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Abstract This paper concerns a new and fastmeshfreemethod for the linear coupled thermoelasticity problem.
The resulting algorithm provides an attractive alternative to existing mesh-based and meshfree methods. Com-
pared with mesh-basedmethods, the proposed technique inherits the advantages of meshfree methods allowing
the use of scattered points instead of a predefined mesh. Compared with the existing meshfree methods, the
proposed technique is truly meshless, requiring no background mesh for both trial and test spaces and, more
importantly, numerical integrations are done over low-degree polynomials rather than complicated shape func-
tions. In fact, this method mimics the known advantages of both meshless and finite element methods, where
in the former triangulation is not required for approximation and in the latter the stiffness and mass matrices
are set up by integration against simple polynomials. The numerical results of the present work concern the
thermal and mechanical shocks in a finite domain considering classical coupled theory of thermoelasticity.

1 Introduction

Thermoelasticity is the generalization of the classical theory of elasticity and of the theory of thermal con-
ductivity which involves the study of the stresses and strains developed in a solid body due to temperature
variations, principally via heat conduction, and the energy dissipation associated with heat flow. The funda-
mental relations and differential equations of thermoelasticity have been well formulated. Historically, two
general theories are mainly used to address the thermoelastic problem, usually denoted as the uncoupled and
coupled cases. The uncoupled case essentially deals with the theory of thermal stresses. The theory is based on
the assumption to disregard the influence of deformations of the medium on the temperature field, but account
for the influence of the temperature field, when calculating the stresses of the medium. On the other hand, in
coupled thermoelasticity, all interactions are taken into account. When the inertia effects are included, both
for the mechanical and thermal part, then it is dealing with fully coupled dynamic thermoelasticity [1,8,18].

As pointed at before, the theory of thermoelasticity is well established in past decades. Some analytical
and close-form solutions in special situations exist [8,11,12,18,21,22]. The fundamental matrix solution of
the system of partial differential operators that governs the diffusion of heat and the strains in elastic media is
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given in [31]. Numerical solutions through the finite elements method (FEM) have been reported by several
authors [5,8,17,19,27]. The boundary elements method (BEM) has also been successfully applied to coupled
and uncoupled thermoelastic problems [6,8,10,25,26,28,30].

More recently, some variations of meshless techniques are applied to solve problems concerning the prop-
agation of thermoelastic waves. In [23] the meshless formulation based on local boundary integral equation
(LBIE) methods was presented for some two-dimensional uncoupled thermoelastic problems. The mesh-
less local Petrov–Galerkin method (MLPG) has been applied in transient linear thermoelastic analysis for
orthotropic material properties in [24]. MLPG methods with different trial approximations have been used for
variations of linear uncoupled and coupled thermoelastic problems in [7,20,33]. The shape optimization of
linear thermoelastic solids is considered in [4] using a meshless approximation technique.

Although MLPG is known as a truly meshfree method, it still suffers from the cost of numerical integra-
tion. In MLPG (and many other meshfree methods) the stiffness and mass matrices are formed by integration
against the moving least squares (MLS) shape functions and their derivatives which are complicated to evalu-
ate, compared with the classical FEM where the integrands are low-degree and close-form polynomials. This
disadvantage might be overcome by a simple and useful modification [15] which uses the concept of gener-
alized moving least squares (GMLS) approximation [16] to shift the numerical integrations over low-degree
polynomial basis functions. In another point of view, the newmethod bypasses the shape functions and directly
approximates the PDE operators from nodal values. Thus it is called the Direct MLPG, or simply DMLPG.
The new method generalizes the finite differences method (FDM) for scattered point layouts.

In this paper we apply the DMLPG method for solving the coupled thermoelastic problem.
The remainder of this paper is organized as follows. In Sect. 2 the MLS and the GMLS approximations

are reviewed. The governing equations of thermoelasticity are given in Sect. 3. In Sect. 4 the local weak forms
of thermoelastic equation are derived, and in Sect. 5 the GMLS approximation is applied to local weak forms.
Finally, in Sect. 6 some numerical results are presented.

2 The meshfree approximation method

Let Ω ⊂ R
d , for positive integer d , be a nonempty and bounded set. Following the principle of meshfree

methods which write solutions entirely in terms of scattered nodes, assume that

X = {x1, x2, . . . , xN } ⊂ Ω

is a set containing N points in Ω . The quality of the point set X is measured by the fill distance defined by

h := hX,Ω = sup
x∈Ω

min
1� j�N

‖x − x j‖2,

and the separation distance defined by

qX = 1

2
min
i �= j

‖xi − x j‖2,

where ‖ · ‖2 is the Euclidian norm. The fill distance is the radius of the largest open ball with center in Ω that
contains none of the centers x j from X . The separation distance is the largest possible radius for two balls
centered at different points to be essentially disjoint. A set X of points is said to be quasi-uniform with respect
to a constant cqu > 0 if

qX � hX,Ω � cquqX . (1)

Henceforth, we use the notation P
d
m , m ∈ N0 = {n ∈ Z, n � 0}, for the space of d-variable polynomials of

degree at most m of dimension Q := (m+d
d

)
. A basis for this space is denoted by {p1, . . . , pQ}.

A set X = {x1, . . . , xN } ⊂ R
d with N � Q is called P

d
m-unisolvent if the zero polynomial is the only

polynomial from P
d
m that vanishes on X .

Different meshfree approximation methods are available in the literature. We focus on the moving least
squares (MLS) approximation and its variations in this paper. Let u ∈ Cm+1(Ω) be a function or a solution of a
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patrial differential equation to be approximated. For a sample point x ∈ Ω theMLS provides an approximation
û(x) of u(x) in terms of nodal values u(x j ) by

u(x) ≈ û(x) =
N∑

j=1

a j (x)u(x j ), x ∈ Ω, (2)

where a j (x) are MLS shape functions given by

a j (x) = w(x, x j )
Q∑

k=1

αk(x)pk(x j ),

where the influence of the centers is governed by a weight function w j (x) = w(x, x j ), which vanishes for
arguments x, x j ∈ Ω with ‖x − x j‖2 greater than a certain threshold, say δ. Thus we can define w j (x) =
K ((x − x j )/δ) where K : R

d → R is a nonnegative function with support in the unit ball B(0, 1). The
coefficients αk(x) are the unique solution of

Q∑

k=1

αk(x)
∑

j∈I (x)
w j (x)pk(x j )p�(x j ) = p�(x), 0 � � � Q,

where I (x) = { j : ‖x − x j‖2 � δ} is the family of indices of points in the support of the weight function. In
vector form,

a(x) = W (x)PT (x)[P(x)W (x)PT (x)]−1 p(x), (3)

where W (x) is the diagonal matrix carrying the weights w j (x) on its diagonal, P(x) is a Q × #I (x) matrix
of values pk(x j ), j ∈ I (x), 1 � k � Q, and p = (p1, . . . , pQ)T . The matrix P depends on the evaluation
point x via the index family I (x). In MLS, one finds the best approximation to u at point x out of Pd

m with
respect to a discrete �2 norm induced by a moving inner product, where the corresponding weight function
depends not only on the points x j but also on the evaluation point x in question [13]. If for every x ∈ Ω the
set {x j : j ∈ I (x)} is Pd

m-unisolvent then A(x) = P(x)W (x)PT (x) is a symmetric positive definite matrix.
More details can be found in Chapter 4 of [32]. In what follows we will assume that K is nonnegative and
continuous on Rd and supported on the ball B(0, 1). In many applications, we can assume that

K (x) = ϕ(‖x‖2), x ∈ R
d ,

meaning that K is a radial function. Here ϕ : [0,∞) → R is positive and supported in [0, 1] and its even
extension is nonnegative and continuous on R. If we assume that K ∈ Ck(Rd) then a j ∈ Cn(Ω) where
n = min{k,m}. This implies that û ∈ Cn(Ω).

This approximation method can be used for solving partial differential equations (PDE). For this purpose,
there exist two possibilities which we call the trial function and the direct approach. Assume

Lu = f

is an abstract PDE model which represents a PDE in a strong or a weak form. In the trial function approach,
u is first approximated by û and then the differential or integral operator L is applied to û. Thus, the values
La j (x) have to be calculated. This is a very time-consuming task, especially when L contains higher order
derivatives or when a numerical integration is required for weak-form cases. See the process of calculating a j
ending with Eq. (3) and guess how difficult the calculation of La j would be. The trial function approach has
been used extensively in meshfree methods; see for example [2,3].

The second approach (the direct approach), which was first introduced in [15,16] in the context of meshfree
methods, bypasses the trial space and directly approximates Lu from nodal values u(x j ):

Lu(x) ≈ L̂u(x) =
N∑

j=1

aLj (x)u(x j ), x ∈ Ω, (4)



2660 K. Hasanpour, D. Mirzaei

where aLj (x) are given by

aLj (x) = w(x, x j )
Q∑

k=1

αL
k (x)pk(x j ).

Here the coefficients αL
k (x) are the unique solution of

Q∑

k=1

αL
k (x)

∑

j∈I (x)
w j (x)pk(x j )p�(x j ) = Lp�(x), 0 � � � Q.

Thus in matrix form we have

aL(x) = W (x)PT (x)[P(x)W (x)PT (x)]−1L p(x). (5)

Of course, aL(x) is different from La(x) = L{W (x)PT (x)[P(x)W (x)PT (x)]−1 p(x)} for a nonidentity
operator L . Since the new approach generalizes the classical MLS approximation (4) to approximate Lu(x)
from nodal values, it was called the generalized moving least squares (GMLS) approximation in [16]. As we
can see from (5), L has to be evaluated only on polynomial basis functions p� instead of the complicated MLS
shape functions a j . This significantly reduces the computational cost of numerical meshfree algorithms based
on MLS approximation. It is surprising that this modification does not affect the rate of convergence of the
approximated function toward the exact solution. Theoretical results are given in [16].

In the following sections, we introduce a local weak-form scheme based on this new approximation
technique to solve a coupled thermoelastic problem.

To stabilize theGMLSalgorithm, insteadof {(·)α}0≤|α|≤m , the shifted and scaledpolynomial basis functions
{

(· − x)α

h|α|
X,Ω

}

0≤|α|≤m

are used as a basis for Pd
m at a sample point x ∈ Ω . This shifts the basis functions to each local subdomain to

improve the accuracy, and scales the moment matrix A(x) to get a constant condition number independent of
hX,Ω . Here α = (α1, . . . , αd) ∈ N

d
0 (N0 = N ∪ {0}) is a multi-index and |α| = α1 + · · · + αd .

3 Governing equations in thermoelasticity

In this section, we recall the governing equations of the dynamic coupled thermoelasticity problem for a
homogeneous isotropic solid. Let Ω be a finite domain with boundary Γ . The basic equations of linear
coupled thermoelasticity in absence of body forces and heat flux can be written as

σi j, j − ρüi = 0, (6)

κθ,i i − ρceθ̇ − γ θ0u̇ j, j = 0, (7)

where the constitutive equation is
σi j = 2μεkl + λεkkδi j − γ θδi j ,

in which

εi j = 1

2

(
ui, j + u j,i

)
.

In the above equations σi j , ui , εi j , γ , θ , θ0, ρ, ce and κ are the Cauchy tensor, component of displacement
vector, strain tensor, stress-temperature modulus, absolute temperature, reference temperature, mass density,
specific heat and conductivity, respectively, and λ and μ are Lamé constants. In addition δi j is the Kronecker
delta function.

First, the following dimensionless variables are introduced:

x̃ = x

�
, t̃ = κ

ρce�2
t, ũi = (λ + 2μ)ui

�γ θ0
, σ̃i j = σi j

γ θ0
, θ̃ = θ − θ0

θ0
,
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where � = κ/(ρcecs) is the dimensionless unit length and cs = √
(λ + 2μ)/ρ is the velocity of the longitudinal

wave. Now, we define the coupling parameter

δ0 := θ0γ
2

ρce(λ + 2μ)
. (8)

We will use this parameter to study the coupling effect of the governing equations. If we introduce the new
Lamé constants

μ̃ = μ

λ + 2μ
, λ̃ = λ

λ + 2μ
,

then Eqs. (6) and (7), after dropping the tilde symbol for convenience, read as

σi j, j − üi = 0, (9)

θ,i i − θ̇ − δ0u̇ j, j = 0, (10)

where
σi j = 2μεkl + λεkkδi j − θδi j . (11)

The boundary conditions are assumed to be

ui = ui on Γu × [0, t f ],
ti = σi j n j = t i on Γt × [0, t f ],
θ = θ on Γθ × [0, t f ],
q = θ, j n j = q on Γq × [0, t f ],

where ui , t i , θ and q are the prescribed displacement, traction, temperature and heat flux on the boundary Γ
where Γ = Γu ∪ Γt and Γ = Γθ ∪ Γq . The vector [n1 n2] =: n is the unit outward normal to the boundary
Γt or Γq . The initial conditions are

ui (x, 0) = ui0(x),

u̇i (x, 0) = u̇i0(x),

θ(x, 0) = 0,

for x ∈ Ω , where ui0 and u̇i0 are initial displacement and initial velocity, respectively. Since in the dimen-
sionless equations θ describes the difference (and not absolute) temperature, it should be zero at initial time
t = 0.

4 Functionals from local weak forms

Suppose that X = {x1, x2, . . . , xN } is a set of scattered meshless points in Ω . The same set X will be used for
both trial and test point sets in our numerical simulation. Besides, the same points are used for approximating
both displacement field and temperature function.

For both equations of motion and heat, instead of a global weak form over entire Ω , we use some local
weak forms over small subdomains Ωk around the test points xk ∈ int(Ω).

Taking integration with respect to the spatial variable from both sides of Eq. (9) against some proper test
functions vi , i = 1, 2 (usually v1 = v2 =: v), and then applying the Gauss divergence theorem, the local
weak forms

−
∫

∂Ωk

vσi j n jdΓ +
∫

Ωk

σi jv, jdΩ +
∫

Ωk

vüi dΩ = 0 (12)

are derived for k = 1, 2, . . . , NI , where NI is the number of points inside Ω . Since we are going to perform
a Petrov–Galerkin method, the test function v can be chosen from an arbitrary space independent of the trial
space.

The natural and essential boundary conditions ui = ui and ti = t i will be imposed using a proper
collocation method.
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Now we define

L
Sdp
k (u) :=

∫

Ωk

εvDLu dΩ −
∫

∂Ωk

vN DLu dΓ,

L
Mdp
k (u) :=

∫

Ωk

vu dΩ,

L
Ktmp
k (θ) := −

∫

Ωk

θ∇v dΩ +
∫

∂Ωk

vθn dΓ,

where the subscripts “dp" and “tmp" stand for displacement and temperature functions, respectively. Using
these definitions, (12) can be read as

L
Sdp
k (u) + ∂2

∂t2
L
Mdp
k (u) + L

Ktmp
k (θ) = 0, k = 1, 2, . . . , NI . (13)

In the above formulation the displacement vector [u1 u2]T is indicated by u, and

L =
⎡

⎢
⎣

∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

⎤

⎥
⎦ ,

and for a problem of isotropic material, the stress-strain matrix D is defined by

D =
⎡

⎣
λ + 2μ λ 0

λ λ + 2μ 0
0 0 μ

⎤

⎦ .

Besides,

N =
[
n1 0 n2
0 n2 n1

]
, n = [n1 n2]T , εv =

[
v,1 0 v,2
0 v,2 v,1

]
, ∇v = [v,1 v,2]T .

To enforce the displacement boundary condition u = u on Γu we define the functionals

L
Bdp
k (u) := δxk ◦ u, xk ∈ Γu,

and to enforce the traction boundary condition t = t on Γt we define, according to (11), the following types
of functionals:

LBtru
k (u) := δxk ◦ (N DLu), xk ∈ Γt ,

LBtrt
k (θ) := − δxk ◦ (θn), xk ∈ Γt ,

where the superscripts Bdp and Btr stand for displacement and traction boundary conditions. The latter has been
decomposed to Btru and Btrt . Consequently, the boundary conditions define the following functional equations:

L
Bdp
k (u) := u(xk), xk ∈ Γu, (14)

LBtru
k (u) + LBtrt

k (θ) := t(xk), xk ∈ Γt . (15)

Similarly, the local weak forms of the heat equation (10) can be written as

−
∫

∂Ωk

vθ, j n jdΓ +
∫

Ωk

θ, jv, jdΩ +
∫

Ωk

vθ̇ dΩ + δ0

∫

Ωk

vu̇ j, j dΩ = 0 (16)

for k = 1, 2, . . . , NI . To write these equations and the corresponding boundary conditions in an abstract
functional form, we define

L
Stmp
k (θ) :=

∫

Ωk

∇θ · ∇v dΩ −
∫

∂Ωk

∇θ · n v dΓ,



A fast meshfree technique for the coupled thermoelasticity problem 2663

L
Mtmp
k (θ) :=

∫

Ωk

θv dΩ,

L
Cdp
k (u) := δ0

∫

Ωk

div(u)v dΩ,

L
Btmp
k (θ) := δxk ◦ θ,

LBflx
k (θ) := δxk ◦ (∇θ · n).

Thus we have

L
Stmp
k (θ) + ∂

∂t
L
Mtmp
k (θ) + ∂

∂t
L
Cdp
k (u) = 0, k = 1, 2, . . . , NI , (17)

for the internal points, and

L
Btmp
k (θ) := θ(xk), xk ∈ Γθ , (18)

LBflx
k (θ) := q(xk), xk ∈ Γq , (19)

for the boundary points. In the next section, we will discuss the application of the GMLS approximation to the
semi-discrete functional equations (13)–(15) and (17)–(19) to convert them to a full-discrete linear system of
coupled equations.

5 DMLPG method and time integration scheme

All linear functionals Lk (ignoring the superscripts) of the previous section can be directly and stably approx-
imated by the GMLS approximation of Sect. 2. We categorize these functionals in four groups as below:

(1): L
Sdp
k , L

Mdp
k , L

Bdp
k and LBtru

k ,

(2): L
Stmp
k , L

Mtmp
k , L

Btmp
k and LBflx

k ,

(3): L
Ktmp
k and LBtrt

k ,

(4): L
Cdp
k .

For functionals of group (1), the GMLS approximation gives

Lk(u) ≈ L̂k(u) =
N∑

j=1

Akju(x j , t),

where Akj is a 2 × 2 matrix depending on functional Lk and trial point x j via indices k and j , respectively.
Let A be a 2NI × 2N matrix with block elements Akj for k = 1, . . . , NI and j = 1, 2, . . . , N . According to
(5) if Ak,: represents the k-th block row of A, then

Ak,: = Lk( p)B ∈ R
2×2N ,

where B ∈ R
2Q×2N is a block matrix with

Bi j =
[
B̃i j 0
0 B̃i j

]
∈ R

2×2, where B̃ := (PTW P)−1WPT ∈ R
Q×N . (20)

The matrices P and W are defined in Sect. 2, and here p is defined by

p =
[
p1(x) p2(x) · · · pQ(x)
p1(x) p2(x) · · · pQ(x)

]
∈ R

2×Q, (21)

and thus Lk( p) ∈ R
2×2Q . The rows of p are the same because we use the same approximation space for both

u1 and u2. We can easily establish that

L
Bdp
k ( p) = [

Π1(x), Π2(x), . . . , ΠQ(x)
] ∈ R

2×2Q,
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where

Π j (x) :=
[
p j (x) 0
0 p j (x)

]
, j = 1, 2, . . . , Q. (22)

Similarly,

L
Mdp
k ( p) =

[ ∫

Ωk

vΠ1(x)dΩ

︸ ︷︷ ︸
∈R2×2

,

∫

Ωk

vΠ2(x)dΩ

︸ ︷︷ ︸
∈R2×2

, . . . ,

∫

Ωk

vΠQ(x)dΩ

︸ ︷︷ ︸
∈R2×2

]
∈ R

2×2Q .

For functionals LBtru
k we have

LBtru
k ( p) =

[
N DΠ1︸ ︷︷ ︸
∈R2×2

,N DΠ2︸ ︷︷ ︸
∈R2×2

, . . . ,N DΠQ︸ ︷︷ ︸
∈R2×2

]
∈ R

2×2Q,

with a new definition for Π j as below:

Π j := Π j (x) = L
[
p j (x)
p j (x)

]
=

⎡

⎣
p j,1(x) 0

0 p j,2(x)
p j,2(x) p j,1(x)

⎤

⎦ , j = 1, 2, . . . , Q. (23)

Similarly, for L
Sdp
k we can obtain

L
Sdp
k ( p) =

[ ∫

Ωk

εvDΠ1dΩ,

∫

Ωk

εvDΠ2dΩ, . . . ,

∫

Ωk

εvDΠQdΩ
]

−
[ ∫

∂Ωk

vN DΠ1dΓ,

∫

∂Ωk

vN DΠ2dΓ, . . . ,

∫

∂Ωk

vN DΠQdΓ
]

∈ R
2×2Q,

where Π j are defined by (23).
To distinguish between the notations, thematrices Sdp,Mdp, Bdp and Btru will be used insteadGMLSmatrix

A for functionals L
Sdp
k , L

Mdp
k , L

Bdp
k and LBtru

k , respectively. The size of both Sdp and Mdp is 2NI × 2N where
NI is the number of internal test points. The sizes of Bdp and Btr are 2Nu × 2N and 2Nt × 2N , respectively,
where Nu and Nt are the numbers of test points on boundaries Γu and Γt , respectively.

For functionals of group (2), the GMLS directly approximates Lk(θ) by

Lk(θ) ≈ L̂k(θ) =
N∑

j=1

ak jθ(x j , t),

where according to (5) we have

ak,: = Lk( p)B ∈ R
1×N ,

where p = [p1, . . . , pQ] and B = (PTW P)−1WPT ∈ R
Q×N . It remains to formulate Lk( p) for this class

of functionals. One can easily show that

L
Btmp
k ( p) = p(xk) =

[
p1(xk), p2(xk), . . . , pQ(xk)

]
∈ R

1×Q,

LBflx
k ( p) =

[
∇ p1(xk) · n(xk), . . . ,∇ pQ(xk) · n(xk)

]
∈ R

1×Q,

L
Mtmp
k ( p) =

[ ∫

Ωk

vp1(x)dΩ,

∫

Ωk

vp2(x)dΩ, . . . ,

∫

Ωk

vpQ(x)dΩ
]

∈ R
1×Q,

L
Stmp
k ( p) =

[ ∫

Ωk

∇ p1 · ∇v dΩ, . . . ,

∫

Ωk

∇ pQ · ∇v dΩ
]

−
[ ∫

∂Ωk

v∇ p1 · n dΓ, . . . ,

∫

∂Ωk

v∇ pQ · n dΓ
]

∈ R
1×Q .
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To form the final linear system of equations we use Stmp ∈ R
NI×N , Mtmp ∈ R

NI×N , Btmp ∈ R
Nθ×N and

Bflx ∈ R
Nq×N instead of the GMLS matrix A. Here Nθ and Nq are the numbers of points on Γθ and Γq ,

respectively.
For functionals of group (3) we write the GMLS approximation as

Lk(θ) ≈ L̂k(θ) =
N∑

j=1

Akjθ(x j , t),

where Akj are 2 × 1 matrices for all k and j . If A = (Akj ) then the k-th block row of A is

Ak,: = Lk( p)B ∈ R
2×N ,

where p = [p1, . . . , pQ], B = (PTW P)−1WPT ∈ R
Q×N and

L
Ktmp
k ( p) = −

[ ∫

Ωk

p1∇v dΩ

︸ ︷︷ ︸
∈R2×1

, . . . ,

∫

Ωk

pQ∇v dΩ

︸ ︷︷ ︸
∈R2×1

]

+
[ ∫

∂Ωk

vp1n dΓ

︸ ︷︷ ︸
∈R2×1

, . . . ,

∫

∂Ωk

vpQn dΓ

︸ ︷︷ ︸
∈R2×1

]
∈ R

2×Q,

LBtrt
k ( p) = −

[
p1n︸︷︷︸

∈R2×1

, . . . , pQn︸︷︷︸
∈R2×1

]
∈ R

2×Q .

The notations Ktmp and Btrt will be used instead of A. The size of both matrices is 2NI × N .
Finally, for functionals of group (4) the GMLS approximation can be written as

Lk(u) ≈ L̂k(u) =
N∑

j=1

Akju(x j , t),

where Akj are 1 × 2 matrices for all k and j . If A = (Akj ) then the k-th row of A is

Ak,: = Lk( p)B ∈ R
1×2N ,

where p is defined by (21), B ∈ R
Q×2N is formed via (20) and

L
Cdp
k ( p) = δ0

[ ∫

Ωk

v∇ p1 dΩ

︸ ︷︷ ︸
∈R1×2

, . . . ,

∫

Ωk

v∇ pQ dΩ

︸ ︷︷ ︸
∈R1×2

]
∈ R

1×2Q,

where δ0 is the coupling parameter. At the end the notation Cdp is used instead of A. The size of this matrix is
NI × 2N .

To form the final differential algebraic equations, we define the vector U (t) by

U (t) := [
u1(x1, t), u2(x1, t), . . . , u1(xN , t), u2(xN , t), θ(x1, t), . . . , θ(xN , t)

]T ∈ R
3N×1

and the matrices M , C and S, all of size 3N × 3N , by

M =

⎡

⎢⎢
⎢⎢⎢
⎣

Mdp 0
0 0
0 0
0 0
0 0
0 0

⎤

⎥⎥
⎥⎥⎥
⎦

, C =

⎡

⎢⎢
⎢⎢⎢
⎣

0 0
0 0
0 0

Cdp Mtmp
0 0
0 0

⎤

⎥⎥
⎥⎥⎥
⎦

, S =

⎡

⎢⎢
⎢⎢⎢
⎣

Sdp Ktmp
Bdp 0
Btru Btrt
0 Stmp
0 Btmp
0 Bflx

⎤

⎥⎥
⎥⎥⎥
⎦

,
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Table 1 The CPU time used (sec.) for Example 6.1

Method MLPG1 MLPG5 DMLPG1 DMLPG5

Run time 83 37 0.5 0.5

and the right-hand side vector F(t) by

F(t) = [
0, 0, . . . , 0︸ ︷︷ ︸
2NI times

, u(xu1 ), . . . , u(xuNu
)

︸ ︷︷ ︸
2Nu times

, t(xt1), . . . , t(x
t
Nt

)
︸ ︷︷ ︸

2Nt times

,

0, 0, . . . , 0︸ ︷︷ ︸
NI times

, θ(xθ
1 ), . . . , θ(xθ

Nθ
)

︸ ︷︷ ︸
Nθ times

, q(xq1 ), . . . , q(xqNq
)

︸ ︷︷ ︸
Nq times

]
,

where NI is the number of internal test points from X , and Nu , Nt , Nθ and Nq are the numbers of boundary
test points on Γu , Γt , Γθ and Γq , respectively. The superscripts on the boundary points xk denote the type of
boundary in which the points xk belong to that.

According to the above notation, the full-discrete final linear time-dependent system of equations can be
written as

MÜ (t) + CU̇ (t) + SU (t) = F(t), 0 < t � t f . (24)

This equation can be solved by any suitable time integration scheme. In this paper we apply the Newmark
method [9]. The algorithm can be found in [14] and thus we omit the details here and refer the reader to the
mentioned references.

As is clear from the construction process in this section, in DMLPG numerical integration is done over
low-degree and close-formmulti-dimensional polynomials. This is in contrast with the original MLPGmethod
where one should integrate against nonclose-formand complicatedMLS shape functions. This property reduces
the computational cost ofDMLPG remarkably. But it is not thewhole story. If in addition the shifted polynomial
basis functions are employed and if the same test function v is used for all local subdomains, then Lk( p) =
L j ( p) provided that Ωk = x + Ω j = {x + y : y ∈ Ω j }, x ∈ R

2. For example, for all interior test points
the only one integral should be computed if all interior local subdomains have the same shape. This property
reduces the cost of DMLPG in order of the cost of a MLS collocation method. This means that in DMLPG the
numerical integration imposes no additional cost.

The computational costs of DMLPG and finite elements method (FEM) are also comparable. In both
methods numerical integration is done over low-degree polynomial basis functions. In additions, both methods
lead to sparse final linear systems.

Finally, we note that in this paper two kinds of test function v will be applied. If v is vanishing on ∂Ωk
then the first integrals in (12) and (16) vanish. In the MLPG literature, this technique is labeled as MLPG1. If
v is chosen to be the characteristic function of the set Ωk then the second integrals in (12) and (16) vanish and
the resulting method is called MLPG5. The same labels can be used for DMLPG as well.

6 Numerical results

In this section two examples are presented to demonstrate the efficiency and accuracy of the proposed method.
In both examples the shifted and scaled quadratic polynomial basis function and aGaussian weight function are
used. A 15-point Gauss-Legendre quadrature is employed for numerical integration in each axis of transferred
local subdomains. The size of the supports of the GMLS approximation for all test points is assumed to be 3h,
where h is the fill distance of the trial points.We use an implicit and unconditionally stable average acceleration
scheme (a Newmark time integration scheme; see Table 1 of [14]) to discretize the time domain. The time step
Δt = 0.05 is used in all test examples. The problems are solved in dimensionless form and thus all involved
parameters and variables are dimensionless.

The programs are written in MATLAB© and run on a Personal PC with 8 GB of RAM and a CPU with 4
physical/ 8 logical cores and 2.4 GHz processor speed.
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Fig. 1 The time history of temperature θ at x = 1 for uncoupled and coupled problems

6.1 Example 1

A half space (x > 0) subjected to thermal heating at x = 0, by sudden exposure to a unit temperature at time
t = 0+, which remains constant thereafter is considered for the first example. The half space is modeled by a
plate of length 5 and hight 1 (dimensionless length) and 49 × 9 regular meshless points are used to discretize
the plate. The problem is essentially one-dimensional and thus u2 can be assumed to be zero on all sides of the
plate. Traction-free boundary conditions are assumed on the remaining parts. The plate is thermally insulated
at the three other edges. The plate material is taken as stainless steel with the properties

ν = 0.25,

E = 2 × 107 kg/cm2,

γ = 3.34 × 104 kg/◦K/cm/s2,

λ + 2μ = 1.99 × 109 kg/cm/s2,

ρ = 7.82 × 10−3 kg/cm3,

c = 4.61 × 106 cm2/◦K/s2,

κ = 1.70 × 103 kg × cm/◦K/s3.

Note that in the dimensionless form the only independent required values are E and ν. The approximate
solutions of this problem have been obtained by using the finite element method (FEM) [19,29] and the
boundary element method (BEM) [6,10,30]. We compare the results of the MLPG and DMLPGmethods. Our
results are obtained for time history on a particular dimensionless location x = 1. This point is the location
of the elastic wave front at the dimensionless time t = 1. The time evolutions of temperature θ , displacement
u1 and stress σ11 for δ0 = 0 (uncoupled problem) and δ0 = 1 (coupled problem) are presented and compared
in Figs. 1, 2 and 3 at point x = 1 for t ∈ [0, 2]. As we can see from Fig. 1, the temperature distribution of
the coupled problem behind the wave front asymptotically approaches the uncoupled solution with increasing
time. The effect of coupling is to accelerate thermal diffusion ahead of the wave front. Our results show that
a negative temperature gradient is generated ahead of the wave front for the coupled problem because the
temperature plot is not thence monotone. Sudden change in displacement at the wave front is associated with
the arrival of the elastic and thermal waves. This phenomenon also appears in Fig. 3 for the stress plot.

The results of MLPG and DMLPG are approximately the same except for σ11 in Fig. 3 where the DMLPG
solution produces a little more oscillation after time t = 1. They are in acceptable agreement with those given
in [6,10,19] with FEM and BEM. Note that the analytical solution for the coupled problem is not available.

As we pointed out, the computational cost of DMLPG is remarkably less than MLPG. For this example
the run times are reported in Table 1. A comparison between the run times for constructing the final stiffness
and mass matrices is also provided in Fig. 4 for different numbers of trial meshless points. The differences
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Fig. 2 The time history of displacement u1 at x = 1 for uncoupled and coupled problems
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Fig. 3 The time history of stress σ11 at x = 1 for uncoupled and coupled problems

between the costs of the DMLPG and MLPG methods are large enough to convince us to replace the original
MLPG by the new DMLPG for many engineering problems.

6.2 Example 2

Consider a square plate of isotropic and homogeneous material. The dimensionless plate is assumed to be the
square [0, 10] × [−5, 5] and 21× 21 regular meshless points are used. The Young’s modulus E and Poisson’s
ratio ν are assumed to be 1 and 0.3, respectively. The boundary conditions on the top and bottom sides of the
plate are t1 = t2 = 0 and q = 0. On the right side we prescribe u1 = u2 = 0 and q = 0. Three types of
boundary conditions are imposed on the edge x = 0 (the left side):

(1) The thermal shock θ(t) = f (t), and t1 = 0 = t2 = 0,
(2) The pressure shock t1(t) = f (t), and t2 = 0 and q = 0, and finally
(3) Combination of thermal and pressure shocks θ(t) = f (t) and t1(t) = f (t), t2 = 0,

where

f (t) = 5t exp(−2t), t > 0.

Such a problem is numerically solved using BEM in [10] and MLPG with Kriging interpolants in [33].
Again MLPG and DMLPG results are compared in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13. In all three cases

the comparison of the temperature θ , axial displacement u1, and the axial stress σ11 along the x-axis at
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Fig. 4 Comparing the CPU times (sec.) used in MLPG and DMLPG methods
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Fig. 5 Comparison of the dimensionless temperature at the middle line of the plate for temperature loading
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Fig. 6 Comparison of the dimensionless axial displacement at middle line of the plate for temperature loading

dimensionless times t = 3 and t = 6 are obtained for both uncoupled (δ0 = 0) and coupled (δ0 = 0.1)
problems. Due to the coupling effect, the temperature distribution of the uncoupled and coupled cases are
significantly different. For problem (2) the temperature is identically zero for the uncoupled case because we
are solving a homogenous heat equation with zero boundary conditions. However, in the coupled case the
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Fig. 7 Comparison of the dimensionless axial stress at middle line of the plate for temperature loading
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Fig. 8 Comparison of the dimensionless temperature at middle line of the plate for traction loading
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Fig. 9 Comparison of the dimensionless axial displacement at middle line of the plate for traction loading

temperature rises due to the fact that the mechanical energy induced by the pressure shock being changed into
the heat energy. The displacement and stress distributions have smaller changes for coupled and uncoupled
problems in all cases. These results of DMLPG are in good agreement with those given in [10,33]. However
MLPG produces poor stress solutions in all cases.

The CPU run times are reported in Table 2. DMLPG is dramatically faster than MLPG.
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Fig. 10 Comparison of the dimensionless axial stress at middle line of the plate for traction loading
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Fig. 11 Comparison of the dimensionless temperature at middle line of the plate for temperature and traction loadings
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Fig. 12 Comparison of the dimensionless axial displacement at middle line of the plate for temperature and traction loadings

7 Conclusion

In this paper the direct meshless local Petrov–Galerkin (DMLPG) method has been applied for numerical
solution of the coupled thermoelastic problem. The governing equations have been first converted to a dimen-
sionless form and then the generalized moving least square approximation has been employed to directly
approximate the local weak forms of coupled displacement and temperature equations from scattered data
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Fig. 13 Comparison of the dimensionless axial stress at middle line of the plate for temperature and traction loadings

Table 2 The CPU time used (sec.) for Example 6.2

Method MLPG1 MLPG5 DMLPG1 DMLPG5

Run time 113 50 0.6 0.6

point layouts. The Newmark time integration method has been used to discretize the time domain. The method
has been explained and computationally verified to be much faster than the original MLPG method. Finally,
we note that the smooth approximant functions of both MLPG and DMLPG methods need to be modified in
order to capture the discontinuous properties in thermoelastic waves produced by a delta force [31]. We do not
pursue this here and leave it for a future work.
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