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Abstract For better modeling plane-stress anisotropic plasticity of steel sheets, a direct calibration method
is proposed and detailed for establishing a positive and convex sixth-order homogeneous polynomial yield
function with up to sixteen independent material constants. The calibration method incorporates parameter
identification, convexity testing, and if needed, an adjustment of an initially calibrated but non-convex yield
function toward a convex one. Some advantages of the calibration method include (i) a systematic solution of
only linear equations for the sixteenmaterial constants of a steel sheet with various degrees of planar anisotropy,
(ii) a practical numerical implementation of the necessary and sufficient conditions for convexity certification
of the calibrated or adjusted yield function, and (iii) an incremental procedure using a parameterized version
of the initially calibrated and non-convex yield function that can always lead to an approximate sixth-order
yield function with guaranteed convexity. Results of applying the proposed calibration method to successfully
obtain convex sixth-order yield functions are presented for three steel sheets with experimental measurement
inputs from various types and numbers per type of uniaxial and biaxial tension tests.

List of symbols

x, y, z The orthotropic material symmetry axes corresponding to the rolling (RD),
transverse (TD), and normal (ND) directions of a thin sheet metal

σx , σy , τxy Three in-planeCartesian (two normal and one shear) components of an applied
Cauchy stress σσσ in the orthotropic coordinate system of the sheet metal

Φ2, A1,…, A4 Hill’s 1948 quadratic anisotropic yield function [9] in plane stress and its four
material constants

Φ4, A1,…, A9 Gotoh’s 1977 fourth-order anisotropic yield function [6] in Cartesian stress
components (σx , σy , τxy) and its nine material constants

Φ6, A1,…, A16 The sixth-order homogeneous polynomial anisotropic yield function in Carte-
sian stress components (σx , σy , τxy) and its sixteen material constants

σ1, σ2, θ The so-called intrinsic variables of an applied plane stress σσσ according to
Hill [12,13], namely, the in-plane principal stresses (σ1, σ2) and the loading
orientation angle θ between σ1(≥ σ2) and the rolling direction of the sheet
metal
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σθ , rθ , σb, rb Yield stresses and plastic strain ratios under uniaxial tension (σ1 = σθ >
0, σ2 = 0) at the loading orientation angle θ ; and yield stress and plastic strain
ratio under equal biaxial tension (σ1 = σ2 = σb > 0)

σpθ , σsθ Yield stresses under near plane-strain tension (σ1 = 2σ2 = σpθ > 0) and
under pure shear stress (σ1 = −σ2 = σsθ > 0) at the loading orientation
angle θ

φ6, F(θ),G(θ), H(θ), N (θ) The sixth-order yield function recast in intrinsic variables in a compact form
of seven homogeneous principal stress terms and its four in-plane anisotropic
functions. F0,…,F6, and so forth are the 25 nonzero Fourier cosine series
coefficients of those four functions

Ψ6A, Ψ6B , Ψ6C Three sub-determinants or leading principal minors of the Hessian matrix of
the sixth-order yield function Φ6 in Cartesian stress components (σx , σy , τxy)

ψ6A, ψ6B , ψ6C Three sub-determinantsΨ6A,Ψ6B ,Ψ6C of theHessianmatrix of the sixth-order
yield function Φ6 recast in intrinsic variables (σ1, σ2, θ )

ρ, ω The polar coordinates for the two principal stresses σ1 and σ2

1 Introduction

In the final Chapter of his classical monograph on mathematical plasticity, Hill [10] suggested that “for the
yield function and plastic potential a polynomial of degree of n in the reduced stress components” takes the
following form for an orthotropic sheet metal under a state of plane stress:

Pn(σx , σy, τxy) = f n(σσσ) =
∑

Ai jkσ
i
xσ

j
y τ kxy (1)

where σσσ = (σx , σy, τxy) is the applied Cauchy stress with its Cartesian components in sheet metal orthotropic
axes (with the x-axis and y-axis being corresponding to the rolling and transverse directions of a sheet metal),
the stress exponents i, j, k are positive integers or zero with i + j + k ≤ n and k must be even, and f (σσσ) is
the equivalent yield stress used to define the yield criterion in terms of the yield strength σ f of the sheet metal
as f (σσσ) − σ f = 0. The simplest case of homogeneous polynomials in the above form (i.e., i + j + k = n) is
the well-known quadratic yield function by Hill [9] with n = 2 and k = 0 or 2,

Φ2(σx , σy, τxy) = A1σ
2
x + A2σxσy + A3σ

2
y + A4τ

2
xy, (2)

where A1, A2, A3, and A4 are its four non-dimensional material constants that are often determined using
yield stress and plastic strain ratio measurements from two on-axis and one off-axis uniaxial tension tests, see
[16].

In recent years, non-quadratic homogeneous polynomials are increasingly being used as yield functions
to overcome the limitations or deficiencies of Hill’s 1948 quadratic yield function. For example, Gotoh [6]
proposed in 1977 the use of a plane stress fourth-order homogeneous polynomial yield functionwith orthotropic
symmetry, namely (i + j + k = 4 and k = 0, 2 or 4 per Eq. (1)):

Φ4(σx , σy, τxy) = A1σ
4
x + A2σ

3
x σy + A3σ

2
x σ 2

y + A4σxσ
3
y + A5σ

4
y

+ A6σ
2
x τ 2xy + A7σxσyτ

2
xy + A8σ

2
y τ 2xy + A9τ

4
xy

(3)

where A1, A2,… and A9 are its nine non-dimensional material constants. As suggested by Gotoh [6], a set of
nine linear equations using one measurement of yield stress σb from an equal biaxial tension test and eight
measurements in yield stresses and plastic strain ratios (σ0, σ45, σ90, σθ , r0, r45, r90, rθ , where θ = 22.5◦ or
67.5◦)1 from four uniaxial tension tests may be used to uniquely determine these nine material constants. Two
examples of the calibrated fourth-order yield function were also given by Gotoh [7]: one for a commercial
Al-killed steel and another for a 1/4H copper alloy.

Empirical evidences have shown that an even higher-order yield functionmay be needed formore accurately
modeling isotropic and anisotropic plasticity of metals [5,8,14,15,18,29]. For many BCC steel sheets, a sixth-
order yield function is often preferred for its higher flexibility [3,27,30]. Such a choice has also been justified in

1 Here the numerical subscript of the yield stress σ and plastic strain ratio r is the angle θ in degrees between the uniaxial
tensile loading axis and the rolling direction of a sheet metal.
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part based on the results by Logan and Hosford [19] that a yield function in the form of σ 6
x + σ 6

y + (σx − σy)
6

approximates closely the calculated upper bound yield loci of randomly oriented BCC polycrystals with
<111>-pencil glide.As shownbySoare et al. [22] andYoshida et al. [30], a complete homogeneous polynomial
yield function of six degrees has the following form (i + j + k = 6 and k = 0, 2, 4 or 6 per Eq. (1)):

Φ6 = A1σ
6
x + A2σ

5
x σy + A3σ

4
x σ 2

y + A4σ
3
x σ 3

y + A5σ
2
x σ 4

y + A6σxσ
5
y

+ A7σ
6
y + A8σ

4
x τ 2xy + A9σ

3
x σyτ

2
xy + A10σ
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x σ 2

y τ 2xy + A11σxσ
3
y τ

2
xy

+ A12σ
4
y τ 2xy + A13σ

2
x τ 4xy + A14σxσyτ

4
xy + A15σ

2
y τ 4xy + A16τ

6
xy

(4)

where A1, A2,… and A16 are its non-dimensional material constants to be determined by using sixteen experi-
mentalmeasurements from some simplemechanical tests. However, such a complete homogeneous polynomial
yield function with its set of sixteen independent material constants has rarely if ever been fully calibrated to
model a steel sheet subjected to biaxial or tri-component plane stress loading. Instead, the vast majority of steel
sheet forming applications appearing in the literature have used only one of reduced sixth-order yield functions
based on linearly transformed stresses [3,30]. These reduced yield functions with a much smaller number of
independent material constants do not however utilize the full potential of a sixth-order yield function for
modeling the directional and multi-axial dependence of the yielding and plastic flow of an anisotropic steel
sheet.

There is mainly a twofold reason for such a situation. First, experimental measurements with a total of
the required sixteen yield stresses and plastic strain ratios under uniaxial and biaxial loading are simply not
commonly available for a steel sheet due to the complexity and/or cost of the material testing. Interestingly,
unlike the case of Gotoh’s fourth-order yield function of Eq. (3), there appears not to have been many detailed
investigations similar to the ones presented by Gotoh [6,7] at all about the required types and numbers per
type of measurements from simple mechanical tests of sheet metal samples that will constitute a set of sixteen
independent inputs for fully calibrating all material constants of the sixth-order yield function of Eq. (4).
Secondly and maybe more important, even if such a set of experimental input data is made available and all
material constants are identified accordingly by solving a set of sixteen linear algebraic equations, the positivity
and especially convexity of the calibrated yield function are both unknown and not guaranteed.

In fact, the second point above applies to any polynomial yield function of Eq. (1) so some additional
restrictions on the material constants in a polynomial yield function have to be imposed to ensure it being
positive and convex [11,13]. Hill’s 1948 quadratic yield function of Eq. (2) is a rather special case. The
necessary and sufficient conditions for it to be strictly positive and convex are the same and they are given by
the following simple algebraic inequalities or restrictions on its four material constants:

A1 > 0, A3 > 0, A4 > 0, 4A1A3 > A2
2. (5)

For a non-quadratic plane stress polynomial yield function such as Φ4 or Φ6, however, such a complete set of
simple algebraic relations on their material constants that can serve as the necessary and sufficient conditions
on its positivity and convexity have not been reported so far in the open literature. It is noted that Gotoh in
his original work did not address the important mathematical issue of positivity and convexity about his yield
function at all. That is, Gotoh [7] only implicitly assumed but never explicitly established the positivity and
convexity of his fourth-order yield function calibrated for the Al-killed steel and 1/4H copper sheets. Recently,
there was an effort of developing positive and convex polynomial yield functions of four, six, and eight degrees
by a nonlinear optimization numerical technique with additional constraints [22]. In particular, it included
some positivity and convexity restrictions at some representative plane stress states as part of the optimized
parameter identification scheme to increase the likelihood of a resulting yield function being positive and
convex over the entire plane stress space and to fill the gap of missing experimental inputs. As pointed out by
Yoshida et al. [30], such an approach seemed to be working practically “but theoretically still it is not perfect.”
In other words, the positivity and convexity constraints used in their parameter identification technique are
only necessary but not sufficient. The resulting yield function is still not guaranteed to be positive and convex
over plane stress states other than the ones used in the optimization.

In this study, we present an alternative method of directly calibrating and establishing a positive and convex
polynomial yield function of six degrees with up to sixteen independent material constants for steel sheets.
The proposed calibration method consists of three components: (i) transformation of the yield function Φ6
into a form in terms of the intrinsic stress variables and parameter identification of its 16 independent Fourier
coefficients by solving a set of linear equations using various types and numbers per type of experimental
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measurements from simple mechanical tests; (ii) convexity testing of the calibrated sixth-order yield function
via a practical numerical implementation of the necessary and sufficient conditions; and (iii) incremental
parameter adjustments of the as-calibrated but non-convex yield function that can always lead to an approximate
yield function with guaranteed convexity. These three key components of the calibration method were recently
proposed by Tong [23–25], and they have been successfully applied to obtain positive and convex Gotoh’s
fourth-order yield functions for many sheet metals [26].

In the following several Sections, we describe one-by-one the details of each component of the new calibra-
tion method being extended to the sixth-order yield function. Numerous examples are given in a mechanically
meaningful and mathematically consistent way on how to calibrate a sixth-order yield function with either full
planar anisotropy or various degrees of reduced planar anisotropy using a number of independent experimental
measurements anywhere between 1 and 16. In Sect. 6, we present numerical results of the new calibration
method being applied to model three selected steel sheets by the sixth-order yield function using all 13, 11,
and 10 available and independent experimental inputs, respectively. Not only all five individual cases of the
sixth-order yield function calibrated for the three steels were verified to be strictly positive and convex, but the
convexity limit was also estimated for each calibrated yield function using a single scalar variable. Possible
further improvements of the proposed calibration method for constructing a convex sixth-order polynomial
yield function were also briefly discussed, and some conclusions drawn from the current study are given in
Sect. 7.

2 The sixth-order yield function in terms of intrinsic variables

To facilitate the investigation about various types and numbers per type of measurements from simple mechan-
ical tests that are required to fully calibrate the sixteen independent material constants of a sixth-order yield
function Φ6(σx , σy, τxy), we first reformulate the yield function in terms of intrinsic variables (σ1, σ2, θ) of
an applied plane stress.2 By using the standard plane stress coordinate transformation formulas

σx = σ1cos
2θ + σ2sin

2θ, σy = σ1sin
2θ + σ2cos

2θ, τxy = (σ1 − σ2)sinθcosθ (6)

one can rewrite the sixth-order yield function of Eq. (4) in a compact form in terms of seven homogeneous
principal stress terms, namely

φ6(σ1, σ2, θ) = F(θ)σ 6
1 + G(θ)σ 5

1 σ2 + H(θ)σ 4
1 σ 2

2 + N (θ)σ 3
1 σ 3

2

+ H
(
θ + π

2

)
σ 2
1 σ 4

2 + G
(
θ + π

2

)
σ1σ

5
2 + F

(
θ + π

2

)
σ 6
2 ,

(7)

where the four functions F(θ),G(θ), H(θ), and N (θ) can be expressed in the Fourier cosine series form as

F(θ) = F0 + F1cos2θ + F2cos4θ + F3cos6θ + F4cos8θ + F5cos10θ + F6cos12θ,

G(θ) = G0 + G1cos2θ + G2cos4θ + G3cos6θ + G4cos8θ + G5cos10θ + G6cos12θ,

H(θ) = H0 + H1cos2θ + H2cos4θ + H3cos6θ + H4cos8θ + H5cos10θ + H6cos12θ,

N (θ) = N0 + N2cos4θ + N4cos8θ + N6cos12θ,

(8)

and their 25 nonzero coefficients F0, F1, . . . , N6 are linear combinations of the 16 material constants
A1, . . . , A16 (see “Appendix A” for details). As expected, the yield function has the required symmetry prop-
erties of an orthotropic yield function in intrinsic variables as discussed by Hill [13]. Obviously, there are
only up to 16 independent Fourier coefficients in these four anisotropic functions as well. One can use the
linear algebra analysis to systematically check and identify both independent and non-independent ones. There
will be many choices of 16 independent Fourier coefficients, and we adapt a general rule to choose as many
independent coefficients as possible in the order of four functions F(θ),G(θ), H(θ), and N (θ). One such
selection is (F0, F1, F2, F3, F4, F5, F6, G0, G1, G2, G3, G4, H0, H1, N0, N2), and other nine coefficients are
linear combinations of these sixteen coefficients, namely

G5 = − 4F5, G6 = −6F6, H2 = −F2 − G2 − 1

2
N2, H3 = −3F3 − 2G3,

H4 = − 9F4 − 4G4, H5 = 5F5, H6 = 15F6, N4 = 16F4 + 6G4, N6 = −20F6.
(9)

2 Here σ1 and σ2 are principal stresses, and θ is the in-plane angle between the axis of the principal stress σ1(≥ σ2) and the
x-axis of the material symmetry axes (i.e., the rolling direction of a sheet metal). They are called intrinsic variables of the applied
stress by Hill [12,13].
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As the plastic axial strain increments in the two principal stress axes are given by ε̇
p
1 ∝ ∂φ6/∂σ1 and

ε̇
p
2 ∝ ∂φ6/∂σ2 per the associated flow rule ([12,13]), one can show that the plastic strain ratio under uniaxial
tension at a loading orientation angle θ is given as (with σ1 = σθ > 0, σ2 = 0 and plastic incompressibility is
assumed as usual for metals)

rθ = ε̇
p
2

ε̇
p
3

= − ε̇
p
2

ε̇
p
1 + ε̇

p
2

= − G(θ)

6F(θ) + G(θ)

= −G0 − G1cos2θ − G2cos4θ − G3cos6θ − G4cos8θ + 4F5cos10θ + 6F6cos12θ

6F0 + G0 + (6F1 + G1)cos2θ + (6F2 + G2)cos4θ + (6F3 + G3)cos6θ + (6F4 + G4)cos8θ + 2F5cos10θ
.

(10)

Similarly, the plastic strain ratio under equal or balanced biaxial tension rb is given as (with σ1 = σ2 = σb > 0,
θ = 0)

rb = ε̇
p
2

ε̇
p
1

= 6F0 − 6F1 + 6G0 − 4G1 + 6H0 − 2H1 + 3N0

6F0 + 6F1 + 6G0 + 4G1 + 6H0 + 2H1 + 3N0
. (11)

For a general plane stress state with σ1 > 0 and the yield condition φ6(σσσ) − σ 6
f = 0, Eq. (7) may be rewritten

as
(

σ f

σ1

)6

= F(θ) + ζG(θ) + ζ 2H(θ) + ζ 3N (θ) + ζ 4H
(
θ + π

2

)
+ ζ 5G

(
θ + π

2

)
+ ζ 6F

(
θ + π

2

)

(12)
where ζ = σ2/σ1 is the biaxial plane stress ratio between −1 and 1. Some common plane stress states can
be specified accordingly: ζ = 0 for uniaxial tension; ζ = 1 for equal biaxial tension; ζ = −1 for pure shear
stress; ζ = 1/2 for near or approximate plane-strain tension. The yield stress under uniaxial tension σθ at a
loading orientation angle θ is thus simply obtained from Eq. (12) with ζ = 0 as

(
σ f

σθ

)6

= F0 + F1cos2θ + F2cos4θ + F3cos6θ + F4cos8θ + F5cos10θ + F6cos12θ, (13)

and the yield stress under equal biaxial tension σb is obtained from Eq. (12) with ζ = 1 and θ = 0 as
(

σ f

σb

)6

= 2F0 + 2G0 + 2H0 + N0. (14)

Axial yield stresses under pure shear stress at two loading orientation angles 0◦ and 45◦ are (the result for 90◦
is exactly the same as that for 0◦)

(
σ f

σs0

)6

= 2F0 − 32F4 + 64F6 − 2G0 − 4G2 − 16G4 + 2H0 − N0 − 2N2,

(
σ f

σs45

)6

= 2F0 − 32F4 − 64F6 − 2G0 + 4G2 − 16G4 + 2H0 − N0 + 2N2.

(15)

To emphasize the notion of intrinsic variables, we choose in this study σsθ = σ1 as the axial or normal yield
stress under pure shear stress σ1 = −σ2 > 0 instead of τθ as used by Yoshida et al. [30]. Finally, biaxial
tension yield stresses with a stress ratio of one half (ζ = 1/2) at three loading orientation angles 0◦, 45◦, and
90◦ are given as

64

(
σ f

σp0

)6

= 65F0 + 63F1 + 45F2 + 27F3 + 13F4 + 3F5 + F6 + 34G0

+ 30G1 + 14G2 + 6G3 + 2G4 + 20H0 + 12H1 + 8N0 − 2N2,

64

(
σ f

σp45

)6

= 65F0 − 45F2 + 13F4 − F6 + 34G0 − 14G2 + 2G4 + 20H0 + 8N0 + 2N2,

64

(
σ f

σp90

)6

= 65F0 − 63F1 + 45F2 − 27F3 + 13F4 − 3F5 + F6 + 34G0

− 30G1 + 14G2 − 6G3 + 2G4 + 20H0 − 12H1 + 8N0 − 2N2.

(16)

Those yield stresses are referred to as near plane-strain tension yield stresses by Yoshida et al. [30].
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3 Parameter identification of the sixth-order yield function

We are now ready to investigate in some greater details various types and numbers per type of measurements
from simple mechanical tests that are needed to fully identify all material constants or equivalently all Fourier
coefficients in a sixth-order yield function. In light of the results presented in Sect. 2 above, we prefer to use
the sixteen independent Fourier coefficients (F0, F1, F2, F3, F4, F5, F6, G0, G1, G2, G3, G4, H0, H1, N0, N2)
instead of the polynomial material constants (A1, . . . , A16) as the basis for our investigation on the directional
dependence of the yielding and plastic flow in an orthotropic sheet metal. On the other hand, we revert back to
those polynomial material constants when better modeling of the multi-axial dependence of the yielding and
plastic flow is of primary concern under either on-axis (θ = 0◦ or θ = 90◦) or off-axis (0◦ < θ < 90◦) loading
conditions. If the 16 independent Fourier coefficients of φ6 are determined, the corresponding 16 polynomial
material constants of Φ6 can be obtained straightforward via linear equations Eq. (31) in “Appendix A,” and
vice versa.

3.1 Types of mechanical tests needed for full parameter identification

When we have no any prior knowledge about the actual degree of planar anisotropy of a steel sheet, we need
to collect at least sixteen experimental measurements from some simple mechanical tests for fully calibrating
the sixth-order yield function. In principle, one may choose one among many possible sets of measurements
to best characterize the directional and multi-axial dependence of the yielding and plastic flow of the steel
sheet for a given application. Typically, as many measurements as possible from uniaxial tension tests may
be included as they are easy to obtain and most widely available. But measurements from both uniaxial and
biaxial tension tests are needed as it is already known that at least one measurement from biaxial tension is
required for fully calibrating a fourth-order yield function [6].

The first question to ask is whether or not 14 uniaxial tension measurements such as seven pairs of (σθ , rθ )
and 2 equal biaxial tension measurements (σb, rb) will be sufficient as a possible set of the required 16 experi-
mental inputs. In other words, one needs to check if the sixteen equations from Eqs. (10), (11), (13), and (14)
will be linearly independent or not. The short answer is no. For example, there are four Fourier coefficients in
a planar isotropic sixth-order yield function per Eq. (18) (see details in Sect. 3.4) to be determined but one has
only three independent measurements (σ0, r0, σb) from uniaxial and equal biaxial tension tests (rb = 1 always
holds per Eq. (11) for a planarly isotropic sheet).

For the more general case of the sixth-order yield function with maximum plastic anisotropy (i.e., with
all sixteen independent Fourier coefficients being nonzero at the outset), there are up to seven independent
uniaxial yield stress measurements σθ , that is, Eq. (13) contains only seven Fourier coefficients: (F0, F1, F2,
F3, F4, F5, F6). Similarly, there are possibly up to 12 independent uniaxial plastic strain ratio measurements
rθ : F(θ) and G(θ) in Eq. (10) contains only 12 out of a total of 16 independent Fourier constants, namely,
(F0, F1, F2, F3, F4, F5, F6, G0, G1, G2, G3, G4). In fact, there are at most up to 12 possible independent
measurements from all uniaxial tension tests because the seven Fourier coefficients in Eq. (13) are among the
twelve ones in Eq. (10). Consequently, a total of up to 12 uniaxial tension measurements plus 2 equal biaxial
tension measurements (σb, rb) will not be sufficient to determine all sixteen Fourier coefficients. That is, at
least two measurements from other biaxial tests such as pure shear stress or near plane-strain tension tests are
then needed.

3.2 Full parameter identification using 12 uniaxial tension measurements

One can select various numbers of yield stresses and plastic strain ratios fromuniaxial tension tests along at least
six different loading orientation angles to constitute the 12 measurements needed for parameter identification.
The only requirement is that those 12 uniaxial tension measurements are independent, that is, the twelve
equations from Eqs. (10) and (13) are linearly independent. One obvious default choice is to first determine
the seven Fourier coefficients (F0, F1, F2, F3, F4, F5, F6) of F(θ) using seven uniaxial tension yield stresses per
Eq. (13), say, such as (σ0, σ15, σ30, σ45, σ60, σ75, σ90). Afterward, one can determine the other five coefficients
(G0, G1, G2, G3, G4) using five uniaxial plastic strain ratios per Eq. (10), for example, such as (r0, r22.5, r45,
r67.5, r90).

Once the twelve Fourier coefficients above have been determined from 12 independent uniaxial tension
measurements, one can then determine 2H0 + N0 using the equal biaxial tension yield stress σb per Eq. (14)
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and subsequently H1 using the equal biaxial tension plastic strain ratio rb per Eq. (11) as long as rb �= −1.
Similarly, one can use the two pure shear yield stresses σs0 and σs45 given in Eq. (15) to determine 2H0 − N0
and N2, respectively. The results of 2H0 + N0 and 2H0 − N0 determine H0 and N0 individually and thus
complete the full parameter identification. Alternatively, one can use the first two near plane-strain tension
yield stresses σp0 and σp45 in Eq. (16) to determine 5H0 + 2N0 and N2, respectively. The results of 2H0 + N0
and 5H0 + 2N0 also determine H0 and N0 individually.

One may select other combinations of biaxial test data to constitute the four measurements needed for
determining those four Fourier coefficients (H0, H1, N0, N2) above. Again, the only requirement is that
those four biaxial test measurements are independent so the four equations from Eqs. (11) and (12) with
ζ = σ2/σ1 �= 0 are linearly independent. One can show that at least one of the biaxial tests should be carried out
off-axis (θ �= 0◦ and θ �= 90◦). For example, four biaxial measurements (σb, rb, σp0, σp90) or (σb, rb, σp0, σs0)
are not independent andwill not be sufficient to determine all of those four Fourier coefficients. Detailed results
of the default and other viable 12 uniaxial tension measurements for identifying the 12 Fourier coefficients
(F0, F1, F2, F3, F4, F5, F6, G0, G1, G2, G3, G4) in Eqs. (10) and (13) are listed in “Appendix B” along
with the separate results of using some viable biaxial test measurements described above for identifying the
remaining four Fourier coefficients (H0, H1, N0, N2).

3.3 Full parameter identification using less uniaxial tension measurements

Onemay use additional yield stresses fromother off-axis biaxial plane stress tests in the parameter identification
so the yield function can better model the multi-axial plastic yielding of a steel sheet at a loading orientation
angle θ . One question is then about the minimum number of measurements from off-axis tests that will
be needed to fully account for the directional dependence of the yield function.3 Per Eq. (4), on-axis test
measurements (τxy = 0) can only determine up to seven material constants A1, . . . , A7. From Eqs. (10)–(14)
by setting (if needed) θ = 0◦ and θ = 90◦ and using the results in “Appendix A,” one can show that indeed
the most common nine on-axis uniaxial and biaxial test measurements (σ0, r0, σ90, r90, σb, rb, σs0, σp0, σp90)
contain only those seven material constants. Besides the default choice of seven measurements (σ0, r0, σ90,
r90, σb, rb, σp0 or σs0), other possibilities are (σ0, r0, σ90, r90, σb, σp0, σp90), (σ0, r0, σ90, r90, σb, σp0, σs0),
and (σ0, σ90, σb, rb, σp0, σp90, σs0). Details of using those and other measurements for determining the seven
on-axis material constants A1, . . . , A7 are given in “Appendix C.”

So the remaining nine material constants A8, . . . , A16 have to be determined from off-axis uniaxial and
biaxial tests at a minimum of four or five different off-axis loading angles (0◦ < θ < 90◦). From Sect. 3.2
and related results given in “Appendix B,” it is already known that up to eight measurements from off-axis
uniaxial tension and at least one measurement from either off-axis pure shear σs45 or off-axis near plane-strain
tension σp45 can be used as part of parameter identification of 16 Fourier coefficients. If the off-axis uniaxial
tension measurements are limited to a pair of (σ45, r45) in single off-axis tension tests, then seven additional
off-axis measurements can come from biaxial tests. Some examples of using more than one yield stress from
off-axis pure shear and near plane-strain tension tests but less than eight yield stress and plastic strain ratio
measurements from off-axis uniaxial tension tests for parameter identification of the nine off-axis material
constants A8, . . . , A16 are discussed in more details in “Appendix C” as well.

3.4 Parameter identification using limited experimental measurements

We now consider the situationmost often encountered in practical industrial applications, that is, the actual total
number of independent uniaxial and/or biaxialmechanical testingmeasurements available for a given steel sheet
metal are less than the required 12 and 4, respectively.We first examine some sufficient conditions for dropping
high-order sinusoids or cosine terms in φ6(σ1, σ2, θ) or equivalently for eliminating various types of earing
formation in axi-symmetric deep drawing of a sheet metal [24], namely (recalling also results given in Eq. (9))

(i) without any cos12θ terms : F6 = 0,

(ii) without any cos10θ terms : F5 = 0,

3 An on-axis loading is defined as when the axis of σ1 or σ2 coincides with the rolling and transverse directions of a sheet
metal, that is, θ = 0◦ or θ = 90◦. So an off-axis loading is defined as 0◦ < θ < 90◦. In terms of the Cartesian stress components,
the on-axis and off-axis tests are specified with τxy = 0 and τxy �= 0, respectively.
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(iii) without any cos8θ terms : F4 = G4 = 0,

(iv) without any cos6θ terms : F3 = G3 = 0,

(v) without any cos4θ terms : F2 = G2 = N2 = 0,

(vi) without any cos2θ terms : F1 = G1 = H1 = 0. (17)

When all of these six constraints are imposed on the above 12 independent Fourier coefficients, it leads to a
planar or in-plane isotropic yield function of six degrees with only four nonzero Fourier coefficients F0, G0,
H0, and N0,

φ6p(σ1, σ2) = F0(σ
6
1 + σ 6

2 ) + G0(σ
5
1 σ2 + σ1σ

5
2 ) + H0(σ

4
1 σ 2

2 + σ 2
1 σ 4

2 ) + N0σ
3
1 σ 3

2 . (18)

Finally, a von Mises-like isotropic sixth-order yield function is simply the case of planar isotropy of a single
experimental measurement of σ0 with rθ = rb = 1, σb = σθ = σ0, σs = σ0/

√
3 (pure shear), namely

(assuming σ f = σ0)

φ6i (σ1, σ2) = σ 6
1 − 3σ 5

1 σ2 + 6σ 4
1 σ 2

2 − 7σ 3
1 σ 3

2 + 6σ 2
1 σ 4

2 − 3σ1σ
5
2 + σ 6

2 = (σ 2
1 − σ1σ2 + σ 2

2 )3. (19)

Onemay now seek to determine a sixth-order yield function of reduced planar anisotropywhen a complete
set of 16 independent experimental measurements such as those listed in “Appendix B” is not available for the
steel sheet under consideration. At the minimum, we assume in the following that at least five measurements
are always made available: (σ0, r0, σ90, r90) from two uniaxial tension tests and σb or rb from an equal biax-
ial tension test.4 Depending on any additional number of experimental measurements from off-axis uniaxial
tension tests and other biaxial tests, one can systematically set some independent Fourier coefficients to be
zero or other constant values first and then carry out the parameter identification on the rest of the reduced
number of independent Fourier coefficients in the sixth-order yield function. Some of the common cases are
discussed briefly in the following (for the equations to compute the relevant independent Fourier coefficients,
see “Appendix D” for details):

(a) Ten uniaxial tension measurements Set both F5 = 0 and F6 = 0 so only ten nonzero Fourier coeffi-
cients are to be determined using measurements from five uniaxial tension tests with three of them being
off-axis. A set of ten uniaxial tension measurements would be like (σ0, σθ1 , σ45, σθ2 , σ90) and (r0, rθ1 , r45,
rθ2 , r90), where θ1 is between 0◦ and 45◦, and θ2 is between 45◦ and 90◦. One can determine the five Fourier
coefficients (F0, F1, F2.F3, F4) first using only the yield stresses and then the other five Fourier coefficients
(G0,G1,G2,G3,G4) using additional measurements of plastic strain ratios.

(b) Eight uniaxial tension measurements Set F4 = G4 = F5 = F6 = 0 so only eight nonzero Fourier coef-
ficients are to be determined from four uniaxial tension tests with two of them being off-axis. A set of eight
uniaxial tension measurements would be like (σ0, σ45, σ90, σθ ) and (r0, r45, r90, rθ ), where θ is either between
0◦ and 45◦ or between 45◦ and 90◦. One can determine the four Fourier coefficients (F0, F1, F2, F3) first using
only the yield stresses and then the other four Fourier coefficients (G0,G1,G2,G3) with the addition of plastic
strain ratios.

(c) Six uniaxial tension measurements Set F3 = G3 = F4 = G4 = F5 = F6 = 0 so only six nonzero Fourier
coefficients (F0, F1, F2,G0,G1,G2) are to be determined using six measurements from three common uni-
axial tension tests (two on-axis tests and only one off-axis test): (σ0, r0, σ45, r45, σ90, r90).

(d) Four uniaxial tension measurements Set G2 = F2 = G3 = F3 = F4 = G4 = F5 = F6 = 0 so only
four nonzero Fourier coefficients (F0, F1,G0,G1) are to be determined from the two on-axis uniaxial tension
tests: (σ0, r0, σ90, r90).

(e) Three on-axis and zero off-axis biaxial test measurements Set N2 = 0 so only three remaining Fourier
coefficients (H0, H1, N0) are to be determined from on-axis biaxial tests. Two measurements from equal biax-
ial tension and one measurement from another on-axis biaxial test will be sufficient: such as (σb, rb, σp0) or
(σb, rb, σs0).

4 If only (σ0, r0) from a single uniaxial tension test are made available, one can simply set σ90 = σ0, σb = σ0 and r90 = r0.
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(f) Two on-axis and zero off-axis biaxial test measurements Set H1 = N2 = 0 so only two nonzero Fourier
coefficients (H0, N0) are to be determined from two on-axis biaxial yield stresses such as (σb, σp0) or (σb, σs0).
If two equal biaxial tension measurements (σb, rb) are available, one can replace H1 = 0 with N0 = − 7 per
the von Mises isotropy to obtain H0 and H1.

(g) One on-axis and zero off-axis biaxial test measurement If only one measurement of either σb or rb or any
pure shear or near plane-strain tension yield stress such as those ones in Eqs. (15) or (16) is made available,
one may set H1 = N2 = 0 and N0 = −7 per the von Mises isotropy to obtain H0. Alternatively (applicable
to both cases (e) and (f) above, too), one may estimate some or all needed biaxial measurements rb, σb, σp0,
σs0, σp45, and σs45 based on either Hill’s 1948 quadratic yield function or Gotoh’s 1977 fourth-order yield
function and then determines the four Fourier coefficients (H0, H1, N0, N2) per Sect. 3.2.

4 Positivity and convexity testing of a calibrated yield function

Once all sixteen material constants in a homogeneous polynomial yield function of six degrees have been fully
identified, its positivity and convexity should be certified next before applying it in any sheet metal forming
analysis. It turns out that a convex homogeneous polynomial yield function of an even order is always positive
for a nonzero stress (see a recent mathematical proof as Lemma 4.12 in [1]). So only the convexity of the
polynomial yield function will need to be certified from now on. As part of the proposed calibration method
and for completeness, we repeat the description about a numerical approach for convexity certification that
was first given in [23], and it has since been successfully applied to many more calibrated Gotoh’s fourth-order
yield functions [26].

The sixth-order yield functionΦ6(σx , σy, τxy) of Eq. (4) is convex if and only if its Hessian matrix∇2Φ6 is
positive semi-definite for any applied plane stress on the yield surfaceΦ6(σσσ)−σ 6

f = 0. The sixth-order homo-
geneous polynomial yield function Φ6(σx , σy, τxy) is twice differentiable, and its Hessian matrix is given as

∇2Φ6(σx , σy, τxy) =

⎛

⎜⎜⎜⎝

∂2Φ6
∂σ 2

x

∂2Φ6
∂σx∂σy

∂2Φ6
∂σx∂τxy

∂2Φ6
∂σy∂σx

∂2Φ6
∂σ 2

y

∂2Φ6
∂σy∂τxy

∂2Φ6
∂τxy∂σx

∂2Φ6
∂τxy∂σy

∂2Φ6
∂τ 2xy

⎞

⎟⎟⎟⎠ . (20)

According to linear algebra (e.g., [4]), ∇2Φ6 is positive definite if all of its leading principal minors or sub-
determinants (determinants of the k-by-k matrices in the upper left corner of ∇2Φ6, where 1 ≤ k ≤ 3) are
positive. If one defines

Ψ6A = ∂2Φ6

∂σ 2
x

, Ψ6B =
∣∣∣∣∣∣

∂2Φ6
∂σ 2

x

∂2Φ6
∂σx∂σy

∂2Φ6
∂σy∂σx

∂2Φ6
∂σ 2

y

∣∣∣∣∣∣
, Ψ6C = |∇2Φ6|, (21)

then the strict convexity conditions of the sixth-order yield function are given as

Ψ6A(σx , σy, τxy) > 0, Ψ6B(σx , σy, τxy) > 0, Ψ6C (σx , σy, τxy) > 0. (22)

By invoking the plane stress coordinate transformation relation Eq. (6), the above conditions may be rewritten
in intrinsic variables instead as

ψ6A(σ1, σ2, θ) > 0, ψ6B(σ1, σ2, θ) > 0, ψ6C (σ1, σ2, θ) > 0. (23)

Furthermore, by replacing the principal stresses (σ1,σ2) with their polar coordinate representation

σ1 = ρcosω, σ2 = ρsinω, ρ =
√

σ 2
1 + σ 2

2 > 0, 0◦ ≤ ω ≤ 180◦, (24)

we finally reach a more practically usable form of convexity conditions for the yield function Φ6 as (ρ is set
to 1 without affecting the inequalities)

ψ6A(cosω, sinω, θ) > 0, ψ6B(cosω, sinω, θ) > 0, ψ6C (cosω, sinω, θ) > 0, (25)
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where 0◦ ≤ ω ≤ 180◦ and 0◦ ≤ θ ≤ 90◦. In an actual numerical evaluation of the above conditions of a fully
calibrated sixth-order yield function, one will only need to find the minimum values of those three functions
in ω and θ . The necessary and sufficient conditions for its strict convexity become

min[ψ6A(cosω, sinω, θ)] > 0, min[ψ6B(cosω, sinω, θ)] > 0, min[ψ6C (cosω, sinω, θ)] > 0. (26)

It is important to note that the above numerical certification of the convexity conditions takes very little com-
putational time nowadays in practice and can be completed almost instantly on a laptop or desktop machine
usingMatlab,Mathematica or any similar numerical analysis tool.

5 A parameterized sixth-order yield function and its adjustments

If the sixth-order yield function Φ6 or its equivalent φ6 calibrated for a steel sheet turns out not to be strictly
convex (i.e., it fails the convexity testing per Eq. (26)), there are at least two possible causes. One possibility
is that the steel sheet under consideration is unusually highly textured and its anisotropic yielding and plastic
flow behavior are beyond the applicability domain of a convex sixth-order yield function. If this is the case,
one has to consider the use of even higher-order homogeneous polynomials as its convex yield function. The
second possibility is that there may be some errors or uncertainties in the experimental input data that are
used to calibrate the Fourier coefficients or polynomial material constants of the sixth-order yield function. If
errors in the input data are deemed to be minor, one may make some slight adjustments on the input data or the
identified Fourier coefficients so the convexity of the adjusted sixth-order yield function may be established.

By extending the approach first presented in [24], we propose here a parameterized version of the non-
convex sixth-order yield function φ6 with initially identified 16 independent Fourier coefficients and suggest
an incremental adjustment procedure to find an approximate yield function φ6ξ that is guaranteed to be convex.
The parameterized yield function φ6ξ has the same analytical form as φ6 of Eq. (7), but its 16 independent
Fourier coefficients ( f0, . . . , n2) are defined in the following way:

f0 = 1 + (F0 − 1)ξ1, f1 = F1ξ2, f2 = F2ξ3, f3 = F3ξ4, f4 = F4ξ5, f5 = F5ξ6,

f6 = F6ξ7, g0 = −3 + (G0 + 3)ξ8, g1 = G1ξ9, g2 = G2ξ10, g3 = G3ξ11, g4 = G4ξ12,

h0 = 6 + (H0 − 6)ξ13, h1 = H1ξ14, n0 = − 7 + (N0 + 7)ξ15, n2 = N2ξ16

(27)

where ξξξ = (ξ1, . . . , ξ16) are a set of 16 adjustable variables with initial values all being equal to 1. When the
variables are set to their initial values ξ1 = · · · = ξ16 = 1, φ6ξ = φ6 of Eq. (7); when the variables are all
set to zero, ξ1 = · · · = ξ16 = 0, φ6ξ = φ6i of Eq. (19). As the isotropic sixth-order yield function is known
to be convex for σ 2

1 + σ 2
2 > 0 (noting φ6i=(σ 2

1 − σ1σ2 + σ 2
2 )3 and σ 2

1 − σ1σ2 + σ 2
2 is convex per Eq. (5)

without A4), one may always be able to find a suitable set of variables ξξξ = (ξ1, . . . , ξ16) with each of them
being between 0 and 1 such that the parameterized sixth-order yield function φ6ξ with its Fourier coefficients
given by ( f0, . . . , n2) of Eq. (27) can meet the convexity conditions of Eq. (26).

In practice, one can try at first to decrease one adjustable variable at a time from its initial value of 1 by a small
increment such as 0.01 or 0.1 to see if such an adjustment canmake the parameterized yield functionφ6ξ convex
per Eq. (26). Otherwise, one can always set all adjustable variables to be the same, that is, ξ1 = . . . = ξ16 = ξ ,
and then decrease ξ gradually from its initial value of 1 by a small increment. The adjustment stops when φ6ξ is
found to be convex per Eq. (26) for the first time. A bisection search algorithm using larger increments initially
and then smaller ones later may be part of an automatic adjustment process to achieve more precise results
faster. If the variables ξξξ = (ξ1, . . . , ξ16) are all near to their initial values of 1, then φ6ξ may be used as a good
approximation of the initially as-calibratedΦ6 of Eq. (4) or its equivalent φ6 of Eq. (7) but nowwith the guaran-
teed convexity. On the other hand, if some or all adjustable variables are far less than 1, onemay need to identify
the specific bad input data used for parameter identification and repeat those experimental measurements as
needed. Here, the potentially bad input data are those yield stress and/or plastic strain ratio measurements that
deviate significantly from the ones predicted by the newly adjusted convex yield function φ6ξ .

In closing this Section, it is noted that the original polynomial yield function of six degrees Φ6 with 16
material constants A1, . . . , A16 can also be similarly parameterized asΦ6ξ with its constants a1, . . . , a16 being
given as
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Table 1 Various experimental measurement data for three steel sheet metals

Metal DP780 DP980 LC Steel Metal DP780 DP980
Source [30] [30] [28] σ15/σ f 0.984
σ f /σ0 1 1 1 σ22.5/σ f 0.963 1.001
σ45/σ f 0.963 1.011 1.0521 σ30/σ f 0.966
σ90/σ f 1.030 1.023 0.9857 σ60/σ f 0.979
r0 0.51 0.73 2.04 σ67.5/σ f 0.989 1.012
r45 1.27 0.91 1.27 σ75/σ f 1.016
r90 0.62 0.81 2.19 r15 0.76
σb/σ f 1.019 1.010 1.1380 r22.5 0.79 0.90
rb 1.02 r30 0.99
σp0/σ f 1.2556 r60 1.16
σp45/σ f 1.2403 r67.5 1.08 1.01
σp90/σ f 1.2485 r75 0.91

a1 = 1 + (A1 − 1)ξ1, a2 = − 3 + (A2 + 3)ξ2, a3 = 6 + (A3 − 6)ξ3, a4 = − 7 + (A4 + 7)ξ4,

a5 = 6 + (A5 − 6)ξ5, a6 = − 3 + (A6 + 3)ξ6, a7 = 1 + (A7 − 1)ξ7, a8 = 9 + (A8 − 9)ξ8,

a9 = − 18 + (A9 + 18)ξ9, a10 = 27 + (A10 − 27)ξ10, a11 = − 18 + (A11 + 18)ξ11,

a12 = 9 + (A12 − 9)ξ12, a13 = 27 + (A13 − 27)ξ13, a14 = − 27 + (A13 + 27)ξ14,

a15 = 27 + (A15 − 27)ξ15, a16 = 27 + (A16 − 27)ξ16

(28)

where the 16 adjustable variables ξξξ = (ξ1, . . . , ξ16) are again initially all being 1 for the as-calibrated yield
function and all being 0 for the von Mises isotropic sheet. In general, they may not be of the same values as
those used in Eq. (27). For example, A1 = 1 if σ f = σ0 is assumed, then ξ1 is not needed at all.

6 Applications to selected orthotropic steel sheets

To illustrate the actual working of the proposed calibration method, we applied it to three representative steel
sheets in this Section: (i) a high strength dual-phase steel 780 HSS with 18 uniaxial tension measurements
and one equal biaxial tension measurement; (ii) a high strength dual-phase steel 980 HSS with 10 uniaxial
tension measurements and one equal biaxial tension measurement; and (iii) a low-carbon steel sheet with 6
uniaxial tension measurements and 5 biaxial tension measurements. The experimental measurement data of
the first two steels were reported by Yoshida et al. [30], and the data for the third steel were given by Vegter
et al. [28], respectively. Their measurement data are listed in Table 1 following the notations adapted in this
study5. Following the common practice, σ f = σ0 was assumed, that is, the uniaxial tensile stress–strain curve
along the rolling direction of each steel sheet was set to be the plastic work equivalent isotropic hardening
stress–strain curve for the steel sheet.

Instead of using a reduced sixth-order yield function in terms of linearly transformed stresses with only 8
or 9 independent material constants to model these three steels as has been done by Aretz et al. [2] and Yoshida
et al. [30], respectively, we considered here the complete sixth-order homogeneous polynomial yield function
of Eq. (4) by incorporating the maximum of up to 16 independent experimental measurements allowable for
each steel sheet. Based on the detailed analysis presented in Sect. 3 and the experimental data listed in Table 1,
the sixth-order yield functions with 13, 11, and 10 independent material constants were used to model the 780
HSS, 980 HSS, and low-carbon steel sheets, respectively, in the following:

– 780 HSS: a total number of the maximum allowable 12 independent uniaxial tension measurements (out
of all 18 available measurements listed in Table 1) may be used to determine the 12 Fourier coefficients
(F0, . . . , F6, G0, . . . ,G4) per Sect. 3.2 and “Appendix B.” In particular, we considered the two cases of
(a) using seven yield stresses (σ0, σ15, σ30, σ45, σ60, σ75, σ90) and five plastic strain ratios (r0, r22.5, r45,
r67.5, r90) and (b) using five yield stresses (σ0, σ22.5, σ45, σ67.5, σ90) and seven plastic strain ratios (r0,
r15, r30, r45, r60, r75, r90) as the experimental inputs. As only one biaxial test measurement is available for
this steel, the remaining four independent Fourier coefficients cannot be uniquely determined. By setting
H1 = N2 = 0 and N0 = −7 as suggested in Sect. 3.4(g), one can obtain the Fourier coefficient H0 using
the available equal biaxial tensile yield stress σb per Eq. (56.1).

5 For simplicity, the three plane strain tension yield stresses reported for the low-carbon steel are regarded approximately as
yield stresses under near plane-strain tension with σ1 = 2σ2.
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Table 2 Fourier coefficient values of anisotropic functions F(θ), G(θ), H(θ) and N (θ) defined in Eq. (8)

Metal DP780 DP980 LC Steel von Mises

Case (a) Case (b) Case (a) Case (a) Case (b)
F0 1.09164 1.12376 0.949412 0.891153 0.891153 1
F1 0.0984529 0.106115 0.0541908 − 0.0451813 − 0.0451813 0
F2 − 0.170982 − 0.146992 − 0.000118797 0.154028 0.154028 0
F3 − 0.00453152 − 0.0158265 0.00957857 0 0 0
F4 − 0.00534436 − 0.0374688 − 0.0130629 0 0 0
F5 − 0.0126635 − 0.00903084 0 0 0 0
F6 0.00343266 − 0.0205572 0 0 0 0
G0 − 3.11697 − 3.24993 − 2.68651 − 3.36661 − 3.36661 − 3
G1 − 0.0112231 − 0.109207 − 0.0538056 0.232510 0.232510 0
G2 1.13766 0.99372 0.119907 − 0.892213 −0.892213 0
G3 − 0.09112 0.0213943 − 0.0407748 0 0 0
G4 0.0251055 0.158065 0.129390 0 0 0
H0 5.97194 6.07277 5.70812 7.53992 7.63444 6
H1 0 0 0 − 0.336313 − 0.336313 0
N0 − 7 − 7 − 7 − 9.66860 − 9.85764 − 7
N2 0 0 0 − 2.44412 −2.63315 0

– 980 HSS: all available yield stresses (σ0, σ22.5, σ45, σ67.5, σ90) and plastic strain ratios (r0, r22.5, r45,
r67.5, r90) from five uniaxial tension tests were used to determine the 10 Fourier coefficients (F0, . . . , F4,
G0, . . . ,G4) with F5 = F6 = 0 per Sect. 3.4(a) and “Appendices B andD”. The situation for the remaining
four independent Fourier coefficients is the same as above for 780 HSS. Again, by setting H1 = N2 = 0
and N0 = − 7 as suggested in Sect. 3.4(g), one can obtain the Fourier coefficient H0 using the available
equal biaxial tensile yield stress σb per Eq. (56.1).

– Low-Carbon Steel: very limitedmeasurements fromuniaxial tension are available for this low-carbon steel,
so all three yield stresses (σ0, σ45, σ90) and three plastic strain ratios (r0, r45, r90) were used to determine the
6 Fourier coefficients (F0, F1, F2,G0,G1,G2)with F3 = G3 = F4 = G4 = F5 = F6 = 0 per Sect. 3.4(c)
and “AppendixD.”On the other hand, five experimentalmeasurements (σb, rb,σp0,σp45,σp90) frombiaxial
tension tests are available for this steel, see Table 1. The off-axis near plane-strain yield stress σp45 has to
be used, while only three out of the remaining four on-axis biaxial tension measurements are needed. In
particular, we considered here the following two cases of (a) using (σb, rb, σp0, σp45) and (b) using (σb, rb,
σp45, σp90) for determining the four Fourier coefficients (H0, H1, N0, N2) per Sect. 3.2 and “Appendix B.”

Numerical values of 16 independent Fourier coefficients of five such sixth-order yield functions calibrated
for the three steel sheets are summarized in Table 2, and the corresponding 16 polynomialmaterial constants are
given in Table 3 per Eq. (31) in “Appendix A.” To be more precise for subsequent convexity testing, all Fourier
coefficients and material constants are kept to six significant digits. Listed also in both tables are the values for
the ideal von Mises isotropic material for comparison. As σ f = σ0 was used here (see Table 1) so A1 = 1 in
Table 3 for all sheet metals. On the other hand, the Fourier coefficients of each steel sheet with a value of either 0
or− 7 in Table 2 are those ones manually set in order to calibrate the rest of 16 independent Fourier coefficients
due to lack of the required types and numbers per type of experimental measurements for each sheet metal.

The quality of the five calibrated sixth-order yield functions listed in Tables 2 and 3 may be better assessed
by comparing their predictions with all available experimental measurements listed in Table 1 for these three
steel sheets. As shown in Fig. 1a, the predicted directional dependence of normalized yield stresses σθ/σ f and
plastic strain ratios rθ given by two calibrated sixth-order yield functions (a) and (b) for the dual-phase 780
HSS steel are compared with its 18 uniaxial tension experimental measurements. As only up to 12 uniaxial
tension measurements were used in calibrating the two sixth-order yield functions (a) and (b), neither of them
can fully capture the highly anisotropic yielding and plastic flow behavior of this steel under uniaxial tension.
On the other hand, both yield functions give a very similar description for the yield/flow surfaces under on-axis
biaxial tension (σx ≥ 0, σy ≥ 0 and τxy = 0), the plastic flow direction in terms of the angle β under on-axis
biaxial tension, and the yield/flow surfaces under one off-axis biaxial tension (σ1 ≥ 0, σ2 ≥ 0, and θ = 45◦),
see Fig. 1b–d.6 They match well with both available uniaxial and equal biaxial tension data as shown in either
open or filled circles in those Figures.

6 As shown in the insert of Figs. 1c, 2c or 3c, the angles α and β are computed from α = tan−1(σy/σx ) and β = tan−1(ε̇
p
y /ε̇

p
x ),

respectively. There is a symmetry in σ1 and σ2 of the yield/flow surfaces φ6(σ1, σ2, θ) for θ = 45◦ in Figs. 1d, 2d, and 3d.
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Table 3 The material constant values of the sixth-order yield function Φ6(σx , σy, τxy) defined in Eq. (4)

Metal DP780 DP980 LC Steel von Mises

Case (a) Case (b) Case (a) Case (a) Case (b)
A1 1 1 1 1 1 1
A2 − 2.02649 − 2.02649 − 2.53179 − 4.02632 − 4.02632 − 3
A3 5.13695 4.58219 5.24115 9.16385 9.35289 6
A4 − 7.00353 − 6.23997 − 6.43267 − 12.1127 − 12.4908 − 7
A5 4.87191 4.66311 5.13552 9.83648 10.0255 6
A6 − 1.92311 −1.92311 − 2.34263 −4.49134 − 4.49134 − 3
A7 0.837484 0.837484 0.872461 1.09036 1.09036 1
A8 9.83605 12.4057 8.66996 8.88445 8.88445 9
A9 − 18.0526 −26.3732 − 18.5913 −24.044 − 24.4221 −18
A10 21.3649 31.7834 30.3587 39.471 40.2272 27
A11 − 18.4152 − 25.2477 − 18.9486 − 26.1386 − 26.5167 − 18
A12 7.7219 10.2789 8.27716 9.71092 9.71092 9
A13 32.341 29.8763 27.4097 25.4031 25.5921 27
A14 − 22.8232 − 14.9584 − 30.5473 − 38.655 − 39.033 − 27
A15 35.9184 29.7342 27.848 27.2768 27.4659 27
A16 31.4614 31.8534 24.5155 24.8069 24.8069 27
ξmax 1.1 1.3 2.8 1.5 1.5 −

As there are no redundant experimental data and all 11 available measurements were used as inputs for
parameter identification for the dual-phase 980HSS steel, the predictions of the calibrated yield functionmatch
completely the experimental measurements, see Fig. 2a–d. Similar results are obtained for the low-carbon steel
even though it has one redundant on-axis biaxial tension measurement. As shown in Fig. 3a–d, the yield func-
tion calibrated using either σp0 or σp90 gives identical results for uniaxial tension and very similar results for
biaxial tension.

All five calibrated yield functions with its Fourier coefficients and polynomial material constants listed in
Tables 2 and 3, respectively, were checked for strict convexity numerically per the necessary and sufficient
conditions of Eq. (26). It turns out that all of them are verified to be strictly convex so no adjustments proposed
in Sect. 5 are needed at all. They can thus be used with assurance of the desired mathematical attributes in
a sheet metal forming analysis. To assess how far a particular sixth-order convex yield function as listed in
Table 3 is from the convexity limit, we used the parameterized version of each calibrated yield function per
Eq. (28) with ξ1 = . . . = ξ16 = ξ and gradually increase the variable ξ from its initial value of 1 by an
increment of 0.1 until the convexity conditions of Eq. (26) are violated. The maximum allowable ξ values to
keep each yield function still convex are listed in Table 3. Using such a measure, the yield function calibrated
for 980 HSS is farthest from the convexity limit with ξmax = 2.8, while the first calibrated yield function (a)
of 780 HSS is closest to the convexity limit with ξmax = 1.1. It is interesting to note that the second yield
function (b) for the same 780 HSS has a clearly higher maximum allowable ξmax = 1.3, indicating the effect
of different uniaxial tension measurements on the convexity limit of the calibrated yield function. On the
other hand, the two yield functions (a) and (b) calibrated for the low-carbon steel have the same maximum
allowable ξmax = 1.5. The small increase in 0.1 in ξ from its initial value of 1 to reach the convexity limit for
the parameterized yield function (a) of 780 HSS indicates that some caution may be warranted to keep any
numerical runoff and other errors to a minimum level so the convexity of this particular yield/flow function
used in an actual sheet metal forming analysis will not be violated.

7 Discussion and conclusions

In plane stress, a complete homogeneous sixth-order polynomial yield function admits up to 16 yield stresses
and plastic strain ratios from both uniaxial and biaxial tension for calibrating its 16 material constants and
thus has a much superior modeling capability of anisotropic yielding and flow behavior of a sheet metal in
comparison with those of Hill’s 1948 quadratic and Gotoh’s 1977 fourth-order yield functions. The actual
calibration of the sixth-order yield function still retains the same nice mathematical feature of those two earlier
yield functions that requires a solution of a set of only linear equations.

By refining the approaches first used by Gotoh [6] and Hill [11,13], Gotoh’s yield function was recast in
terms of intrinsic variables and the parameter identification of its Fourier coefficients, and the necessary and
sufficient conditions for positivity and convexity testing were recently examined in greater detail in [23–25].
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Fig. 1 Comparison between the predictions given by two calibrated sixth-order yield functions and experimental measurements
for a DP780 steel sheet: a directional dependence of normalized yield stresses σθ/σ0 and plastic strain ratios rθ ; b the yield/flow
surfaces under on-axis biaxial tension (σx ≥ 0, σy ≥ 0 and τxy = 0); c the plastic flow direction in terms of the angle β under
on-axis biaxial tension; d the yield/flow surfaces under one off-axis biaxial tension (σ1 ≥ 0, σ2 ≥ 0, and θ = 45◦)

The same methodology has been shown in this study to be applicable to the sixth-order yield function as
well. In particular, both the maximum number of uniaxial tension measurements and the minimum number
of biaxial test measurements have now been identified to be 12 and 4, respectively, for fully calibrating the
16 material constants of the yield function. There is a greater flexibility in its parameter identification as one
can choose one out of many sets of 16 independent uniaxial and biaxial test measurements depending on their
availability and desired modeling capabilities. Furthermore, when the available experimental measurements
are rather limited for a given sheet metal, a systematic approach can be used to eliminate some higher-order
sinusoids (i.e., by setting some Fourier coefficients to be the values of an isotropic solid) in the recast yield
function, and the remaining independent Fourier coefficients anywhere between 1 and 16 can still be identified.

A complete homogeneous sixth-order polynomial yield function would perform either the same or superior
in comparison with the sixth-order yield functions formulated in terms of linearly transformed stresses, see [3]
and [21]. In fact, those yield functions are of reduced sixth-order yield functions with less than 16 indepen-
dent material constants but have one advantage being positive and convex a priori (if its nonlinear parameter
identification procedure produces all real-valued constants). The direct method presented here divides up the
parameter identification and convexity testing into two separate and sequential stages instead. Nevertheless,
once a sixth-order yield function is fully calibrated, its strict convexity can be numerically verified per the
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Fig. 2 Comparison between the predictions given by one calibrated sixth-order yield function and experimental measurements
for a DP980 steel sheet: a directional dependence of normalized yield stresses σθ/σ0 and plastic strain ratios rθ ; b the yield/flow
surface under on-axis biaxial tension (σx ≥ 0, σy ≥ 0 and τxy = 0); c the plastic flow direction in terms of the angle β under
on-axis biaxial tension; d the yield/flow surface under one off-axis biaxial tension (σ1 ≥ 0, σ2 ≥ 0, and θ = 45◦).

necessary and sufficient conditions of Eq. (26). If needed, one can bring any calibrated but non-convex yield
function back into the convex hull by an incremental adjustment approach described in Sect. 5. The yield-
ing and plastic flow of 780 HSS steel under uniaxial tension exhibit unusually strong anisotropy (directional
dependence) as neither of two calibrated yield functions can fully describe the observed behavior in terms of
18 uniaxial tension measurements (i.e., at least any two out of a total of 9 uniaxial tensile yield stresses and
a total of four uniaxial tension measurements are redundant). One can definitely be able to use the standard
least-square optimization to obtain the 12 Fourier coefficients (F0,…,G4) that best describe the overall uniaxial
tension measurements. If these measurements are of very high quality and one wants to be able to incorporate
all of them for anisotropic plasticity modeling of this steel sheet, then an even higher-order homogeneous
polynomial yield function such as eighth-order one may have to be used.

As a cursory exercise, we applied also the convexity testing per Eq. (26) to the three calibrated sixth-order
yield functions obtained by Soare et al. [22]. Using the 16 polynomial material constants listed in their Table 3,
our numerical evaluation results showed that two of their yield functions (for Mat1 andMat2 in their paper) are
found to be strictly convex but their sixth-order yield function as calibrated for AA2090-T3 aluminum sheet
failed the convexity test. In fact, their sixth-order yield function forAA2090-T3was found to be strictly positive
(as the minimum value of φ6 is positive) but not convex (all minimum values of leading principal minors ψ6A,
ψ6B , and ψ6C are negative). Again, a nonlinear optimization method with many convexity constraints was
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Fig. 3 Comparison between the predictions given by two calibrated sixth-order yield functions and experimental measurements
for a low-carbon steel sheet: a directional dependence of normalized yield stresses σθ/σ0 and plastic strain ratios rθ ; b the
yield/flow surfaces under on-axis biaxial tension (σx ≥ 0, σy ≥ 0 and τxy = 0); c the plastic flow direction in terms of the angle
β under on-axis biaxial tension; d the yield/flow surfaces under one off-axis biaxial tension (σ1 ≥ 0, σ2 ≥ 0, and θ = 45◦)

used in [22] to obtain the set of 16 polynomial material constants for AA2090-T3 sheet. Although according
to Soare et al. [22] that “it is sufficient to enforce these inequalities only along a discrete set of meridians and
parallels of the unit sphere. Although we do not have a general proof for this assertion, this was always the
case for fourth, sixth and eighth-order polynomials.”, it is shown here that the specific convexity constraints
imposed in their calibration method are actually only necessary but not sufficient at all. If we use again the
parameterized version of their yield function per Eq. (28) with ξ1 = · · · = ξ16 = ξ and gradually decrease the
variable ξ from its initial value of 1 by an increment of 0.01, we found that we can make the parameterized
version of their sixth-order yield function strictly convex by keeping ξ ≤ 0.96. Such a small adjustment on
their material constants indicated that the non-convexity of their yield function for AA2090-T3 might also be
largely due to some numerical runoff errors in their optimized results.

Even though isotropic hardening was assumed at the outset in this study for the sixth-order polynomial
yield function. That is, the 16 polynomial coefficients (A1, . . . , A16) are regarded to be constant and may thus
need to be calibrated only once. If all experimental inputs are however expressed as continuous functions of the
accumulated equivalent plastic strain ε̄ p or plastic work per unit volume W̄ p, the same linear equations given
in “Appendices A–D” can also be used to obtain explicit algebraic expressions of these 16 material parameters
as continuous functions of either ε̄ p or W̄ p. The calibrated yield functionΦ6(σσσ , ε̄ p) orΦ6(σσσ , W̄ p)will then be
able to model the anisotropic strain or work hardening behavior of sheet metals without much difficulties at all.
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One may also use experimental inputs at selected equivalent plastic strain or plastic work levels to calibrate the
corresponding material parameters and adopt a multi-linear interpolation scheme similar to the one described
by Yoshida et al. [31] to represent the continuous dependence of polynomial material parameters on the plastic
strain or work hardening variable. By adding ε̄ p or W̄ p as the third variable in the convexity conditions Eq. (26)
in addition to ω and θ , one can also numerically certify the convexity (makes necessary adjustments if needed)
of an anisotropic hardening sixth-order polynomial yield function over the entire plastic deformation history
up to the necking or fracture with a relatively small additional computational cost.

The plane stress sixth-order polynomial yield function Φ6(σx , σy, τxy) may also be extended to 3D stress
states for practical sheet metal forming analyses. If the contact friction between the tooling and a thin sheet
metal is negligible, there will only be an additional normal stress σz but no out-of-plane shear stresses τyz and
τzx acting on the sheet metal surfaces. The same 2D yield function Φ6(σx , σy, τxy) can be used but in the form
ofΦ6(σx −σz, σy −σz, τxy) in this reduced 3D stress state. For a general 3D stress state, a yield function in the
form ofΦ3D

6 (σx −σz, σy −σz, τxy, τyz, τzx ) has to be used. However, a complete 3D sixth-order homogeneous
polynomial yield function in terms of these five stress variables will have a total of 60 material constants (44
of them are related to the nonzero out-of-plane shear stresses) [20,32]. As those 44 extra material constants
are too numerous to be practically calibrated using experimental inputs, two reduced versions of the 3D yield
function are suggested instead [26],

Φ3D
6a (σσσ) = Φ6(σx − σz, σy − σz,±

√
τ 2xy + τ 2yz + τ 2zx ) + (A17 − A16)τ

6
yz + (A18 − A16)τ

6
zx ,

Φ3D
6b (σσσ) = Φ6(σx − σz, σy − σz, τxy) + A17τ

6
yz + A18τ

6
zx .

(29)

That is, τ 2xy in Φ6(σx , σy, τxy) is replaced with τ 2xy + τ 2yz + τ 2zx to partly account for the out-of-plane shear

stresses in Φ3D
6a . Two additional material constants A17 and A18 are added if two additional yield stresses from

out-of-plane pure shear stress tests are available (otherwise setting A17 = A18 = A16 for both Φ3D
6a and Φ3D

6b ).
The reduced 3D yield function Φ3D

6a with A17 = A18 = A16 is similar in form to the reduced fourth-order
3D yield function suggested by Hu [17], and the reduced 3D yield function Φ3D

6b with A17 = A18 = A16 is
identical to the one proposed by Yoshida et al. [30]. The proposed two reduced 3D yield functions remain
convex if the 2D yield function Φ6(σx , σy, τxy) is convex and the two additional material constants A17 and
A18 are larger than A16 in Φ3D

6a or positive in Φ3D
6b .

In summary, a direct and versatile calibration method has been proposed to first identify all of 16 indepen-
dent Fourier coefficients of a complete sixth-order homogeneous polynomial yield function using anywhere
between 1 and 16 available independent uniaxial and biaxial test measurements. Various linear equations and
some analytical results from the solutions of those linear equations are presented in “Appendices A–D” for
computing either the 16 Fourier coefficients or the 16 polynomial material constants using various types and
numbers per type of independent experimental inputs. The calibrated yield function can then be checked for
its convexity by numerically solving a set of relatively simple minimization problems. If the calibrated yield
function is found to be concave, an incremental adjustment approach using a parameterized version of the as-
calibrated yield function may then be used to obtain an approximate but convex yield function for a given steel
sheet metal. Such a calibrated complete sixth-order homogeneous polynomial yield function with guaranteed
convexity may then be extended to 3D stress states and used with confidence to obtain a stable and unique
solution in a finite element analysis of sheet metal plastic forming processes.

Appendix A: Relations between Fourier coefficients and polynomial material constants

Results are listed for the 25 nonzero Fourier coefficients of four in-plane anisotropic functions F(θ), G(θ),
H(θ), and N (θ) in Eq. (8) of φ6(σ1, σ2, θ) per Eq. (7) in terms of the 16 polynomial material constants
AAA = (A1, . . . , A16)

T of the sixth-order yield function Φ6(σx , σy, τxy) per Eq. (4):

1024F0 = (231, 21, 7, 5, 7, 21, 231, 21, 7, 5, 7, 21, 7, 5, 7, 5)AAA,

256F1 = (99, 6, 1, 0,− 1,− 6, − 99, 6, 1, 0, − 1, − 6, 1, 0,− 1, 0)AAA,

2048F2 = (495,− 15,− 17,− 15,− 17,− 15, 495,− 15,−17,− 15,− 17,− 15, − 17,− 15,− 17,− 15)AAA,

512F3 = (55,− 10,− 3, 0, 3, 10,− 55,− 10,− 3, 0, 3, 10,−3, 0, 3, 0)AAA,
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1024F4 = (33,− 13, 1, 3, 1, − 13, 33,− 13, 1, 3, 1,−13, 1, 3, 1, 3)AAA,

512F5 = (3,− 2, 1, 0,− 1, 2,− 3, − 2, 1, 0,− 1, 2, 1, 0,− 1, 0)AAA,

2048F6 = (1,− 1, 1, − 1, 1, − 1, 1, − 1, 1,− 1, 1,− 1, 1, − 1, 1, − 1)AAA,

512G0 = (63, 133, 31, 21, 31, 133, 63,− 7, 11, 9, 11,− 7,− 9,− 3, − 9,− 15)AAA,

64G1 = (9, 26, 3, 0,− 3,− 26,− 9,− 2, 1, 0,− 1, 2, − 1, 0, 1, 0)AAA,

1024G2 = (− 45, 205,− 45,− 51,− 45, 205,− 45,− 19,−13,− 19,− 13,− 19, 19, 13, 19, 45)AAA,

128G3 = (− 15, 10,− 5, 0, 5,− 10, 15, 2,− 1, 0, 1,− 2, 3, 0,− 3, 0)AAA,

512G4 = (− 39, 19,− 7, 3,− 7, 19,− 39, 15,− 3, − 1,− 3, 15, 1,− 5, 1, − 9)AAA,

128G5 = (− 3, 2,− 1, 0, 1,− 2, 3, 2,− 1, 0, 1, − 2,− 1, 0, 1, 0)AAA,

1024G6 = − 3(1, − 1, 1,− 1, 1,− 1, 1,− 1, 1, − 1, 1, − 1, 1,− 1, 1,− 1)AAA,

1024H0 = (105, 155, 329, 171, 329, 155, 105,− 5, −23, 11,− 23,− 5, 9,− 21, 9, 75)AAA,

256H1 = (15, 30, 101, 0,− 101,− 30,− 15,− 2,− 11, 0, 11, 2, 5, 0,− 5, 0)AAA,

2048H2 = (− 255,− 225, 257,− 225, 257,− 225,− 255, 31, 1, 31, 1, 31, 1, 31, 1, −225)AAA,

512H3 = (− 45,− 50, 49, 0,− 49, 50, 45, 14, 17, 0, − 17,− 14, −15, 0, 15, 0)AAA,

1024H4 = (15,− 35, 47,− 51, 47,− 35, 15,− 3, 15,− 19, 15,− 3,− 17, 13,−17, 45)AAA,

512H5 = 5(3,− 2, 1, 0,− 1, 2,− 3,− 2, 1, 0,− 1, 2, 1, 0,−1, 0)AAA,

2048H6 = 15(1,− 1, 1,− 1, 1, − 1, 1, − 1, 1,− 1, 1,− 1, 1,− 1, 1, − 1)AAA,

256N0 = (25, 35, 57, 147, 57, 35, 25,− 1, − 3,− 17,− 3,− 1, 1, 11, 1,− 25)AAA,

512N2 = (− 75,− 85,− 75, 171,− 75,− 85,− 75, 11, 21, 11, 21, 11,− 11, − 21,− 11, 75)AAA,

256N4 = (15, 5,− 17, 21,− 17, 5, 15,− 7, − 5, 9, − 5, − 7, 7, − 3, 7,− 15)AAA,

512N6 = − 5(1, − 1, 1,− 1, 1,−1, 1, − 1, 1, − 1, 1,− 1, 1,− 1, 1,− 1)AAA. (30)

Among the 25 Fourier coefficients above, only 16 of them are linearly independent. One such set of 16
independent Fourier coefficients is FFF=(F0, F1, F2, F3, F4, F5, F6, G0, G1, G2, G3, G4, H0, H1, N0, N2)

T .
The remaining nine Fourier coefficients are linearly related to those Fourier coefficients as given in Eq. (9).
The polynomial material constants AAA = (A1, . . . , A16)

T are uniquely and linearly related to those 16 Fourier
coefficients as well from AAA = CFCFCF where the 16-by-16 non-singular matrix CCC is given as
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 − 4 − 6 1 1 1 1 1 0 0 0 0
0 0 − 1 − 3 − 9 5 15 0 0 − 1 − 2 − 4 1 1 0 − 1

2
0 0 0 0 16 0 − 20 0 0 0 0 6 0 0 1 1
0 0 − 1 3 − 9 − 5 15 0 0 − 1 2 − 4 1 − 1 0 − 1

2
0 0 0 0 0 4 − 6 1 − 1 1 − 1 1 0 0 0 0
1 − 1 1 − 1 1 − 1 1 0 0 0 0 0 0 0 0 0
6 4 − 2 − 12 − 26 − 40 − 60 − 1 − 1 − 1 − 1 − 1 0 0 0 0
6 2 − 8 − 24 − 40 80 240 4 2 − 2 − 10 − 20 − 2 − 2 0 1
6 0 − 12 0 132 0 − 360 4 0 − 6 0 42 2 0 − 3 0
6 − 2 − 8 24 − 40 − 80 240 4 − 2 − 2 10 − 20 − 2 2 0 1
6 − 4 − 2 12 − 26 40 − 60 − 1 1 − 1 1 − 1 0 0 0 0
9 3 − 8 0 64 80 240 − 4 − 2 3 12 24 1 1 0 − 1

2
12 0 − 16 0 − 32 0 − 480 − 2 0 2 0 − 32 − 4 0 3 − 3
9 − 3 − 8 0 64 − 80 240 − 4 2 3 − 12 24 1 − 1 0 − 1

2
2 0 0 0 − 32 0 − 64 − 2 0 4 0 − 16 2 0 − 1 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(31)

Appendix B: List of equations for Fourier coefficients using twelve uniaxial tensile measurements

Some examples of linear equations for computing the first 12 (F0, F1, F2, F3, F4, F5, F6, G0, G1, G2, G3,
G4) of the 16 independent Fourier coefficients given in “Appendix A” are listed here using 12 uniaxial ten-
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sion measurements. First, one obtains the following first seven (F0, F1, F2, F3, F4, F5, F6) of the 12 Fourier
coefficients using a set of seven uniaxial tensile yield stresses (σ0, σ15, σ30, σ45, σ60, σ75, σ90),

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

F0
F1
F2
F3
F4
F5
F6

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= 1

6

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 1 1 1 1 1 1

2

1
√
3 1 0 − 1 − √

3 − 1

1 1 − 1 − 2 − 1 1 1

1 0 − 2 0 2 0 − 1

1 − 1 − 1 2 − 1 − 1 1

1 − √
3 1 0 − 1

√
3 − 1

1
2 − 1 1 − 1 1 − 1 1

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ̃ 6
0

σ̃ 6
15

σ̃ 6
30

σ̃ 6
45

σ̃ 6
60

σ̃ 6
75

σ̃ 6
90

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (32)

where σ̃θ = σ f /σθ
7.

Next, one can obtain the other five Fourier coefficients (G0, G1, G2, G3, G4) by adding the five uniaxial
plastic strain ratios (r0, r22.5, r45, r67.5, r90) and by solving a set of five linear equations. The results are

⎛

⎜⎜⎜⎝

G0
G1
G2
G3
G4

⎞

⎟⎟⎟⎠ = 1

24

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 6 6 6 3

6 6
√
2 0 − 6

√
2 − 6

6 0 − 12 0 6

6 − 6
√
2 0 6

√
2 − 6

3 − 6 6 − 6 3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

T1
T2
T3
T4
T5

⎞

⎟⎟⎟⎠ (33)

where

⎛

⎜⎜⎜⎝

T1
T2
T3
T4
T5

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 6r0(F0+F1+F2+F3+F4)+2(r0−2)F5−6F6
1+r0

3r22.5(−2F0−
√
2F1+

√
2F3+2F4)+

√
2(r22.5−2)F5

1+r22.5

− 6r45(F0−F2+F4)+6F6
1+r45

3r67.5(−2F0+
√
2F1−

√
2F3+2F4)−

√
2(r67.5−2)F5

1+r67.5
−6r90(F0−F1+F2−F3+F4)+2(r90−2)F5+6F6

1+r90

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

An alternative choice of a set of five uniaxial plastic strain ratios is (r0, r30, r45, r60, r90), and the first five
Fourier coefficients in G(θ) are given as

⎛

⎜⎜⎜⎝

G0
G1
G2
G3
G4

⎞

⎟⎟⎟⎠ = 1

12

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 0 2 2

4 2 0 − 2 − 4

3 0 − 6 0 3

2 − 2 0 2 − 2

1 − 2 6 − 2 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

T1
T2
T3
T4
T5

⎞

⎟⎟⎟⎠ (35)

where
⎛

⎜⎜⎜⎝

T1
T2
T3
T4
T5

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎝

− 6r0(F0+F1+F2+F3+F4)+2(r0−2)F5−6F6
1+r0

6r30(−2F0−F1+F2+2F3+F4)−2(r30−2)F5+12F6
1+r30

− 6r45(F0−F2+F4)+6F6
1+r45

6r60(−2F0+F1+F2−2F3+F4)+2(r60−2)F5+12F6
1+r60−6r90(F0−F1+F2−F3+F4)+2(r90−2)F5+6F6
1+r90

⎞

⎟⎟⎟⎟⎟⎟⎠
. (36)

7 It is noted that this yield stress ratio is the inverse of the conventional normalized yield stress as shown in Table 1. We will
use the new yield stress ratios in all Appendices in this study.
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To better describe the directional dependence of plastic flow, one can use seven plastic strain ratios (r0, r15,
r30, r45, r60, r75, r90) and five yield stresses (σ0, σ22.5, σ45, σ67.5, σ90) or (σ0, σ30, σ45, σ60, σ90) from uniaxial
tension tests for determining the above twelve Fourier coefficients. One can also use various six yield stresses
and six plastic strain ratios from uniaxial tension tests, such as (σ0, σ30, σ45, σ60, σ75, σ90) and (r0, r15, r30, r45,
r60, r90). If uniaxial tension tests of a steel sheet have been conducted at only six different loading orientation
angles, then all of these six pairs of yield stresses and plastic strain ratios may be used to form a set of twelve
linearly independent equations and to obtain the 12 Fourier coefficients (F0, F1, F2, F3, F4, F5, F6, G0, G1,
G2, G3, G4) by solving these twelve linear equations together. All cases mentioned above are viable choices
as the 12-by-12 matrix of their linear equations for each case is found to be non-singular.

Thirdly, two measurements from an equal biaxial tension test are used to help determining the remaining
four Fourier coefficients (H0, H1, N0, N2). The equal biaxial tension yield stress σb is used to determine
2H0 + N0, and the equal biaxial plastic strain ratio rb �= −1 is then used to determine H1. Two additional
measurements from other biaxial tests are used to complete the determination of these four Fourier coefficients.
If the two yield stresses in pure shear per Eq. (15) are used, one has these four Fourier coefficients as

H0 = −F0 + 8F4 + 4G4 + 1

4

(
σ0

σb

)6

+ 1

8

(
σ0

σs0

)6

+ 1

8

(
σ0

σs45

)6

,

H1 = −3F1 − 2G1 + 3

2

(
1 − rb
1 + rb

)(
σ f

σb

)6

,

N0 = −16F4 − 2G0 − 8G4 + 1

2

(
σ0

σb

)6

− 1

4

(
σ0

σs0

)6

− 1

4

(
σ0

σs45

)6

,

N2 = 32F6 − 2G2 + 1

4

(
σ f

σs45

)6

− 1

4

(
σ f

σs0

)6

.

(37)

Both the first two biaxial tension yield stresses σp0 and σp45 or the last two biaxial tension yield stresses σp45
and σp90 per Eq. (16) can also be used instead of the two pure shear yield stresses σs0 and σs45 for obtaining
the four Fourier coefficients. Their analytical results are rather lengthy and thus omitted here.

It is noted that for typical polycrystalline sheetmetals both rθ > 0 and rb > 0 thus 1+rθ > 1 and 1+rb > 1.
So they can be used as denominators in the equations given here for uniquely computing the Fourier coefficients.

Appendix C: List of equations for parameter identification using less than twelve uniaxial tensile mea-
surements

Here some examples are given on parameter identification of a sixth-order yield function by considering on-axis
and off-axis measurements separately. Instead of using the 16 independent Fourier coefficients, the polynomial
material constants (A1, . . . , A16) of Φ6 in Eq. (4) are better suited for our purpose here as they are naturally
grouped into seven on-axis ones AAAon=(A1, . . . , A7) and nine off-axis ones AAAoff=(A8, . . . , A16).

First, the seven on-axis material constants can readily be determined using various choices of seven on-
axis measurements. From Eqs. (10)–(16) and the results in “Appendix A,” one has the following seven linear
equations in terms of A1, . . . , A7 for a default set of on-axis measurements (σ0, r0, σ90, r90, σb, rb, σp0):

A1 =
(

σ f

σ0

)6

, 6r0A1 + (1 + r0)A2 = 0,

A7 =
(

σ f

σ90

)6

, (1 + r90)A6 + 6r90A7 = 0,

A1 + A2 + A3 + A4 + A5 + A6 + A7 =
(

σ f

σb

)6

,

6rb A1 + (−1 + 5rb)A2 + 2(−1 + 2rb)A3 + 3(−1 + rb)A4

+ 2(−2 + rb)A5 + (−5 + rb)A6 − 6A7 = 0,

64A1 + 32A2 + 16A3 + 8A4 + 4A5 + 2A6 + A7 = 64

(
σ f

σp0

)6

.

(38)
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They may be written in a matrix form PAPAPAon = QQQ suitable for numerical calculations

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
6r0 r0 + 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 r90 + 1 6r90
1 1 1 1 1 1 1
6rb 5rb − 1 4rb − 2 3rb − 3 2rb − 4 rb − 5 −6
64 32 16 8 4 2 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

A1
A2
A3
A4
A5
A6
A7

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ̃ 6
0
0

σ̃ 6
90
0
σ̃ 6
b
0

64σ̃ 6
p0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (39)

It is noted that the determinant of the 7-by-7 matrix PPP above is 4(1+ r0)(1+ r90)(1+ rb). Similarly, a 7-by-7
matrix can also be formed based on other choices of seven on-axis measurements.

For the case of (σ0, r0, σ90, r90, σb, rb, σp90)

PPP =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
6r0 r0 + 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 r90 + 1 6r90
1 1 1 1 1 1 1
6rb 5rb − 1 4rb − 2 3rb − 3 2rb − 4 rb − 5 −6
1 2 4 8 16 32 64

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(40)

where QQQ = (σ̃ 6
0 , 0, σ̃ 6

90, 0, σ̃
6
b , 0, 64σ̃ 6

p90)
T and detPPP = 4(1 + r0)(1 + r90)(1 + rb).

For the case of (σ0, r0, σ90, r90, σb, σp0, σp90)

PPP =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
6r0 r0 + 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 r90 + 1 6r90
1 1 1 1 1 1 1
64 32 16 8 4 2 1
1 2 4 8 16 32 64

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(41)

where QQQ = (σ̃ 6
0 , 0, σ̃ 6

90, 0, σ̃
6
b , 64σ̃ 6

p0, 64σ̃
6
p90)

T and detPPP = 48(1 + r0)(1 + r90).
For the case of (σ0, r0, σ90, r90, rb, σp0, σp90)

PPP =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
6r0 r0 + 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 r90 + 1 6r90
6rb 5rb − 1 4rb − 2 3rb − 3 2rb − 4 rb − 5 −6
64 32 16 8 4 2 1
1 2 4 8 16 32 64

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(42)

where QQQ = (σ̃ 6
0 , 0, σ̃ 6

90, 0, 0, 64σ̃
6
p0, 64σ̃

6
p90)

T and detPPP = 144(1+ r0)(1+ r90)(1− rb). So, when rb = 1, it
cannot be used.

For the case (σ0, r0, σ90, r90, σb, σs0, σp0)

PPP =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
6r0 r0 + 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 r90 + 1 6r90
1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1
64 32 16 8 4 2 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(43)

where QQQ = (σ̃ 6
0 , 0, σ̃ 6

90, 0, σ̃
6
b , σ̃ 6

s0, 64σ̃
6
p0)

T and detPPP = −24(1 + r0)(1 + r90).
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For the case of (σ0, σ90, σb, rb, σs0, σp0, σp90)

PPP =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 0 0 0 0 0 1
1 1 1 1 1 1 1
6rb 5rb − 1 4rb − 2 3rb − 3 2rb − 4 rb − 5 −6
1 −1 1 −1 1 −1 1
64 32 16 8 4 2 1
1 2 4 8 16 32 64

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(44)

where QQQ = (σ̃ 6
0 , σ̃ 6

90, σ̃
6
b , 0, σ̃ 6

s0, 64σ̃
6
p0, 64σ̃

6
p90)

T and detPPP = −432(1 + rb).
Next, the nine off-axis material constants can then be determined using various choices of nine independent

off-axis measurements. One can set up a set of nine linear equations in terms of A8, . . . , A16 based on the
already known A1, . . . , A7 and the nine off-axis measurements such as (σ30, r30, σ45, r45, σ60, r60, σp30, σp45,
σp60). Other possible choices of the nine off-axis measurements with only two of them from uniaxial tension
are (σ45, r45, σp15, σp22.5, σp30, σp45, σp60, σp67.5, σp75), (σ45, r45, σp15, σp30, σp45, σp60, σp75, σs22.5, σs67.5),
and (σ45, r45, σp22.5, σp67.5, σs15, σs30, σs45, σs60, σs75), etc. The explicit expressions of the 9-by-9 matrix PPP
in the linear equations PAPAPAoff = QQQ are somewhat lengthy for those cases and are omitted here.

Appendix D: List of equations for parameter identification using limited experimental inputs

Per Sect. 3.2, we subdivide the 16 independent Fourier coefficients into two groups: a set of 12 (F0, F1, F2,
F3, F4, F5, F6, G0, G1, G2, G3, G4) to be determined from uniaxial tension measurements and the rest of 4
(H0, H1, N0, N2) to be determined from biaxial test measurements. The set of those 12 Fourier coefficients
is further divided into two subgroups, a set of 7 Fourier coefficients (F0, F1, F2, F3, F4, F5, F6) related only
to the uniaxial yield stresses and a set of 5 Fourier coefficients (G0, G1, G2, G3, G4) related also to the uni-
axial plastic strain ratios. When there are insufficient experimental inputs, some of those Fourier coefficients
associated with higher-order sinusoid terms in the sixth-order yield function φ6 may be set to the values of an
isotropic material or some other constants. Linear equations for obtaining the remaining nonzero independent
Fourier coefficients are summarized in the following.

(a) ten uniaxial tension measurements (with F5 = F6 = 0):

⎛

⎜⎜⎜⎝

F0
F1
F2
F3
F4

⎞

⎟⎟⎟⎠ = 1

8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 2 1

2 2
√
2 0 −2

√
2 −2

2 0 −4 0 2

2 −2
√
2 0 2

√
2 −2

1 −2 2 −2 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

σ̃ 6
0

σ̃ 6
22.5

σ̃ 6
45

σ̃ 6
67.5

σ̃ 6
90

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, or (45)

⎛

⎜⎜⎜⎝

F0
F1
F2
F3
F4

⎞

⎟⎟⎟⎠ = 1

12

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 0 4 2

4 4 0 −4 −4

3 0 −6 0 3

2 −4 0 4 −2

1 −4 6 −4 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

σ̃ 6
0

σ̃ 6
30

σ̃ 6
45

σ̃ 6
60

σ̃ 6
90

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (46)

The other five Fourier coefficients (G0, G1, G2, G3, G4) are to be computed in the same way as given
in Eq. (33) and Eq. (35) in “Appendix B” using the corresponding uniaxial tension plastic strain ratios as
additional experimental inputs.
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(b) eight uniaxial tension measurements (with F4 = G4 = F5 = F6 = 0):

⎛

⎜⎝

F0
F1
F2
F3

⎞

⎟⎠ = 1

6

⎛

⎜⎜⎜⎜⎜⎝

1 2 2 1

2 2 −2 −2

2 −2 −2 2

1 −2 2 −1

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

σ̃ 6
0

σ̃ 6
30

σ̃ 6
60

σ̃ 6
90

⎞

⎟⎟⎟⎟⎟⎠
, (47)

⎛

⎜⎝

G0
G1
G2
G3

⎞

⎟⎠ = 1

6

⎛

⎜⎜⎜⎜⎜⎝

1 2 2 2

2 2 −2 −4

2 −2 −2 4

1 −2 2 −2

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

− 6r0
1+r0

(F0 + F1 + F2 + F3)

3r30
1+r30

(−2F0 − F1 + F2 + 2F3)

3r60
1+r60

(−2F0 + F1 + F2 − 2F3)

3r90
1+r90

(−F0 + F1 − F2 + F3)

⎞

⎟⎟⎟⎟⎟⎠
, (48)

or

⎛

⎜⎝

F0
F1
F2
F3

⎞

⎟⎠ = 1

4

⎛

⎜⎜⎜⎝

1 0 2 1
1 − 1√

2
2
√
2 −√

2 −1 − 1√
2

1 0 −2 1
1 + 1√

2
−2

√
2

√
2 −1 + 1√

2

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

σ̃ 6
0

σ̃ 6
22.5

σ̃ 6
45

σ̃ 6
90

⎞

⎟⎟⎟⎟⎟⎠
, (49)

⎛

⎜⎝

G0
G1
G2
G3

⎞

⎟⎠ = 1

6

⎛

⎜⎜⎜⎜⎜⎝

1 0 4 2

1 − 1√
2

2
√
2 −2

√
2 −2 − √

2

1 0 −4 2

1 + 1√
2

−2
√
2 2

√
2 −2 + √

2

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

− 6r0
1+r0

(F0 + F1 + F2 + F3)

− 3r22,5
1+r22.5

(2F0 + √
2F1 − √

2F3)

3r45
1+r45

(−F0 + F2)

3r90
1+r90

(−F0 + F1 − F2 + F3)

⎞

⎟⎟⎟⎟⎟⎠
, (50)

(c) six uniaxial tension measurements (with F3 = G3 = F4 = G4 = F5 = F6 = 0):

⎛

⎝
F0
F1
F2

⎞

⎠ = 1

4

⎛

⎜⎝

1 2 1

2 0 −2

1 −2 1

⎞

⎟⎠

⎛

⎜⎜⎝

σ̃ 6
0

σ̃ 6
45

σ̃ 6
90

⎞

⎟⎟⎠ , (51)

⎛

⎝
G0
G1
G2

⎞

⎠ = 1

4

⎛

⎜⎝

1 4 2

2 0 −4

1 −4 2

⎞

⎟⎠

⎛

⎜⎜⎝

− 6r0
1+r0

(F0 + F1 + F2)

3r45
1+r45

(−F0 + F2)

− 3r90
1+r90

(F0 − F1 + F2)

⎞

⎟⎟⎠ . (52)

(d) four uniaxial tension measurements only (with F2 = G2 = F3 = G3 = F4 = G4 = F5 = F6 = 0):

F0 = 1

2

(
σ f

σ0

)6

+ 1

2

(
σ f

σ90

)6

, F1 = 1

2

(
σ f

σ0

)6

− 1

2

(
σ f

σ90

)6

,

G0 = − 3

(1 + r0)(1 + r90)

[
(r0 + r0r90 + r90)

(
σ f

σ0

)6

+ r0r90

(
σ f

σ90

)6
]

,

G1 = − 3

(1 + r0)(1 + r90)

[
((r0 + r0r90 − r90)

(
σ f

σ0

)6

− r0r90

(
σ f

σ90

)6
]

.

(53)
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(e) three on-axis biaxial tension measurements only (with N2 = 0 and up to 12 uniaxial tension measure-
ments):

H0 = −F0 + 8F4 − 16F6 + G2 + 4G4 + 1

4

(
σ0

σb

)6

+ 1

4

(
σ0

σs0

)6

,

H1 = −3F1 − 2G1 + 3

2

(
1 − rb
1 + rb

) (
σ f

σb

)6

,

N0 = −16F4 + 32F6 − 2G0 − 2G2 − 8G4 + 1

2

(
σ0

σb

)6

− 1

2

(
σ0

σs0

)6

.

(54)

(f) two equal biaxial tension measurements σb and rb (with N0 = −7, N2 = 0):

H0 = 7

2
− F0 − G0 + 1

2

(
σ0

σb

)6

,

H1 = −3F1 − 2G1 + 3

2

(
1 − rb
1 + rb

) (
σ f

σb

)6

.

(55)

(g) one equal biaxial tension measurement σb or rb (with N0 = −7, H1 = N2 = 0):

H0 = 7

2
− F0 − G0 + 1

2

(
σ0

σb

)6

, or (56.1)

H0 = 7

2
− F0 − G0 +

(
1 + rb
1 − rb

)
F1 + 2

3

(
1 + rb
1 − rb

)
G1, (56.2)

when rb �= 1.
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