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Abstract A strain gradient Euler beam described by a sixth-order differential equation is used to investigate
the thermal vibrations of beams made of strain gradient elastic materials. The sixth-order differential equation
of motion and elastic boundary conditions are determined simultaneously by a variation formulation based on
Hamilton’s principle. Analytical solutions for the free vibration of the elastic constraint strain gradient beams
subjected to axial thermal stress are obtained. The effects of the thermal stress, nonlocal effect parameter, and
boundary spring stiffness on the vibration behaviors of the strain gradient beams are investigated. The results
show that the natural frequencies obtained by the strain gradient Euler beam model with the thermal stress
decrease while the temperature is rising. The thermal effects are sensitive to the boundary spring stiffness at a
certain stiffness range. In addition, numerical results also show the importance of the nonlocal effect parameter
on the vibration of the strain gradient beams.

1 Introduction

Structures, such as bars, beams, plates or shells, within extremely small scales have attracted considerable
attention for widely potential applications in modern micro- and nanoelectromechanical systems [1–4]. Their
characteristic scales are on the order of micrometer and nanometer. Experiments have shown that mechanical
behaviors of microstructures display strong size effects [5–8]. Hence, it is essential to consider small-scale
effects in the analysis of the mechanical behaviors of microstructures. Due to lacking intrinsic material length-
scale parameters, the classical continuum elasticity theory is incapable of predicting size effects phenomena. To
this end, some higher-order continuum theories, such as stress gradient theories [9–16], strain gradient theories
[17–28], and nonlocal strain gradient theories [29–32], which incorporate size-dependent material length-scale
parameters, have been successfully developed and employed to describe the mechanical behaviors of micro-
and nanostructures.

Aifantis proposed a second-order strain gradient continuum elastic theory which contains only onematerial
length-scale parameter [17,18]. Based on the strain gradient elasticity theory, several beam and plate models
have been developed to capture size effects of the micro- and nanostructures [33–38]. For example, Papargyri-
Beskou et al. [33] investigated the bending and stability of the gradient elastic beams. Two boundary value
problems for bending and stability were solved analytically. The gradient elasticity effect on the bending and
critical load of the beam was investigated for both cases. Later on, Papargyri-Beskou and Beskos [34] carried
out the static, stability, and dynamic analysis for gradient elastic flexural Kirchhoff plates. Three boundary
value problems for statics, stability, and dynamics of an all edges simply supported rectangular plate of gradient
elasticity were solved analytically. The effects of the gradient coefficient on the static, and dynamic response,
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buckling load, and natural frequencies of the plate were studied. Askes and Aifantis [35] discussed various
formats of gradient elasticity and their performance in static and dynamic applications. An overview of length-
scale identification and quantification procedures were given. Some commonly used gradient elastic finite
element methods with different boundary conditions were discussed.

In the above-mentioned studies, the boundary conditions of structures were all restricted to simply sup-
ported, clamped, or free cases. The boundary conditions of structures in engineering are far different from
those classic cases in nature. Therefore, supports at edges should be approximated described by translational
and rotational spring restraints at the boundaries. The vibration problems of elastically restrained beams and
plates have drawn considerable attention in the past decades [39–52]. Based on the classic continuum models,
the vibration analysis of elastically supported beams and plates was performed by some efficient numerical
methods. Li [40,42] proposed a modified Fourier series method to analyze the free vibrations of Euler beams
and Kirchhoff plates with general elastic supports. Xing and Wang [45] presented a general model for the
vibration of beams restrained with two transversal and two rotational elastic springs subject to a constant axial
load. The natural frequencies and the shape functions were derived analytically. Suddoung et al. [46] employed
a differential transformation method to study the free vibration response of a stepped beam made of function-
ally graded materials with elastical end constraints. Wattanasakulpong and Mao [47] investigated the dynamic
response of Timoshenko beams made of functionally graded materials with classical and non-classical bound-
ary conditions using Chebyshev collocation method. Zhang et al. [48] used the element-free improved moving
least-squares Ritz method to analyze the vibration of thick plates made of a functionally graded carbon nan-
otube reinforced composite with elastically restrained edges. Jiang et al. [49] used the modified Fourier series
method to study the free vibration of single-walled carbon nanotubes with elastic boundary conditions based
on Timoshenko beam models. Based on theory of stress gradient elasticity, Kiani [50,51] proposed a mesh-
less approach to investigate the free vibration of the embedded single- and double-walled carbon nanotubes
with elastic boundary conditions based on the nonlocal Euler, Timoshenko, and higher-order beam theory.
Rosa and Lippiello [52] developed the differential quadrature method to study the free vibration of embedded
single-walled carbon nanotubes using the nonlocal Euler beam models. Although numerous researches have
been carried out on the elastic boundaries of the structures, no literature has been reported to consider the
microstructures with elastic boundaries based on the strain gradient theories.

But all of the above-reviewed research works did not take thermal effects into consideration. Thermal
stresses of structures are often induced by changes of temperature conditions, which can lead to the reduction in
stiffness [53–72]. The vibrational behaviors of structureswill change due to thermal stress. Thus, thermal effects
must be considered in vibrational problems of the micro- and nanostructures. Recently, there are an increasing
number of works on the thermal vibration of beam, plate, and shell structures based on classic elasticity theory
[53,54], stress gradient theories [56–62], the modified couple stress theory [66,67], and the strain gradient
theory [68–72]. Ansari et al. [68] usedMindlin’s strain gradient theory to investigate the effects of temperature
and length-scale parameters on the vibrational behaviors of the functionally graded nanoshells. Ebrahimi and
Barati [69] studied thermal and surface effects on the vibration characteristics of viscoelastic functionally
graded nanobeams embedded in a viscoelastic foundation based on nonlocal strain gradient elasticity theory
and Euler beam model. Rahmani et al. [71] investigated the influences of uniform thermomechanical loading
on buckling and free vibration of a curved functionally graded microbeam based on strain gradient theory and
Timoshenko beam model. Nematollahi et al. [72] studied the vibration of thin rectangular nanoplates under
different thermal conditions based on the higher-order nonlocal strain gradient theory.However, very fewworks
on the vibration behaviors of strain gradient beams considering the effect of temperature changes are reported.

To the best knowledge of the authors, the thermal vibration analysis of strain gradient beams with elastic
boundary conditions has not been reported in the available literature. The primary objective of this work is
to propose an analytical solution for investigating the vibration of the elastically constrained strain gradient
beams subjected to axial thermal stress. For this purpose, this paper is organized as follows. A sixth-order
equation of motion and elastic boundary conditions are obtained simultaneously by employing Hamilton’s
principle in Sect. 2. Then, the boundary value problems for the free vibrational strain gradient beams are
solved analytically in Sect. 3. Vibration analyses of the strain gradient beams with elastic boundary conditions
are presented and discussed in Sect. 4. Finally, some concluding remarks are drawn in Sect. 5.

2 Strain gradient Euler beam model

One of the simplest constitutive laws between stress and strain of gradient elasticity theory in one dimension
can be expressed as [18]
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Fig. 1 An elastically constrained strain gradient beam

σx = E

(
εx − r2

∂2εx

∂x2

)
(1)

where E is Young’s modulus, σx is the axial stress, εx is the axial strain, and r is a material length-scale
parameter related to the intrinsic microstructure.

The displacement components (ux , uy, uz) of the Euler beam along the (x, y, z) coordinate directions can
be written as

ux = − z
∂w(x, t)

∂x
, uy = 0, uz = w(x, t) (2)

where t denotes the time, and w is the transverse displacement of the middle line in z direction. The strain
field can be expressed as

εx = − z
∂2w

∂x2
. (3)

The strain energy of the strain gradient elastic beam in bending is [33]

U = 1

2

∫ L

0
E I

[(
∂2w
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)2

+ r2
(

∂3w

∂x3

)2
]
dx (4)

where I is the inertia moment of the beam, and L is the length of the beam.
Considering boundary springs and additional thermal stress in the strain energy of the beam, one obtains

the following expression:
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(5)

where N denotes the axial force caused by the thermal stress, k0 and kL are the translational spring constants,
and K0 and KL are the rotational spring constants at x = 0 and x = L , respectively, as shown in Fig. 1.

The kinetic energy of the beam can be expressed as

T = 1

2

∫ L

0
ρA

(
∂w

∂t

)2

dx (6)

where ρ is the mass density, and A is the area of the cross section of the beam. Thus, Hamilton’s principle for
the strain gradient beam in the time interval [0, t0] has the form

0 = δ
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0
[U − T ]dt

= δ

∫ t0

0

{∫ L

0

{
E I

[(
∂2w

∂x2

)2

+ r2
(

∂3w

∂x3

)2
]

+ N

(
∂w

∂x

)2

− ρA

(
∂w

∂t

)2
}
dx



2206 J. Jiang, L. Wang
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The above variational equation implies that each term of Eq. (7) must be equal to zero. Hence, the equation
of motion is given by

E I

(
∂4w

∂x4
− r2

∂6w

∂x6

)
− N

∂2w

∂x2
+ ρA

∂2w
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= 0, (8.1)

and the boundary conditions satisfy these equations:
[
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In particular, one can observe that Eq. (8.1) of the strain gradient elastic case can be reduced to the classical
elastic case for r = 0.

Further, the boundary conditions (8.2)–(8.5) for an elastically constrained beam are as follows:
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K0
∂w

∂x
= E I

(
∂2w

∂x2
− r2

∂4w

∂x4

)
(9.2)

at x = 0, and
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at x = L . The higher-order boundary conditions at both ends may be assumed as the following four possible
cases.

Case 1 : ∂3w

∂x3

∣∣∣∣
x=0

= 0,
∂3w

∂x3

∣∣∣∣
x=L

= 0, (10.1)

Case 2 : ∂2w
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= 0, (10.2)
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Case 4 : ∂2w
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∣∣∣∣
x=L

= 0. (10.4)

The solution w(x, t) of the vibration of the beam can be expressed as follows:

w(x, t) = w̄(x)eiωt (11)

where w̄(x) represents the amplitude of the deflection of the beam, ω is the natural frequency, and i = √−1.
Without loss of generality, the following dimensionless quantities are introduced:

ξ = x

L
, W (ξ) = w̄(x)

L
, μ = r

L
, 	2 = ω2 ρAL4

E I
, k̄0 = k0L3

E I
,

k̄1 = kL L3

E I
, K̄0 = K0L

E I
, K̄1 = KLL

E I
, δ = −NL2

E I
(12)

where ξ is the dimensionless x coordinate,W (ξ) is the dimensionless amplitude of deflection of the beam, the
nonlocal effect parameterμ is the dimensionless material length-scale parameter to account for the microstruc-
tural effect, 	 is the dimensionless natural frequency, the thermal effect parameter δ can reflect the effects of
thermal stress, k̄0 and k̄1 are the dimensionless translational spring constants, and K̄0 and K̄1 are dimensionless
rotational spring constants at ξ = 0 and ξ = 1, respectively.

Substitution of Eqs. (11) and (12) into Eq. (8.1) leads to the dimensionless governing equation:

μ2 ∂6W

∂ξ6
− ∂4W

∂ξ4
− δ

∂2W

∂ξ2
+ 	2W = 0. (13)

Substituting ofEqs. (11) and (12) intoEqs. (9.1) and (10.1), the elastic boundary conditions can be expressed
as follows:

BC1:
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∂ξ5
+ δ

∂W

∂ξ
= 0, K̄0

∂W

∂ξ
− ∂2W

∂ξ2
+ μ2 ∂4W

∂ξ4
= 0,

∂3W

∂ξ3
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at ξ = 1.
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= 0, (15.2)
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Table 1 The dimensionless natural frequencies 	 of the strain gradient beams with H–H boundary condition (the nonlocal effect
parameter μ = 0.1, the thermal effect parameter δ = 0, k̄0 = 1010, k̄1 = 1010, K̄0 = 0, K̄1 = 0)

Boundary conditions Mode

H–H 1 2 3 4 5 6

BC1 10.1639 44.1696 112.0999 228.9215 412.3364 681.1025
[74] 10.1639 44.1696 112.0949 228.9214 412.3388 681.1816
BC2 10.3452 46.6244 122.0601 253.6045 459.4537 758.1477
[74] 10.3452 46.6244 122.0600 253.6043 459.4597 758.3004
Exact 10.3452 46.6244 122.0601 253.6045 459.4537 758.1477
BC3 10.2531 45.3550 116.8652 240.7486 435.0290 718.4084
BC4 10.2531 45.3550 116.8652 240.7486 435.0290 718.4084

Table 2 The dimensionless natural frequencies 	 of the strain gradient beams with C–C boundary condition (the nonlocal effect
parameter μ = 0.1, the thermal effect parameter δ = 0, k̄0 = 1010, k̄1 = 1010, K̄0 = 1010, K̄1 = 1010)

Boundary conditions Mode

C–C 1 2 3 4 5 6

BC1 26.6861 85.6811 195.6367 374.1180 639.4457 1010.1456
[74] 26.6861 85.6811 195.6366 374.1191 639.5018 998.9380
BC2 35.8935 108.9315 239.1782 444.2280 742.4001 1152.2046
[74] 35.8935 108.9315 239.1780 444.2329 742.5377 1153.9843
BC3 30.9154 96.6456 216.4654 407.9569 689.4383 1079.4256
BC4 30.9154 96.6456 216.4654 407.9569 689.4383 1079.4256

Table 3 The dimensionless natural frequencies 	 of the strain gradient beams with C–F boundary condition (the nonlocal effect
parameter μ = 0.1, the thermal effect parameter δ = 0, k̄0 = 1010, k̄1 = 0, K̄0 = 1010, K̄1 = 0)

Boundary conditions Mode

C–F 1 2 3 4 5 6

BC1 3.5843 24.7156 78.1543 176.1846 335.4597 574.0578
[74] 3.5843 24.7156 78.1543 176.185 335.460 574.085
BC2 4.3087 28.5909 89.2686 200.1563 379.2151 644.9123
[74] 4.3087 28.5909 89.2686 200.1562 379.2162 644.9710
BC3 3.5850 24.8100 79.3072 180.9587 347.6107 597.7278
BC4 4.3074 28.4554 87.8029 194.5273 365.5268 619.0029

Table 4 The dimensionless natural frequencies 	 of the strain gradient beams with C–H boundary condition (the nonlocal effect
parameter μ = 0.1, the thermal effect parameter δ = 0, k̄0 = 1010, k̄1 = 1010, K̄0 = 1010, K̄1 = 0)

Boundary conditions Mode

C–H 1 2 3 4 5 6

BC1 16.9473 61.7966 148.3390 293.2959 514.9594 832.0661
[74] 16.9473 61.7966 148.3390 293.2958 514.9730 832.3242
BC2 19.9926 72.4153 172.8229 338.6914 588.3035 940.1784
[74] 19.9926 72.4153 172.8228 338.6917 588.3368 940.6942
BC3 17.1719 63.9029 155.5377 309.4787 544.0044 877.6480
BC4 19.6878 69.8236 164.5166 320.7252 556.8250 891.5515

at ξ = 1.
BC3:

k̄0W + ∂3W

∂ξ3
− μ2 ∂5W

∂ξ5
+ δ

∂W

∂ξ
= 0 K̄0

∂W

∂ξ
− ∂2W

∂ξ2
+ μ2 ∂4W

∂ξ4
= 0,

∂3W

∂ξ3
= 0 (16.1)
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Fig. 2 Effect of the rotational spring stiffness on the dimensionless natural frequencies of the strain gradient beams (the nonlocal
effect parameter μ = 0.05, the translational spring stiffness k̄ = 1010, the thermal effect parameter δ = 1)
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Fig. 3 Effect of the translational spring stiffness on the temperature frequency ratios of the strain gradient beams (the nonlocal
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at ξ = 1.
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Fig. 4 Effect of the rotational spring stiffness on the temperature frequency ratios of the strain gradient beams (the nonlocal effect
parameter μ = 0.01, translational spring stiffness k̄ = 1010). a BC1, b BC2, c BC3, and d BC4
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at ξ = 0,

k̄1W − ∂3W

∂ξ3
+ μ2 ∂5W

∂ξ5
− δ

∂W

∂ξ
= 0, K̄1

∂W

∂ξ
+ ∂2W

∂ξ2
− μ2 ∂4W
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= 0,

∂3W

∂ξ3
= 0 (17.2)

at ξ = 1.

3 Analytical solution for the free vibration of the strain gradient beams

This section deals with the solution of the boundary value problem for the vibration of the strain gradient
beams. Analytical solutions for the boundary value problems are usually a challenge except for some very
simple case. In particular, the analytical solution for the high-order differential equation in vibrations will be
more difficult. The analytical solutions for the vibration problems of the strain gradient beams are presented
in the following. The characteristic equation corresponding to Eq. (13) can be expressed as

aX3 + bX2 + cX + d = 0 (18)

where a = μ2, b = −1, c = − δ, d = 	2, and X = λ2, here λ is the eigenvalue of Eq. (13). In fact, this is a
cubic algebraic equation with respect to X . Let B = b2−3ac,C = bc−9ad , F = c2−3bd ,� = C2−4BF ,
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Fig. 5 Effect of the thermal effect parameter δ on the temperature frequency ratios for the strain gradient beams (the nonlocal
effect parameter μ = 0.1, the rotational spring stiffness K̄ = 0). a BC1, b BC2, c BC3, and d BC4

the roots of the characteristic cubic algebraic Eq. (18) are shown in “Appendix A” [73]. Here, the characteristic
roots of Eq. (18) are complex in general. Thus, the general solution of Eq. (13) can be of the form

W (ξ) =
6∑

i=1

ci ti (19)

where ti (i = 1, 2, . . . , 6) are the fundamental solutions of Eq. (13) which can be obtained following the step
described in “Appendix B”. The constants of ci (i = 1, 2, . . . , 6) in Eq. (19) can be determined by the boundary
conditions. For the elastic boundary condition of BC1, substituting Eq. (19) into Eq. (14.1), one gets the linear
equations in matrix form, ⎛

⎜⎜⎝
a11 a12 · · · a16
a21 a22 · · · a26
...

...
...

...
a61 a62 · · · a66

⎞
⎟⎟⎠

⎛
⎜⎜⎝
c1
c2
...
c6

⎞
⎟⎟⎠ = 0, (20)

where ai j (i, j = 1, 2, . . . , 6) are functions of the dimensionless natural frequency 	. In order to have a
nontrivial solution for Eq. (20), the dimensionless natural frequency equation is obtained as follows:

∣∣∣∣∣∣∣∣

a11 a12 · · · a16
a21 a22 · · · a26
...

...
...

...
a61 a62 · · · a66

∣∣∣∣∣∣∣∣
= 0. (21)

Hence, all the dimensionless natural frequencies can be obtained numerically by a direct iterative process. For
BC2, BC3, andBC4, the dimensionless natural frequencies can also be obtained following the above procedure.

Once the dimensionless natural frequencies are obtained, the corresponding mode shapes can also be deter-
mined. At each dimensionless natural frequency, Eq. (20) has a nontrivial solution. Hence, at least one of the
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Fig. 6 Effect of the thermal effect parameter δ on the temperature frequency ratios for the strain gradient beams (the nonlocal
effect parameter μ = 0.1, the translational spring stiffness k̄ = 1010). a BC1, b BC2, c BC3, and d BC4

constants ci (i = 1, 2, . . . , 6) is nonzero. Without loss of generality, we assume that c6 �= 0. The constants
ci (i = 1, 2, . . . , 5) are determined as follows:

⎛
⎜⎜⎝
c1
c2
...
c5

⎞
⎟⎟⎠ = − c6

⎛
⎜⎜⎝
a11 a12 · · · a15
a21 a22 · · · a25
...

...
...

...
a51 a52 · · · a55

⎞
⎟⎟⎠

−1 ⎛
⎜⎜⎝
a16
a26
...
a56

⎞
⎟⎟⎠ . (22)

During the numerical calculation, the square matrix of fifth order in Eq. (22) is nonsingular. Then, the mode
shapes of vibration of the strain gradient beam are obtained by using Eq. (19).

4 Numerical results and discussion

In this section, the vibrations of the strain gradient beamswith elastic boundaries are investigated. The classical
boundary conditions can be considered as special cases of elastic boundary conditions. For a hinged edge (H),
the dimensionless stiffness value of the translational spring is infinitely large (set as 1.0×1010), but the dimen-
sionless stiffness value of the rotational spring is set to be 0. For a clamped supported edge (C), the dimensionless
stiffness values of the translational and rotational boundary springs are infinitely large (set as 1.0× 1010). For
a free edge (F), the dimensionless stiffness values of both the translational springs and the rotational boundary
springs are set to be 0. To illustrate the efficiency and accuracy of the analytical solutions, for these four classi-
cal boundary cases of BC1 to BC4, the first six dimensionless natural frequencies of strain gradient beams with
the nonlocal effect parameter μ = 0.1 and the thermal effect parameter δ = 0 are compared with the results
reported by Artan and Batra [74] in Tables 1, 2, 3, and 4. In Table 1, the exact solution of the dimensionless
natural frequencies of the hinged supported strain gradient beam for the case of BC2 where the boundary con-
ditions are W

∣∣
ξ=0 = 0, ∂2W

∂ξ2

∣∣
ξ=0 = 0, ∂4W

∂ξ4

∣∣
ξ=0 = 0, W

∣∣
ξ=1 = 0, ∂2W

∂ξ2

∣∣
ξ=1 = 0, and ∂4W

∂ξ4

∣∣
ξ=1 = 0 can be
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Fig. 7 Effect of the nonlocal effect parameters on the temperature frequency ratios of the strain gradient beams with the thermal
effect parameter δ = 2. a H–H and b C–C

easily obtained from Eq. (13), by assumingW (ξ) = ∑∞
m Am sinmπξ . The dimensionless natural frequency is

	 = mπ
√

μ2(mπ)4 + (mπ)2 − δ (23)

where m is the half-wave number. The present results are the same as the exact solution for the hinged sup-
ported case and agree well with available results obtained by the transfer matrix method [74]. It validates that
the analytical solutions have very good accuracy. Meanwhile, it can also be observed that the dimensionless
natural frequencies of H–H (k̄0 = 1010, k̄1 = 1010, K̄0 = 0, K̄1 = 0), C–C (k̄0 = 1010, k̄1 = 1010, K̄0 = 1010,
K̄1 = 1010), C–F (k̄0 = 1010, k̄1 = 0, K̄0 = 1010, K̄1 = 0), and C–H (k̄0 = 1010, k̄1 = 1010, K̄0 = 1010,
K̄1 = 0) are somewhat different for the four possible cases of BC1 to BC4, respectively. That is, the high-order
boundary conditions have slight effect on the dimensionless natural frequencies of the strain gradient beams.

To evaluate the effects of the boundary conditions on the natural frequencies of beams, the effects of
rotational spring stiffness on the dimensionless natural frequencies of the strain gradient beams with different
high-order boundaries are shown in Fig. 2. For simplicity, it is assumed that the translational spring stiffness
and rotational spring stiffness at both ends are the same, i.e., k̄0 = k̄1 = k̄ and K̄0 = K̄1 = K̄ , in the following
discussion. Here, the nonlocal effect parameter μ = 0.05, the translational spring stiffness k̄ = 1010, and the
thermal effect parameter δ = 1. It can be seen that the dimensionless natural frequencies increase with the
increase of the rotational spring stiffness. Specially, the dimensionless natural frequencies increase rapidly
in a certain range of 10–103. The dimensionless natural frequencies have little change, when the rotational
spring stiffness is beyond 103. It is obvious that their natural frequencies are nearly the same for the boundary
conditions of BC3 and BC4. The reason is that high-order boundaries of BC3 and BC4 are nearly equivalent
when the boundary constraint spring stiffness at both ends keeps the same. Also, the dimensionless natural
frequencies of BC3 and BC4 are larger than those of BC1, and less than those of BC2. It indicates that the
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Fig. 8 The first four-order modal shapes of the strain gradient beams with C–C boundary condition (the nonlocal effect parameter
μ = 0.05, the thermal effect parameter δ = 1). a mode = 1, b mode = 2, c mode = 3, and d mode = 4

boundary conditions BC3 and BC4 are the softer than BC2, and stiffer than BC1. Furthermore, the differences
of these natural frequency values become more obvious for the higher-order mode.

To investigated the influence of the thermal effect on the vibrations of the strain gradient beams, the tem-
perature frequency ratio is defined as	/	̄ . Here,	 and 	̄ are the dimensionless natural frequencies of the free
vibrational beam including and excluding thermal stress, respectively. The effect of the translational spring
stiffness on the temperature frequency ratios of the strain gradient beams with the rotational spring stiffness
K̄ = 0 and the nonlocal effect parameter μ = 0.01 is shown in Fig. 3. It is observed from Fig. 3 that the
temperature frequency ratios of the first-order vibrational mode increase as the translational spring stiffness
decreases. The temperature frequency ratios change rapidly as the dimensionless translational spring stiffness
changes at the range of 10–103. Particularly, the temperature frequency ratios change considerably for larger
thermal effect parameter δ.

Figure 4 illustrates effect of rotational spring stiffness on the temperature frequency ratios of the strain
gradient beams for the translational spring stiffness k̄ = 1010. The temperature frequency ratios of the first-
order vibrational mode increase as the rotational spring stiffness increases. Opposite change tendencies of the
temperature frequency ratios can be seen between Figs. 3 and 4. Additionally, the temperature frequency ratios
change rapidly as the dimensionless rotational spring stiffness is at the range of 10–103. The changing is more
considerable for larger thermal effect parameter δ.

The influences of the thermal effect parameter δ on the vibration of strain gradient beams with different
boundary translational spring stiffnesses are shown in Fig. 5. The temperature frequency ratios of the first-order
vibrational mode decrease with the increasing of δ for a nonlocal effect parameter μ = 0.1. Figure 5 manifests
that the translational spring stiffness k̄ almost has no effect on the temperature frequency ratios for k̄ > 103.
Figure 6 depicts the changes of the temperature frequency ratios of the first-order vibrational mode of strain
gradient beams with different boundary rotational spring stiffness versus thermal effect parameters δ for the
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Fig. 9 The first four-order modal shapes of the strain gradient beams with C–F boundary condition (the nonlocal effect parameter
μ = 0.05, the thermal effect parameter δ = 1). a mode = 1, b mode = 2, c mode = 3 and d mode = 4

nonlocal effect parameter μ = 0.1. It is found that the rotational spring stiffness K̄ almost has no effect on
the temperature frequency ratios for K̄ > 102.

To investigate the influence of the nonlocal effect parameter μ on the vibrations of strain gradient beams,
the temperature frequency ratios of the first-order vibrational mode for the strain gradient beams with H–H
(k̄0 = 1010, k̄1 = 1010, K̄0 = 0, K̄1 = 0) and C–C (k̄0 = 1010, k̄1 = 1010, K̄0 = 1010, K̄1 = 1010) boundary
conditions (the thermal effect parameter δ = 2) are illustrated in Fig. 7. It can be seen that the temperature
frequency ratios increase as the nonlocal effect parameter increases. In addition, an obvious difference of the
temperature frequency ratios is also observed among the BC1, BC3 and BC4, BC2.

In Figs. 8 and 9, the first four-order modal shapes of the strain gradient beams with C–C (k̄0 = 1010,
k̄1 = 1010, K̄0 = 1010, K̄1 = 1010) and C–F (k̄0 = 1010, k̄1 = 0, K̄0 = 1010, K̄1 = 0) boundary conditions
(the nonlocal effect parameter μ = 0.05, thermal effect parameter δ = 1) are obtained, respectively. As can
be seen from these figures, the high-order boundary conditions have slight effect on the modal shapes of the
strain gradient beams.

5 Concluding remarks

In this paper, the thermal vibration of strain gradient beams with elastic boundaries is investigated based on
the strain gradient Euler beam model. A sixth-order differential equation for the beam and elastic boundary
condition are derived via Hamilton’s principle. To predict accurate vibrational behaviors, the natural frequency
equations and the modal shapes for free vibration analysis of the beams subjected to axial thermal stress are
obtained analytically. The results show that natural frequencies including the thermal stress are lower than those
without the thermal stress when the temperature is rising. The constraining stiffness has significant effects on
the temperature ratios when the dimensionless translational spring stiffness or rotational spring stiffness is at
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the range from 10 to 103. The boundary conditions BC3 and BC4 are softer than BC2, and stiffer than BC1. In
addition, the thermal effect parameter has an important influence on the vibration of the strain gradient beams.

Appendix A

The roots of the normal cubic algebraic equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

B = C = 0, X1 = X2 = X3 = − b
3a = − c

b = − 3d
c ,

B �= 0 or C �= 0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

� > 0,

⎧⎨
⎩

X1 = − b− 3√Y1− 3√Y2
3a ,

X2,3 = − 2b+ 3√Y1+ 3√Y2±
√
3
(

3√Y1− 3√Y2
)
i

6a ,

� = 0, X1 = −b
a + C

B , X2 = X3 = − 1
2
C
B ,

� < 0, X1 = − b−2
√
B cos θ

3
3a , X2,3 = − b+√

B
(
cos θ

3±√
3 sin θ

3

)
3a

(A.1)

where Y1,2 = Bb + 3a
(−C±√

C2−4BF
2

)
, i2 = −1, θ = arccos 2Bb−3aC

2
√
B3

.

Appendix B

The fundamental solutions of Eq. (13) are expressed as
Case1: for B = C = 0:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X1 = 0, t1 = 1, t2 = ξ, t3 = ξ2, t4 = ξ3, t5 = ξ4, t6 = ξ5,

X1 > 0, t1 = e(ξ
√
X1), t2 = ξe(ξ

√
X1), t3 = ξ2e(ξ

√
X1), t4 = e(−ξ

√
X1),

t5 = ξe(−ξ
√
X1), t6 = ξ2e(−ξ

√
X1),

X1 < 0, t1 = cos(ξ
√−X1), t2 = ξ cos(ξ

√−X1), t3 = ξ2 cos(ξ
√−X1),

t4 = sin(ξ
√−X1), t5 = ξ sin(ξ

√−X1), t6 = ξ2 sin(ξ
√−X1),

(B.1)

Case 2: for B �= 0 or C �= 0:

� > 0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X1 = 0, t1 = 1, t2 = ξ,

X1 > 0, t1 = e(ξ
√
X1), t2 = e(−ξ

√
X1),

X1 < 0, t1 = cos(ξ
√−X1), t2 = sin(ξ

√−X1),

t3 = e[Re(√X2)ξ ] cos[|Im(
√
X2)|ξ ], t4 = e[Re(√X2)ξ ] sin[|Im(

√
X2)|ξ ],

t5 = e[−Re(
√
X2)ξ ] cos[|Im(

√
X2)|ξ ], t6 = e[−Re(

√
X2)ξ ] sin[|Im(

√
X2)|ξ ],

(B.2)

� = 0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X1 = 0, t1 = 1, t2 = ξ,

X1 > 0, t1 = e(ξ
√
X1), t2 = e(−ξ

√
X1),

X1 < 0, t1 = cos(ξ
√−X1), t2 = sin(ξ

√−X1),

X2 > 0, t3 = e(ξ
√
X2), t4 = e(−ξ

√
X2), t5 = ξe(ξ

√
X2), t6 = ξe(−ξ

√
X2),

X2 < 0, t3 = cos(ξ
√−X2), t4 = sin(ξ

√−X2),

t5 = ξ cos(ξ
√−X2), t6 = ξ sin(ξ

√−X2),

(B.3)

� < 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1 = 0, t1 = 1, t2 = ξ,

X1 > 0, t1 = e(ξ
√
X1), t2 = e(−ξ

√
X1),

X1 < 0, t1 = cos(ξ
√−X1), t2 = sin(ξ

√−X1),
X2 = 0, t3 = 1, t4 = ξ,

X2 > 0, t3 = e(ξ
√
X2), t4 = e(−ξ

√
X2),

X2 < 0, t3 = cos(− ξ
√
X2), t4 = sin(ξ

√−X2),
X3 = 0, t5 = 1, t6 = ξ,

X3 > 0, t5 = e(ξ
√
X3), t6 = e(−ξ

√
X3),

X3 < 0, t5 = cos(− ξ
√
X3), t6 = sin(ξ

√−X3).

(B.4)
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