εenh

∂α

)

dV0, S = ∂g
∂e

=
∫

V0

(
∂εenh

∂α

)T
∂2U

∂ε2

(
∂εcom

∂e

)

dV0,

G = ∂g
∂α

=
∫

V0

(
∂εenh

∂α

)T
∂2U

∂ε2

(
∂εenh

∂α

)

dV0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.(A.2)

A.3 Design of enhanced strain field

In a state of constant stress or a patch test,
∫

V0

σP2 : εenhdV0 = 0 must be satisfied. This leads to the following

expression:
∫

�

M̄d� = 0,
∫

V0

MsdV0 = 0 (A.3)

where � is the element parametric domain, M̄ andMs is the matrix of enhanced strain interpolation functions
defined in the parametric domain and physical reference domain, respectively. Satisfying Eq. (A.3) is impor-
tant for the stability and convergence properties of the enhanced strain-based element. Furthermore, another
condition required for element stability is that the intersection of the subspaces spanned by the compatible
and enhanced strain fields must be a null set. Finally, in order to ensure that the objectivity of the strain tensor
is ensured, the enhanced strain interpolation functions must demonstrate frame invariance in the parametric
domain [78]. The enhanced strain field interpolation functions defined in the parametric domain can be trans-
formed into the reference domain using the following operation:Ms = (|Jc|/|J|)T−T

c M̄ where J is the matrix
of position vector gradients at the integration point in the reference configuration [79], c represents element
coordinates corresponding to the center of the element, and the transformation matrix T is given as [1]

T =
⎡

⎣
J11 J11 J12 J12 2J11 J12
J21 J21 J22 J22 2J21 J22
J11 J21 J12 J22 J11 J22 + J12 J21

⎤

⎦ (A.4)

where Ji j is the i j th element of the matrix of position vector gradients defined in the reference configuration.
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