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Abstract This paper investigates an algebraic structure and Poisson theory of single degree of freedom non-
material volumes. The equations of motion are proposed in a contravariant algebraic form, and an algebraic
product is determined. A consistent algebraic structure and a Lie algebra structure are proposed, and a propo-
sition is obtained. The Poisson theory of the non-material volume is established, and five theorems are derived.
Three examples are given to illustrate the application of the method.

1 Introduction

Non-material volumes present some particular characteristics which are not known in the dynamics of mate-
rial volumes. Theoretical investigations of non-material volumes have flourished in recent years, providing
important theoretical significance and engineering background. They are also widely used in rocketry [1] and
mechanical engineering [2,3]. Recently, there are many researchers who have addressed the fundamental prin-
ciples of the non-material volumes. Irschik and Holl [1] first derived the Lagrange’s equation of a non-material
volume by employing the method of fictitious particles. Subsequently, they [3] reviewed the development and
the situation of variable-mass systems. Casetta [4] reported the inverse problem of Lagrangian mechanics for
a non-material volume via the method of Darboux, and proposed a Hamiltonian formalism and a conservation
law. Casetta and Pesce [5] established the generalized Hamilton’s principle for a non-material volume, rewrit-
ing this theorem properly in the context of non-material volumes and fictitious particles artifacts. They [6] also
investigated the inverse problem of Lagrangian mechanics connected to Meshchersky’s equation, stated a vari-
ational formulation and a Hamiltonian formulation. Irschik and Holl [7] proposed a formulation of Lagrange’s
equations for non-material volumes, calculated local forms and global form of Lagrange’s equations in the
framework of the Lagrange description of Continuum Mechanics. Casetta et al. [8] developed the general-
ization of Noether’s theorem for a non-material volume and proposed a Noether conserved quantity and the
corresponding Killing equations. Casetta [9] established the Poisson brackets definition for the dynamics of a
position-dependent mass particle. However, to the authors’ knowledge, the algebraic structure of non-material
volumes has not been investigated yet.

Algebraic structure and Poisson’s theory is an important integration method in classical mechanics, which
has been explored to find invariants of dynamical and physical systems. There aremany researcherswho carried
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out interesting research on algebraic structure and Poisson’s theory. Mei investigated the algebraic structure
and Poisson’s theory of a Birkhoffian system [10] and non-holonomic systems [11]. Subsequently, algebraic
structure and Poisson’s theory were extended to rotational relativistic systems [12], rotational relativistic
Birkhoffian system [13], mechanico-electrical system [14], controllable mechanical system [15], in the event
space [16], dynamical systemwith relativemotion [17], and f (R) cosmology [18]. Recently, Colarusso andLau
[19] addressed the limit of Lie algebra by using the Lie-Poisson theory. Benini and Schenkel [20] constructed
Poisson algebras of field theories by introducing differential geometry. Ershkov [21] proposed a method to
solve the Poisson equations where the angular velocity is dependent on time, obtaining a Riccati-type solution.
So far, to the authors’ best knowledge, there is no integral theory on non-material volumes. To address the lack
of research in this aspect, the present work develops the Poisson’s theory to determine the conserved quantities
of non-material volumes.

The paper is organized as follows. Section 2 reviews the differential equations of the non-material volumes.
Section 3 considers the algebraic structure of non-material volumes, presents a contravariant algebraic form and
an algebraic product and obtains a Lie algebra proposition of the non-material volumes. Section 4 constructs
the Poisson theory for non-material volumes, giving five theorems. Section 5 gives three examples to illustrate
the application of the method. Section 6 contains the concluding remarks.

2 The differential equations of the non-material volumes

The Lagrange’s equations for non-material volumes are pioneered by Irschik and Holl [1, p. 243, Eq. (5.6)],
given as

d

dt

∂Tu
∂q̇k

− ∂Tu
∂qk

−
∫

∂Vu

1

2
ρυ2

(
∂v
∂q̇k

− ∂u
∂q̇k

)
· nd∂Vu +

∫

∂Vu

ρv
∂v
∂q̇k

(v − u) · nd∂Vu = Qk (1)

where Tu = Tu (q̇k, qk, t) is the total kinetic energy of the material particles enclosed by the non-material
volume Vu , qk represents generalized coordinates, v is the velocity of the material particles, u is the velocity
of fictitious particles, ρ is the volumetric mass density, Qk is a generalized force applied to the material body,
n is the outer normal unit vector at the surface of Vu , and ∂Vu depicts the bounding surface of Vu .

The Lagrange’s Eq. (1) for a single degree of freedom non-material volume can be reformatted within a
Hamiltonian formalism by Casetta [4, p. 7, Eqs. (37–38)], namely

q̇ = ∂ H̃u

∂ p̃u
,

˙̃pu = −∂ H̃u

∂q
,

(2)

where

p̃u = L̃u

/
q̇ =

q̇∫

0

exp
∫ (

Bu + 2ωCu − ∂Q(q, ω, t)
/
∂ω

Au

)
dtdω,
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−
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0
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Au(ξ, t)

)
exp

∫ (
Bu(ξ, t) − [∂Q(ξ, q̇, t)

/
∂q̇]q̇=0

Au(ξ, t)

)
dtdξ,
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H̃u = p̃uq̇ − L̃u =
q̇∫

0

ω exp
∫ (

Bu + 2ωCu − ∂Q(q, ω, t)
/
∂ω

Au

)
dtdω

+
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The derivation of Au, Bu,Cu, Du can be found in [4, p. 5, Eqs. (24–27)], and L̃u, p̃u and H̃u can be found
in [4, p. 6, Eqs. (32), (34), (36)].

3 Algebraic structure of non-material volumes

This section is devoted to the algebraic structure of single degree of freedom non-material volumes.
Let

aμ =
{

q, (μ = 1)
p̃u, (μ = 2) . (3)

The Hamiltonian Eq. (2) can be rewritten as

ȧμ − Ωμν ∂ H̃u

∂av
= 0, (μ, ν = 1, 2) (4)

where the contravariant is given by

Ωμν =
(

0 1
− 1 0

)
.

According to Eq. (4) define an algebraic product, namely

Ȧ = ∂ H̃u

∂aμ
Ωμν ∂ H̃u

∂av

def= A ◦ H̃u . (5)

The product (5) accords with the right distributive law

A ◦ (B + C) = A ◦ B + A ◦ C, (6)

and the left distributive law
(A + B) ◦ C = A ◦ C + B ◦ C, (7)

as well as the scalar law
(αA) ◦ B = A ◦ (αB) = α (A ◦ B) . (8)

If an algebraic product conforms to the relationship Eqs. (6–8), it is a consistent algebra. Thus, Eq. (2)
satisfies a consistent algebra structure.
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The conditions (6–8) under the product (5) also possess the antisymmetry properties

A ◦ B + B ◦ A = 0, (9)

and the Jacobi identical relation

A ◦ (B ◦ C) + B ◦ (C ◦ A) + C ◦ (A ◦ B) = 0. (10)

Hence, the Lagrange equation and Hamilton equation of a single degree of freedom non-material volume
satisfy a Lie algebra structure.

Actually, expanding the product (5), we have

∂A

∂aμ
Ωμν ∂ H̃u

∂av
= ∂A

∂q

∂ H̃u

∂ p̃u
− ∂A

∂ p̃u

∂ H̃u

∂q
. (11)

Obviously, Eq. (11) is the Poisson bracket which is denoted by the symbol
(
A, H̃u

)
. It is well known that the

Poisson brackets have the following properties:

(A, B) + (B, A) = 0, (12)

(A, (B,C)) + (B, (C, A)) + (C, (A, B)) = 0. (13)

They are equivalent to the Lie algebra structure (9) and (10).

Proposition 1 Both, theLagrange equation andHamilton equations of a single degree of freedomnon-material
volume, not only define a consistent algebra structure, but also a Lie algebra structure.

4 Poisson theory of a single degree of freedom non-material volume

Since the dynamical equations for a non-material volume accord with a Lie algebra structure, the Poisson’s
theory associated with first integrals can be applied to the system. Therefore, the following theorems are given
as

Theorem 1 I (aμ, t) = const. is the first integral of Eq. (2) if and only if

∂ I

∂t
+

(
I, H̃u

)
= 0, (14)

where H̃u is the Hamiltonian of a single degree of freedom non-material volume.

Proof Consider the function I (aμ, t). From the definition of total derivative, one has that

dI

dt
= ∂ I

∂t
+ ∂ I

∂aμ
Ωμν ∂ H̃u

∂av
= ∂ I

∂t
+

(
I, H̃u

)
. (15)

Given that (14) holds true, then I = const. ��
Theorem 2 If the Hamiltonian H̃u of a non-material volume does not explicitly contain time t, then H̃u is the
first integral of Eq. (2).

Proof Using Theorem 1, it holds obviously. ��
Theorem 3 If Eq. (2) has two first integrals I1(aμ, t) and I2(aμ, t) having not involution, then the Poisson
bracket (I1, I2) is also the first integral of system (2).
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Proof Since I1(aμ, t) and I2(aμ, t) are first integrals, then

∂ I1
∂t

+
(
I1, H̃u

)
= 0,

∂ I2
∂t

+
(
I2, H̃u

)
= 0. (16)

According to Eq. (4), it follows that

∂

∂t
(I1, I2) =

(
∂

∂t
I1, I2

)
+

(
I1,

∂

∂t
I2

)
. (17)

Using the Lie algebraic axiom Eq. (13) and the left distributive law Eq. (7), combining Eqs. (16, 17) leads to

∂

∂t
(I1, I2) +

(
(I1, I2) , H̃u

)

=
(

∂

∂t
I1, I2

)
+

(
I1,

∂

∂t
I2

)
+

((
I1, H̃u

)
, I2

)
+

(
I1,

(
I2, H̃u

))

=
(

∂

∂t
I1 +

(
I1, H̃u

)
, I2

)
+

(
I1,

∂

∂t
I2 +

(
I2, H̃u

))

= 0;

(18)

thus, (I1, I2) is the first integral of system (2). ��
It is worth noting that Theorem 3 has universal significance, and it can be reduced to the traditional

Poisson’s theorem of classical analytical mechanics when L̃u, p̃u , and H̃u of system (2) reduce to the classical
Lagrangian, generalized momentum and Hamiltonian.

Theorem 4 If Eq. (2) possesses a first integral I (aμ, t) including time t, and the Hamiltonian H̃u does not

include time t, then ∂ I
∂t ,

∂2 I
∂t2

, . . . are the first integrals of system (2).

Proof By differentiating Eq. (14) with respect to time t , it is found that

∂

∂t

∂ I

∂t
+

(
∂ I

∂t
, H̃u

)
+

(
I,

∂ H̃u

∂t

)

= ∂

∂t

∂ I

∂t
+

(
∂ I

∂t
, H̃u

)
= 0;

(19)

hence, ∂ I
∂t is the first integral of system (2). Analogously, one can immediately prove that ∂2 I

∂t2
, ∂3 I

∂t3
, . . . are also

the first integrals of the system. ��
Theorem 5 If Eq. (2) has a first integral I (aμ, t)=const. involving aρ , but the Hamiltonian H̃u does not

explicitly depend on aρ , then ∂ I
∂aρ , ∂2 I

∂aρ2 , . . . are the first integrals of systems (2).

Proof By differentiating Eq. (14) with respect to aρ , it is found that

∂

∂aρ

∂ I

∂t
+

(
∂ I

∂aρ
, H̃u

)
+

(
I,

∂ H̃u

∂aρ

)

= ∂

∂t

∂ I

∂aρ
+

(
∂ I

∂aρ
, H̃u

)
= 0,

(20)

and so, ∂ I
∂aρ is the first integral of system (2). Similarly, one can demonstrate that ∂2 I

∂aρ2 ,
∂3 I
∂aρ3 , . . . are also the

first integrals of the system. ��

5 Applications

In order to illustrate the applicability of the proposed scheme, three examples will be investigated in the
following.
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5.1 Flow of liquid from an open tube

Casetta [4, p. 10, Eqs. (73–74)] derived the Hamiltonian canonical equations of flow of liquid from an open
tube which can be described as

q̇ = p̃u,

˙̃pu = −g
(21)

whereq represents the height of the amount of liquid inside the tube, g is the acceleration of gravity, p̃u describes
the canonical momentum, and instantaneously the Hamiltonian is reported by Casetta [4, p. 10, Eq. (72)] as

H̃u = 1

2
p̃2u + gq. (22)

Thereby, the system (21) has a Lie algebra structure.
According to Theorem 1, the Hamiltonian of system (21) is the first integral which can be found in [4,

p. 10, Eq. (75)] as
1

2
p̃2u + gq = const. (23)

By employing Theorem 1 of Poisson theory, we have

∂ I

∂t
+ ∂ I

∂q

∂ H̃u

∂ p̃u
− ∂ I

∂ p̃u

∂ H̃u

∂q
= 0, (24)

and the characteristic equation of Eq. (24) is

dt = dq

∂ H̃u

/
∂ p̃u

= − d p̃u

∂ H̃u

/
∂q

. (25)

The first integral of Eq. (25) can be obtained as

q −
∫

p̃udt = C1, p̃u + gt = C2, (26)

then a particular solution of (25) is

I = q + p̃u −
∫

p̃udt + gt. (27)

5.2 The rocket motion

Casetta [4, p. 12, Eq. (100)] considered the Hamiltonian canonical equations of rocket motion which can be
expressed as

q̇ = p̃u,

˙̃pu = −
(
ṁu(t)vrel(t) − Q(t)

mu(t)

)
(28)

where q represents the displacement of the rocket, mu(t) is the total mass, vrel(t) shows the relative velocity
of the rocket with respect to the expelled propellant, Q(t) is the external force, p̃u describes the canonical
momentum, and analogously the Hamiltonian is

H̃u = 1

2
p̃2u +

(
ṁu(t)vrel(t) − Q(t)

mu(t)

)
q. (29)

Then, the system (28) possesses a Lie algebra structure.
By using Theorem 1, we find that

∂ I

∂t
+ ∂ I

∂q

∂ H̃u

∂ p̃u
− ∂ I

∂ p̃u

∂ H̃u

∂q
= 0, (30)
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and the characteristic equation of Eq. (30) is

dt = dq

∂ H̃u

/
∂ p̃u

= − d p̃u

∂ H̃u

/
∂q

. (31)

The first integral of Eq. (31) can be written as

q −
∫

p̃udt = C1, p̃ +
∫ (

ṁu(t)vrel(t) − Q(t)

mu(t)

)
dt = C2, (32)

then a particular solution of (31) is

I = q + p̃u −
∫

p̃udt +
∫ (

ṁu(t)vrel(t) − Q(t)

mu(t)

)
dt. (33)

5.3 The rotating drum uncoiling a thin strip

Casetta et al. [8, p. 705, Eq. (67)] derived the Lagrangian equation of a rotating drum uncoiling a thin strip
which can be expressed as

1

2
ρlπ

(
R0 − εφ

2π

)4

φ̈ = Π(φ) (34)

where ε represents the thickness of a thin strip, l is width, ρ describes mass density, φ = φ(t) is the rotation
angle, and R0 is the original radius.

The Hamiltonian canonical equation can be reformatted as the following form:

φ̇ = p̃u,

˙̃pu = Λ(φ),
(35)

and the Hamiltonian is

H̃ = 1

2
p̃2u −

∫
Λ(φ)dφ (36)

where

Λ(φ) = 2Π(φ)

ρlπ

(
R0 − εφ

2π

)−4

;
then, the system (35) proposes a Lie algebra structure.

Since the Hamiltonian (36) does not explicitly depend on time, consequently, the system (35) has the first
integral which was reported by Casetta et al. [8, p. 705, Eq. (69)] as

1

2
p̃2u −

∫
Λ(φ)dφ = const. (37)

By recalling Theorem 1, one has
∂ I

∂t
+ ∂ I

∂φ

∂ H̃u

∂ p̃u
− ∂ I

∂ p̃u

∂ H̃u

∂φ
= 0, (38)

and the characteristic equation of Eq. (38) is

dt = dφ

∂ H̃u

/
∂ p̃u

= − d p̃u

∂ H̃u

/
∂φ

. (39)

The first integral of Eq. (39) can be calculated as

φ −
∫

p̃udt = C1, p̃ − Λ(φ)t = C2, (40)

then a particular solution of (39) is

I = φ + p̃u −
∫

p̃udt − Λ(φ)t. (41)
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6 Conclusions

This paper focuses on the algebraic structure and Poisson theory of non-material volumes. The contravariant
algebraic form of the equations of motion for a single degree of freedom non-material volume is proposed, an
algebraic product is defined, and a proposition is employed. In this context, Poisson theory is constructed, and
five theorems are established. Three examples are proposed to illustrate the application of the method, and the
corresponding first integrals are solved.
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