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Abstract Under consideration is the finite-size scaling of the elastic properties in two-phase random polycrys-
tals with individual grains belonging to any arbitrary crystal class. These polycrystals are generated by Voronoi
Tessellations with varying grain sizes and volume fractions. Any given realization of such a microstructure
sampled randomly is highly anisotropic and heterogeneous. Using extremum principles in elasticity, we intro-
duce the notion of a ‘Heterogeneous Anisotropy Index

(
AU
H

)
’ and examine its role in the scaling of elastic

properties at finite mesoscales (δ). The relationship between AU
H and the Universal Anisotropy Index AU by

Ranganathan and Ostoja-Starzewski (Phys Rev Lett 101(5):055504, 2008) is established for special cases.
The index AU

H turns out to be a function of 43 variables—21 independent components for each phase and
the volume fraction of either phase. The scale-dependent bounds are then obtained by setting up and solving
9250 Dirichlet and Neumann type boundary value problems consistent with the Hill–Mandel homogenization
condition. Subsequently, the concept of an elastic scaling function is introduced that takes a power-law form
in terms of AU

H and (δ). Finally, a material scaling diagram is constructed by employing the elastic scaling
function which captures the convergence to the effective properties for any two-phase elastic microstructure.

1 Introduction

Polycrystalline materials have unique properties and are commonly used in several engineering applications
(such as elasticity [2], heat conduction [3], fracture [4,5], magnetism [6]). In particular, two-phase polycrystals
have been used in minerals engineering [7], thermal conductivity [8], plasticity [9]. Such materials have grains
belonging to any crystal class (from cubic to triclinic) with arbitrary orientations. These microstructures are
highly anisotropic and heterogeneous at finite scales, thereby posing a challenge to the predictive modeling
of their collective behavior. The objective of this research is to introduce the notion of a ‘Heterogeneous
Anisotropy Index’ and examine its role in the finite-size scaling of two-phase random polycrystals.

In the past, several authors have investigated the effective response of two-phase materials and some of
these are noteworthy. In particular, Hashin and Shtrikman [10] used variational principles to illustrate upper
and lower bounds on elastic moduli of two-phase materials. In their study, the authors analyzed a two-phase
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alloy (Tungsten Carbide) and proved that their theoretical results were in good agreement with experimental
results. Along similar lines,Walpole [11] examined upper and lower bounds as well as self-consistent estimates
on the elastic moduli of materials. The author developed theoretical expressions for shear and bulk moduli of
composites with transversely isotropic inclusions (needle or disk shape) at random orientations and arbitrary
volume fractions. Similarly, Watt et al. [12] analyzed bounds on shear and bulk moduli of several two-phase
composites with different volume fractions (v f = 0, 0.2, 0.4, 0.8, 1). It was demonstrated that the effective
moduli of these materials were within Hashin–Shtrikman bounds for all volume fractions.

An alternate approach to determine the effective properties is to employ the Mori–Tanaka method (see
Mori and Tanaka [13]) that relates the average stress in an inclusion to the average stress in the matrix in
multiphase composites. Benveniste [14] analyzed two-phase materials with anisotropic elastic constituents
by reformulating the Mori–Tanaka method in order to determine the aggregate response. In the study, the
author illustrated that shear and bulk moduli for two-phase composites were within Hashin–Shtrikman bounds.
Along similar lines, Weng [15] analyzed the relationship between Hashin–Shtrikman–Walpole (H–S–W)
bounds and the Mori–Tanaka (M–T) method for composites. The author investigated multiphase materials
with unidirectionally aligned constituents and observed the following: (i) For spherical inclusions,M–Tmoduli
will always fall within H–S–W bounds when the matrix is neither the softest nor the hardest phase; (ii) For
circular fibers, the M–T method will lie within the H–S–W bounds like the spherical case; (iii) For thin disks,
M–T moduli will be an exact solution like the H–S–W bounds (upper and lower bounds coincide as these are
independent of the material property).

More recently, Ni and Chiang [16] predicted the effective elastic constants of two-phase isotropicmaterials.
In their work, the authors used phase-fieldmicroelasticity (PFM) that is based onEshelby’s effective eigenstrain
approach (see Eshelby [17]) in order to obtain the elastic properties at specific volume fractions (v f = 0.1,
0.2, 0.3, 0.4, 0.5). It was shown that PFMmethod can be employed only for lower volume fractions (v f < 0.2)
to estimate shear and bulk moduli.

An alternative method for studying the effective response of materials is to employ the Hill–Mandel
homogenization condition (see Hill [18] and Mandel [19]). In this approach, the constitutive response of
elastic polycrystals at finite scales is obtained by solvingDirichlet andNeumann type boundary value problems
that bound the response from above and below, respectively. The microstructure is assumed to be spatially
homogeneous, ergodic and with increasing length scales, the microstructure moves from a so-called Statistical
Volume Element (SVE) to a Representative Volume Element (RVE). The versatility of this methodology is
evident from the fact that it has attracted a great deal of interest over the past several decades within the context
of elasticity [20–22], thermal conductivity [23–25], thermoelasticity [26–28], flow in porous media [29,30],
fracture and damage phenomena in random microstructures [31] and nonlinear elastic and inelastic materials
[32,33]. This framework has been employed by several other authors in order to determine the effective response
of two-phase polycrystals. In particular, Kanit et al. [34] analyzed three-dimensional Voronoi mosaic-shaped
linearly elastic materials in order to determine the effective properties of two-phase microstructures. In their
work, the authors used several boundary conditions (Dirichlet and Neumann) and obtained shear and bulk
moduli of two-phase materials at a specific volume fraction (v f = 0.7). The authors also observed that their
elastic moduli were within Voigt–Reuss [35,36] (upper bound and lower bound) as well as Hashin–Shtrikman
bounds. Along similar lines, Kanit et al. [37] investigated real two-phase microstructures using a digital
representation of their morphology and obtained the effective response. In their study, the authors analyzed
3D confocal images of polycrystalline ice and polymeric cream which were phase 1 and phase 2, respectively.
Subsequently, the authors performed numerical simulations using Dirichlet and Neumann boundary conditions
on two-phase microstructures and showed that shear and bulk moduli were within Voigt–Reuss as well as
Hashin–Shtrikman bounds.

Several other authors have also employed the Hill–Mandel homogenization condition to demonstrate the
concept of a scaling function. This function unifies the treatment of a wide variety of materials by describing
the effective response of random polycrystals through the convergence of Dirichlet and Neumann bounds.
Recently, the scaling function has been studied in 3D elasticity (for individual grains belonging to any crystal
class from cubic to triclinic) [38] and previously in 3D heat conduction [39], 2D elasticity [40], 2D heat
conduction [41], 2D electrical conductivity [42] and 2D viscoelasticity [43].

In the subsequent sections, we generate two-phase random polycrystals by Voronoi Tessellations and the
microstructures considered in this study have real-world applications. For instance, Ni–Cd is used in batteries
[44], Sn–Ag is used for soldering joints [45], Ni–Cr is employed for strain gauge applications [46], and Ni–Co
is used as a corrosion resistant coating [47]. We then vary the grain sizes (25, 400, 1000, 5000 grains) at
different volume fractions (v f = 0, 0.25, 0.5, 0.75, 1) in order to obtain rigorous bounds at finite mesoscales
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as solutions to stochastic boundary value problems (Dirichlet and Neumann) consistent with the Hill–Mandel
homogenization condition. By analyzing 9250 boundary value problems, it will be demonstrated that these
bounds converge to the effective elastic properties with increasing number of grains. We also illustrate the
notion of an elastic scaling function which depends on the ‘Heterogeneous Anisotropy Index’ and the number
of grains in the domain. Finally, a material scaling diagram is constructed that enables one to estimate the
number of grains required for homogenization of two-phase random microstructures.

2 Mathematical formulation

2.1 Hill–Mandel homogenization condition

In this section, we illustrate the Hill–Mandel homogenization condition which employs the energetic and
mechanistic approaches for setting up constitutive equations (see Hill [18] and Mandel [19]). First, we discuss
the stress and strain fields (σ and ε) and decompose these terms into mean and fluctuating parts as follows
(see Ostoja-Starzewski [31])

σ (x, ω) = σ̄ (ω) + σ ′(x, ω),

ε(x, ω) = ε̄(ω) + ε′(x, ω), (2.1)

where x is the point-to-point dependence of fluctuating fields, ω(∈ �) refers to a particular realization in a
microstructure from the sample space,�, and anover-bar is used to represent the volumeaverage. Equation (2.1)
is separated into the mean and zero-mean fluctuations as follows (see Ostoja-Starzewski [31])

σ̄ δ(ω) = 1

V

∫
σ (x, ω)dV,

∫
σ ′(x, ω)dV = 0,

ε̄δ(ω) = 1

V

∫
ε(x, ω)dV,

∫
ε′(x, ω)dV = 0. (2.2)

Here, V is the volume of the microstructure and δ is the mesoscale which can be defined as (see Ranganathan
and Ostoja-Starzewski [20])

δ = l

d
= (NG)

1
3 , (2.3)

where NG is the number of grains in themicrostructure, d is the characteristic length scale (for example the grain
size), and l is the length scale of observation (domain size). Using Eqs. (2.1) and (2.2), the volume-averaged
contracted scalar product of σ and ε is defined as

σi jεi j = 1

V

∫

V

σi jεi jdV = σ̄i j ε̄i j + 1

V

∫

V

σ ′
i jε

′
i jdV . (2.4)

We now illustrate the Hill–Mandel condition which follows from Eq. (2.4) as

σi jεi j = σ̄i j ε̄i j . (2.5)

The relation Eq. (2.5) holds provided the following condition is satisfied:

1

V

∫

V
σ ′ : ε′dV = 0. (2.6)

Now, by employing Eq. (2.1) and applying the Green–Gauss theorem to Eq. (2.6), we obtain the following
(see Ranganathan and Ostoja-Starzewski [20]):

1

V

∫

V
σ ′
i jε

′
i jdV = 0 ⇔

∫

∂Bδ

(ti − σi j .n j )(ui − εi j .x j )dS = 0, (2.7)

where Bδ is the random mesoscale material (Bδ = Bδ(ω);ω ∈ �) with a single deterministic realization
denoted by Bδ(ω) (see Ostoja-Starzewski et al. [2]). In addition, ∂Bδ is the boundary of Bδ (see Ostoja-
Starzewski [31]).

At this stage, we show the three types of boundary conditions that are obtained using Eq. (2.7) as follows
(see Ostoja-Starzewski et al. [2], Ranganathan and Ostoja-Starzewski [21] and Hill [48]):
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(i) Uniform Displacement (Dirichlet)

ui = ε0i j x j (2.8a)

(ii) Uniform Traction (Neumann)

ti = σ 0
i j n j (2.8b)

(iii) Mixed-orthogonal
(
ti − σ 0

i j n j

) (
ui − ε0i j x j

)
= 0 (2.8c)

One can now set up stochastic boundary value problems with the above boundary conditions and, upon
ensemble averaging, the mesoscale effective response can be obtained. It has to be noted that the random field,
�(x), of material parameters involvedmust be spatially homogeneous and ergodic. The ensemble mean is con-
stant, and its finite-valued covariance depends only on the shift h from x to x+ h (see Ostoja-Starzewski [28]),

〈�(x)〉 = μ,

〈[�(x) − 〈�(x)〉][�(x + h) − 〈�(x + h)〉]〉 = K�(h) < ∞, (2.9)

where�(x) is awide-sense stationary (WSS) randomfield, K�(h) is the covariance function, and the ensemble
averages are represented by 〈·〉. We also observe that the random field �(x) outlined above is mean-ergodic if
the spatial average (denoted by the over-bar) is equal to the ensemble average (see Ostoja-Starzewski [28])

1

V

∫

V

�(ω, x)dV = �(ω) = 〈�(x)〉 =
∫

�

�(ω, x)dP, (2.10)

where P is a probability measure related to the random field �(x). The homogenization methodology can
be seen in Fig. 1 where each grain has a random orientation. The polycrystals are generated by Voronoi
Tessellations using the software Neper (see Quey et al. [49]) and the grain sizes (NG = 25, 400, 1000, 5000)
that are taken into consideration are based on the work by El Houdaigui et al. [50]. Subsequently, Dirichlet and
Neumann boundary value problems are solved using Eqs. (2.8a) and (2.8b) and the scale-dependent bounds
are obtained on the elastic response of two-phase random polycrystals. In the next section, we postulate a
specific form of the scaling function for two-phase materials.

2.2 Elastic scaling function

Consider an arbitrary realization Bδ(ω) of a randommedium Bδ on a specific mesoscale δ. By using Eq. (2.8a),
a mesoscale random stiffness tensor Cd

δ can be defined as (see Ostoja-Starzewski [31])

σ̄ δ(ω) = Cd
δ (ω) : ε0, (2.11)

where the superscript d denotes the displacement boundary condition (see Ostoja-Starzewski et al. [2]).
Along similar lines, Eq. (2.8b) yields a mesoscale random compliance tensor Stδ as follows (see Ostoja-
Starzewski [31]):

ε̄δ(ω) = Stδ(ω) : σ 0 (2.12)

and the superscript t denotes the uniform traction boundary condition (see Ostoja-Starzewski et al. [2]). In
general, C and S are anisotropic at finite mesoscales. Isotropic response can only be recovered by distributing
the single crystal orientation randomly and upon ensemble averaging. The isotropic forms of the stiffness and
compliance tensors in terms of the bulk modulus, K, as well as the shear modulus, G, can be represented as
follows (see Ranganathan and Ostoja-Starzewski [21]):

〈
Cd

δ

〉
= 2

〈
Gd

δ

〉
K + 3

〈
Kd

δ

〉
J, (2.13a)

〈
Stδ

〉 = 1

2
〈
Gt

δ

〉K + 1

3
〈
K t

δ

〉J, (2.13b)
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Polycrystal Phase 1

Phase 2

Fig. 1 The homogenization methodology

whereK and J are the deviatoric and spherical components (introduced byWalpole [51,52]) of the fourth-order
identity tensor, I. We now define I as follows (see Hill [53], Walpole [52], Ranganathan et al. [54])

I = Ii jklei ⊗ e j ⊗ ek ⊗ el = δilδ jk + δikδ jl

2
ei ⊗ e j ⊗ ek ⊗ el , (2.14)

where δi j is the Kronecker � with δi j = 1 when i = j and δi j = 0 when i 	= j . Let us now consider the
spherical component, J, of the fourth-order tensor I as follows (see Hill [53], Walpole [52], Ranganathan et
al. [54]):

J = Ji jklei ⊗ e j ⊗ ek ⊗ el = δi jδkl

3
ei ⊗ e j ⊗ ek ⊗ el . (2.15)

Also, K = I − J. By quadruple contraction of Eqs. (2.13a) and (2.13b), we obtain the following scalar
equation (see Itskov [55] and Ranganathan and Ostoja-Starzewski [21]):

〈
Cd

δ

〉
:: 〈

Stδ
〉 = 〈

Ci jklei ⊗ e j ⊗ ek ⊗ el
〉 :: 〈Smnrsem ⊗ en ⊗ er ⊗ es〉

= 〈
Ci jkl S jilk

〉 = 5

〈
Gd

δ

〉

〈
Gt

δ

〉 +
〈
Kd

δ

〉

〈
K t

δ

〉 . (2.16)

By taking the limit (δ → ∞), the stiffness tensor is the exact inverse of the compliance tensor as follows (see
Ranganathan and Ostoja-Starzewski [21]):

lim
δ→∞

〈
Cd

δ

〉
:: 〈

Stδ
〉 = 6. (2.17)

Rearranging Eqs. (2.16) and (2.17), we postulate the following relationship:
〈
Cd

δ

〉
:: 〈

Stδ
〉 = lim

δ→∞

〈
Cd

δ

〉
:: 〈

Stδ
〉 + f (Ci j

(1),C
i j
(2), v f , δ), (2.18)



2636 S. I. Ranganathan et al.

where f
(
Ci j

(1),C
i j
(2), v f , δ

)
is the non-dimensional function called the elastic scaling function and v f is the

volume fraction of phase 1. Equation (2.18) is applicable for two-phase materials unlike the scaling function
first proposed by Ranganathan and Ostoja-Starzewski [20] for single phase cubic crystals. The variable Ci j

represents all the single crystal elastic constants depending on the crystal class and applies to both Ci j
(1) (phase

1) and Ci j
(2) (phase 2) as given below:

(i) Cubic

Ci j ≡ (C11,C12,C44), (2.19a)

(ii) Hexagonal

Ci j ≡ (C11,C12,C13,C33,C44), (2.19b)

(iii) Tetragonal

Ci j ≡ (C11,C12,C13,C33,C44,C66), (2.19c)

(iv) Trigonal

Ci j ≡ (C11,C12,C13,C14,C33,C44), (2.19d)

(iv) Orthorhombic

Ci j ≡ (C11,C12,C13,C22,C23,C33,C44,C55,C66), (2.19e)

(v) Monoclinic

Ci j ≡ (C11,C12,C13,C15,C22,C23,C25,C33,C35,C44,C46,C55,C66), (2.19f)

(vi) Triclinic

Ci j ≡ (C11,C12,C13,C14,C15,C16,C22,C23,C24,C25,C26,

C33,C34,C35,C36,C44,C45,C46,C55,C56,C66). (2.19g)

Substituting Eqs. (2.17) and (2.18) into Eq. (2.16) gives the functional form of the elastic scaling function as

f (Ci j
(1),C

i j
(2), v f , δ) = 5

〈
Gd

δ

〉

〈
Gt

δ

〉 +
〈
Kd

δ

〉

〈
K t

δ

〉 − 6. (2.20)

The boundary value problems listed under Eqs. (2.8a) and (2.8b) can be solved numerically in order to obtain
the right hand side of Eq. (2.20). In the next section, we discuss the upper and lower bounds on the elastic
property (bulk and shear moduli) of materials.

2.3 Bounds on the bulk and shear moduli

The hierarchy of scale-dependent bounds on the elastic response of random microstructures is shown by
employing the spatial ergodicity, WSS properties and the variational principles of continuum elasticity as
follows (see Ostoja-Starzewski [31], Kanit et al. [34], Sab [56], Huet [57]):

〈
St1

〉−1 ≤ · · · ≤ 〈
Stδ′

〉−1 ≤ 〈
Stδ

〉−1 ≤ · · · ≤ Ce f f∞ . . . ≤
〈
Cd

δ

〉
≤

〈
Cd

δ′
〉
· · · ≤

〈
Cd
1

〉
∀δ′ ≤ δ. (2.21)

By using Eq. (2.21), the hierarchy of bounds on the bulk and shear moduli for isotropic stiffness tensors can
be seen as follows (see Ranganathan and Ostoja-Starzewski [21] and Ostoja-Starzewski et al. [2]):

K R ≤ · · · ≤ 〈
K t

δ′
〉 ≤ 〈

K t
δ

〉 ≤ · · · ≤ Kef f∞ . . . ≤
〈
Kd

δ

〉
≤

〈
Kd

δ′
〉
· · · ≤ KV ∀δ′ ≤ δ, (2.22a)

GR ≤ · · · ≤ 〈
Gt

δ′
〉 ≤ 〈

Gt
δ

〉 ≤ · · · ≤ Gef f∞ . . . ≤
〈
Gd

δ

〉
≤

〈
Gd

δ′
〉
· · · ≤ GV ∀δ′ ≤ δ, (2.22b)

where KV and K R are the Voigt and Reuss estimates for the bulk modulus, respectively (see Hill [58]).
Similarly, GV and GR are the Voigt and Reuss bounds for the shear modulus. In the subsequent section, we
illustrate the properties and bounds on the scaling function.
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2.4 Properties and bounds on the elastic scaling function

The elastic scaling function f
(
Ci j

(1),C
i j
(2), v f , δ

)
which is postulated in Eq. (2.18) has the following properties:

f
(
Ci j

(1),C
i j
(2), v f , δ → ∞

)
= 0, (2.23)

where the scaling function is equal to zero at infinite mesoscales. Also, if Ci j
(1) and C

i j
(2) are changed to α Ci j

(1)

and α Ci j
(2) (α is a real number), the scaling function f remains the same:

f
(
α Ci j

(1), α Ci j
(2), v f , δ

)
= f

(
Ci j

(1),C
i j
(2), v f , δ

)
. (2.24)

Next, the bounds of the elastic scaling function can be seen as follows:

f
(
Ci j

(1),C
i j
(2), v f , δ → ∞

)
≤ f

(
Ci j

(1),C
i j
(2), v f , δ

′) ≤ f
(
Ci j

(1),C
i j
(2), v f , δ

)

· · · ≤ f
(
Ci j

(1),C
i j
(2), v f , δ = 1

)
∀1 ≤ δ ≤ δ′ ≤ ∞. (2.25)

One can now postulate several forms of the scaling function by identifying the appropriate parameters of
f. In the subsequent section, the notion of ‘Heterogeneous Anisotropy Index’ is introduced that is a natural
consequence of Eq. (2.25).

2.5 Heterogeneous Anisotropy Index

The ‘Heterogeneous Anisotropy Index,’ AU
H , which is obtained from Eq. (2.25), can be defined as follows:

AU
H = f

(
Ci j

(1),C
i j
(2), v f , δ = 1

)
0 ≤ v f ≤ 1, (2.26a)

where

AU
H = a + bv f + cv2f ,

a = 5
GV

(2)

GR
(2)

+ KV
(2)

K R
(2)

− 6,

b = 5

[
GV

(1)

GR
(2)

+ GV
(2)

GR
(1)

− 2GV
(2)

GR
(2)

]

+ KV
(1)

K R
(2)

+ KV
(2)

K R
(1)

− 2KV
(2)

K R
(2)

,

c = 5

[
GV

(1)

GR
(1)

− GV
(1)

GR
(2)

− GV
(2)

GR
(1)

+ GV
(2)

GR
(2)

]

+ KV
(1)

K R
(1)

− KV
(1)

K R
(2)

− KV
(2)

K R
(1)

+ KV
(2)

K R
(2)

, (2.26b)

and the subscripts (1) and (2) represent phase 1 and phase 2, respectively. The ‘Heterogeneous Anisotropy
Index’ captures the anisotropy of each phase in a two-phasematerial at arbitrary volume fractions (0 ≤ v f ≤ 1).
It can also be seen that, when the volume fraction of phase 1 is zero, we observe the following:

f
(
Ci j

(1),C
i j
(2), v f = 0, δ = 1

)
= a = AU

(2) ≥ 0, (2.27)

where AU
(2) is anisotropy of phase 2 only (single phase) and can be represented by the Universal Anisotropy

Index, AU , of this phase (see Ranganathan and Ostoja-Starzewski [1]). Similarly, when the volume fraction
of phase 1 is one, we obtain the following:

f
(
Ci j

(1),C
i j
(2), v f = 1, δ = 1

)
= a + b + c = AU

(1) ≥ 0 (2.28)

and AU
(1) is anisotropy of phase 1 which is again a single phase material. Let us now discuss Fig. 2 which

illustrates the ‘Heterogeneous Anisotropy Index’ of 4 two-phase materials (Ni–Cd, Sn–Ag, Ni–Cr, Ni–Co) at
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Fig. 2 Heterogeneous Anisotropy Index (AU
H ) versus volume fraction (v f ) for two-phase materials (Ni–Cd, Sn–Ag, Ni–Cr,

Ni–Co)

different volume fractions (v f = 0, 0.25, 0.5, 0.75, 1). We observe for Ni–Cd that AU
H is similar at v f = 0.25

as well as v f = 0.75, and therefore, scaling behavior is expected to be same at these volume fractions (see
Fig. 2). A similar phenomenon can be seen for Sn–Ag as AU

H is identical at v f = 0.25 and v f = 0.75. For
Ni–Cr, AU

H decreases from AU
H = 1.25 to AU

H = 0.14 with an increase in volume fraction from v f = 0 to
v f = 1 (see Fig. 2). An opposite trend can be observed in Fig. 2 for Ni–Co as AU

H increases from AU
H = 0.2

to AU
H = 1.25 with an increase in volume fraction. In the next section, the constitutive response of elastic

polycrystals at finite scales is obtained by solving Dirichlet and Neumann type boundary value problems:

3 Results and discussion

Consider the rigorous bounds on elastic constants of two-phase random polycrystals at finitemesoscales. These
polycrystals are white-noise random fields as these have no spatial correlations. Also, these microstructures are
generated numerically according to spatially ergodic andWSS properties. In the subsequent sections, we study
4 two-phase materials at different volume fractions (v f = 0, 0.25, 0.5, 0.75, 1) and perform 9250 numerical
simulations in order to illustrate the scale-dependent bounds on the effective elastic response (shear and bulk
moduli). In doing so, we impose the following loading conditions to solve stochastic boundary value problems

(1) Dirichlet problem:
(i) For extracting shear modulus: ε011 = ε022 = 0.05, ε033 = − 0.1, ε012 = ε013 = ε023 = 0;
(ii) For extracting bulk modulus: ε011 = ε022 = ε033 = 0.05, ε012 = ε013 = ε023 = 0;

(2) Neumann problem:
(iii) For extracting shear modulus: σ 0

11 = σ 0
22 = 16 GPa, σ 0

33 = − 32 GPa, σ 0
12 = σ 0

13 = σ 0
23 = 0;

(iv) For extracting bulk modulus: σ 0
11 = σ 0

22 = σ 0
33 = 16 GPa, σ 0

12 = σ 0
13 = σ 0

23 = 0.

Next, we proceed to develop a suitable form of the scaling function for any two-phase material.

3.1 Scale-dependent bounds on the aggregate response

We demonstrate scale-dependent bounds of two-phase materials which are obtained by solving stochastic
boundary value problems (see Figs. 3 and 4). For all volume fractions (v f = 0, 0.25, 0.5, 0.75, 1), the upper
and lower bounds correspond to the Voigt and Reuss estimates, respectively. Figure 3 illustrates Dirichlet and
Neumann bounds on shear and bulk moduli for Ni–Cd and Sn–Ag. We observe that these bounds approach
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(a) (b)

(a) (b)

(a) (b)

Fig. 3 Scale-dependent bounds for the Elastic Moduli of Ni–Cd (top), Sn–Ag (center) and Ni–Cr (bottom) at varying volume
fractions: a shear modulus (GPa), b bulk modulus (GPa)

the effective property as the number of grains increases from 25 to 5000 at all volume fractions (see Fig. 3).
Likewise, scale-dependent bounds on shear moduli of Ni–Cr (see Fig. 3) and Ni–Co (see Fig. 4) converge to
the aggregate response with an increase in the number of grains. The bounds on bulk moduli for Ni–Cr are
Voigt and Reuss estimates as Ni and Cr are cubic crystals (see Fig. 3). Along similar lines, upper and lower
bounds on bulk moduli for Ni–Co correspond to the Voigt and Reuss averages (see Fig. 4).

Let us discuss scaling behavior of all two-phase materials (Ni–Cd, Sn–Ag, Ni–Cr, Ni–Co). Figure 5
illustrates scaling functions at various volume fractions (v f = 0, 0.25, 0.5, 0.75 and 1) for thesemicrostructures.
For Ni–Cd, AU

H is almost identical at v f = 0 (AU
H = 1.22) as well as v f = 1 (AU

H = 1.25) and therefore
scaling functions are very close to each other (see Figs. 5a and e). Also, at v f = 0.25 (AU

H = 3.77) and
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(a) (b)

Fig. 4 Scale-dependent bounds for the Elastic Moduli of Ni–Co at varying volume fractions: a shear modulus (GPa), b bulk
modulus (GPa)

v f = 0.75 (AU
H = 3.78), scaling functions remain the same for Ni–Cd as AU

H is identical (see Fig. 5b and
d). In addition, the scaling function for Ni–Cd at v f = 0.5 can be seen in Fig. 5c. Let us now consider the
scaling functions for Sn–Ag. At v f = 0 (AU

H = 1.44) and v f = 1 (AU
H = 1.48), the scaling functions are

close to each other as AU
H is similar (see Fig. 5a and e). Also, at v f = 0.25 (AU

H = 1.84) and v f = 0.75
(AU

H = 1.85), the scaling functions are the same for Sn–Ag as AU
H is identical (see Fig. 5b and d). In addition,

the scaling function for Sn–Ag at v f = 0.5 can be seen in Fig. 5c. It is therefore reasonable to state that the
scaling function depends only on the ‘Heterogeneous Anisotropy Index’ AU

H and the mesoscale δ. By rewriting
Eq. (2.20), we obtain the following:

f
(
Ci j

(1),C
i j
(2), v f , δ

)
≡ f

(
AU
H , δ

)
. (3.1)

Along similar lines, scaling trends for Ni–Cr and Ni–Co are also identical at specific volume fractions.
Figure 5b and d shows that the scaling functions are close to each other for Ni–Cr at v f = 0.25 and Ni–Co
at v f = 0.75 as AU

H values are 1.07 and 0.98, respectively. A similar phenomenon can be observed for Ni–Cr
at v f = 0.5 (AU

H = 0.83) and Ni–Co at v f = 0.5 (AU
H = 0.72) as AU

H values are comparable (see Fig. 5c).
Likewise, the scaling functions are similar for Ni–Cr at v f = 0.75 and Ni–Co at v f = 0.25 as AU

H values
are 0.52 and 0.46, respectively (see Figs. 5b and d). In addition, the scaling functions for Ni–Cr and Ni–Co
at v f = 0 and v f = 1 can be seen in Figs. 5a and e, respectively. Finally, we can also see that the scaling
functions are exactly the same for Ni–Cr at v f = 0 (see Fig. 5a) as well as Ni–Cd and Ni–Co at v f = 1 (see
Fig. 5e) as AU

H = 1.25 (anisotropy of single phase Ni). In the next section, we demonstrate a specific form of
the scaling function for any two-phase microstructure.

3.2 Construction of the scaling function

The functional form of the scaling function is now obtained by rewriting Eq. (2.25) as follows:

0 ≤ 1

AU
H

f
(
AU
H , δ

)
≤ 1. (3.2)

Next, we discuss the rescaled scaling function defined in Eq. (3.2). It is important to highlight that the rescaled
function is similar for all two-phase materials at various volume fractions as seen in Fig. 6. Due to the finite
number of realizations used to obtain ensemble averages in this study, we observe that the curves plotted in
Fig. 6 are arranged in a fusiform structure, but should converge to a single curve in the limit of an infinite
set of realizations. The rescaled function, f ∗, is independent of the ‘Heterogeneous Anisotropy Index,’ AU

H ,
and is only a function of the mesoscale, δ. It is also worthwhile to mention that the existence of such an f ∗ is
equivalent to stating that f is proportional to AU

H . By redefining the scaling function, we obtain

f
(
AU
H , δ

)
= AU

H f ∗(δ), (3.3)
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(a) (b)

(c)

(e)

(d)

Fig. 5 Scaling Function for two-phase materials at various volume fractions a v f = 0, b v f = 0.25, c v f = 0.5, d v f = 0.75, e
v f = 1

where f ∗(δ) is the material-independent rescaled function. Let us now take the average values of f ∗(δ) from
Fig. 6 in order to develop the effective mean rescaled function and curve fit it (see Fig. 7). It is now possible
to show the following form of f ∗(δ) which is based on the effective function and its fit:

f ∗(δ) = (δ)−0.89 (3.4)
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Fig. 6 Rescaled Scaling Function for two-phase materials at all volume fractions (v f = 0, 0.25, 0.5, 0.75, 1)

Fig. 7 Effective rescaled scaling function and fit for all two-phase materials (Ni–Cd, Sn–Ag, Ni–Cr, Ni–Co)

By using Eqs. (3.3) and (3.4), we obtain the scaling function

f
(
AU
H , δ

)
= AU

H (δ)−0.89, δ = (NG)
1
3 . (3.5)

At this stage, we reconstruct the scaling function using Eq. (3.5) for all two-phase polycrystals (Ni–Cd, Sn–Ag,
Ni–Cr, Ni–Co) at different volume fractions (v f = 0, 0.25, 0.5, 0.75, 1) as shown in Fig. 8. It is evident from
this plot that this formulation captures the scaling function accurately for all two-phase materials at several
volume fractions.

4 Material scaling diagram

The power-law form of the scaling function given in Eq. (3.5) is employed in order to construct contours in
(AU

H , NG) space as shown in Fig. 9. It is clear that the curves shift toward higher grain sizes as scaling function
decreases (from f = 0.23 to f = 0.01) and vice versa. We have also seen that the scaling function is zero
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(a) (b)

(c) (d)

(e)

Fig. 8 Scaling function and fit for two-phase materials at various volume fractions a v f = 0, b v f = 0.25, c v f = 0.5, d
v f = 0.75, e v f = 1

at infinite grain sizes. One can now select a specific value of scaling function in order to determine the grain
sizes required for homogenization. We illustrate this concept by choosing a finite value of scaling function
( f = 0.2) and develop Fig. 10 for several two-phase materials (Ni–Cd, Sn–Ag, Ni–Cr, Ni–Co) at various
volume fractions (v f = 0, 0.25, 0.5, 0.75, 1). We observe that for a highly anisotropic two-phase material
(Ni–Cd with an AU

H = 4.62), homogeneity can be achieved at NG = 39835 (δ ∼= 35). Similarly, for Sn–Ag
at a v f = 0.5 and AU

H = 1.97, aggregate response can be determined at NG = 2255 (δ ∼= 14). Finally, for
a two-phase polycrystal with low anisotropy (Ni–Cr with an AU

H = 0.14), the number of grains required for
homogenization is NG = 1 (δ = 1).
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Fig. 9 Contours of the scaling function for 0.01 ≤ f ≤ 0.23

Fig. 10 Material scaling diagram at f = 0.2

5 Conclusion

In conclusion, we have illustrated the procedure to obtain scale-dependent bounds on the elastic response
of two-phase random polycrystals by solving Dirichlet and Neumann type boundary value problems (9250)
which are consistent with the Hill–Mandel homogenization condition. It was also shown that a variety of
two-phase materials (Ni–Cd, Sn–Ag, Ni–Cr, Ni–Co) at different volume fractions (v f = 0, 0.25, 0.5, 0.75,
1) can be studied together in terms of the elastic scaling function. This form of the scaling function consists
of the ‘Heterogeneous Anisotropy Index (AU

H )’ and the number of grains in a microstructure. Some of the
properties of the scaling function were demonstrated as follows: (i) the scaling function is zero when the grain
sizes are infinite; (ii) the scaling function remains the same when it is multiplied by a real number, α; (iii) the
scaling function behaves as the Universal Anisotropy Index when the volume fractions are 0 and 1. We also
developed a material scaling diagram for any two-phase material which can be used for estimating the grain
size required for homogenization. In this study, we have analyzed only two of the three boundary conditions
that emerge on account of the Hill–Mandel condition. One can also consider the elastic response of two-phase
materials subjected to the mixed-orthogonal boundary condition. Finally, to the best of our knowledge, this is
the first attempt for analyzing the scaling behavior of two-phase random polycrystals.
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