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Abstract This paper investigates the Lie symmetry and conserved quantities of non-material volumes. The
Lie symmetrical determining equations of the system are presented by introducing the invariance of equations
of motion for the system under general infinitesimal transformation of Lie groups. The structure equations
and the form of conserved quantities are calculated. And three kinds of conserved quantities, i.e., Noether,
Lutzky and Mei conserved quantities of the systems, are derived. In addition, the Hojman conserved quantity
of the systems is proposed under the special infinitesimal transformations. An example is given to illustrate
the application of the method and result, and four kinds of conserved quantities are obtained under the Lie
symmetrical transformations.

1 Introduction

Non-material volumes have flourished in recent years, with important theoretical significance and engineering
background. They are greatly used in rocketry, mechanical engineering, civil engineering and fluid–structure
interaction [1,2]. Recently, there have been many researchers who have addressed the fundamental principles
of the non-material volumes. Irschik and Holl [3] derived the Lagrange’s equation of a non-material volume
which instantaneously coincides with some part of a continuous and possibly deformable body. Casetta and
Pesce [4] established the generalized Hamilton’s principle for a non-material volume by introducing Reynolds’
transport theorem. They [5] also investigated the inverse problem of Lagrangian mechanics connected to
Meshchersky’s equation and stated a variational formulation and a Hamiltonian formulation. Casetta [6]
reported the inverse problem of Lagrangian mechanics for a non-material volume via the method of Darboux
and proposed Hamiltonian formalism and a conservation law. Irschik and Holl [7] proposed a formulation
of Lagrange’s equations for non-material volumes and calculated local forms and global form of Lagrange’s
equations in the framework of the Lagrange description of ContinuumMechanics. Casetta et al. [8] developed
the generalization of Noether’s theorem for a non-material volume and proposed a Noether conserved quantity
and the correspondingKilling equations. However, to the authors’ knowledge, the Lie symmetry and conserved
quantities of the non-material volumes have not been investigated yet.

Symmetries and conserved quantities of dynamical systems have profound theoretical significance and
important practical background. There are mainly three kinds of symmetries, i.e., Noether symmetry [9–14],
Lie symmetry [15–17] and form invariance [18,19]. In 1918, Noether [9] initiated the Noether symmetry which
is the invariance of Hamiltonian actions under infinitesimal transformations group. Djukić and Vujanović [10]
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proposed the Noether’s theory in a classical non-conservative system. Vujanovic [11] presented a conservation
lawof dynamical systems by introducing the variational principles of Jourdain andGauss. Li andLi [12] derived
generalized Noether theorem of non-holonomic system. Luo [13] extended Noether theorem for variable mass
high-order non-holonomic mechanical system under a non-inertial reference system. Zhou and Zhang [14]
employed Noether’s theorems of fractional Birkhoffian mechanics. In 1979, Lutzky [15] presented a new
symmetry which is the invariance of equations of motion under Lie group’s infinitesimal transformations.
Sen and Tabor [16] considered Lie symmetries of the Lorenz model. Mei [17] employed Lie symmetries
of constrained systems. In 2000, Mei [18] first reported a new symmetry, i.e., form invariance. Xia et al.
[19] promoted the form invariance to non-holonomic mechanical systems. Analogously, there are chiefly the
Noether conserved quantity [20–22], Lutzky conserved quantity [23–25], Hojman conserved quantity [26–28],
andMei conserved quantity [29–32]. Fu and Chen [20] reported the Noether conserved quantity of mechanico-
electrical system.Xia et al. [21,22] investigated theNoether conserved quantity of a difference equation. Lutzky
[23,24] pioneered a new conserved quantity of Lagrangian systems. Fu and Chen [25] extended the Lutzky
conserved quantity for a non-conservative dynamical system. Hojman [26] shown a new conserved quantity by
using a symmetry transformation vector instead of the Lagrangian or Hamiltonian. Chen et al. [27] considered
Hojman conserved quantities of first-order Lagrange systems. Jiang and Luo [28] derived Hojman conserved
quantities of generalized Hamiltonian systems. Xia and Chen [29,30] investigated Mei conserved quantities
of discrete systems. Zhang et al. [31] described Mei conserved quantities of generalized Hamilton systems
with additional terms. Wang and Xue [32] considered Mei conserved quantities of thin elastic rod. So far, to
the authors’ best knowledge, there is no symmetry analysis on non-material volumes. To address the lack of
research in this aspect, the present work develops the Lie symmetry technique to determine the conserved
quantities of non-material volumes.

The paper is organized as follows. Section 2 reviews the differential equations of non-material volumes.
Section 3 considers the Lie symmetrical definition of non-material volumes and obtains the determining
equations of Lie symmetry of non-material volumes. Section 4 presents the Noether conserved quantity of
non-material volumes under Lie symmetrical transformations. Section 5 treats the Hojman conserved quantity
of the non-material volumes under particular Lie symmetrical transformations. Section 6 proposes the Lutzky
conserved quantity of the non-material volumes under general Lie symmetrical transformations. Section 7
reports the Mei conserved quantity of non-material volumes and proposes a necessary and sufficient condition
of the Lie symmetry which is a form invariance. Section 8 gives an example to illustrate the application of the
method and obtains four kinds of conserved quantities of the system under the Lie symmetrical transformations.
Section 9 contains the concluding remarks.

2 The differential equations of the non-material volumes

The Lagrange’s equation of non-material volumes is pioneered by Irschik and Holl [2, p. 243, Eq. (5.6)], and
can be given as

d

dt

∂Tu
∂q̇k

− ∂Tu
∂qk

−
∫

∂Vu

1

2
ρυ2

(
∂v
∂q̇k

− ∂u
∂q̇k

)
· nd∂Vu +

∫

∂Vu

ρv
∂v
∂q̇k

(v − u) · nd∂Vu = Qk, (1)

where Tu = Tu (q̇k, qk, t) is the total kinetic energy of the material particles come with non-material volume
Vu , qk represents generalized coordinates, v is the velocity of the material particles, u is the velocity of the
fictitious particles, ρ is the volumetric mass density, Qk is generalized force applied to the material body, n is
the outer normal unit vector at the surface of Vu and ∂Vu denotes the bounding surface of Vu .

Suppose that the system is non-singular, i.e.,

Λ = det

(
∂2Tu

∂q̇s∂q̇k

)
�= 0. (2)

Then, the differential equations of the non-material volumes have the form

q̈s = αs(t, q, . . . q), (s = 1, 2, . . . , n), (3)
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where

αs(t, q, . . . q) = Λks

Λ

(
∂Tu
∂qk

+ Qk + Zk − ∂2Tu
∂q̇k∂qr

q̇r − ∂2Tu
∂q̇k∂t

)
,

Zk =
∫

∂Vu

1

2
ρυ2

(
∂v
∂q̇k

− ∂u
∂q̇k

)
· nd∂Vu −

∫

∂Vu

ρv
∂v
∂q̇k

(v − u) · nd∂Vu .

3 Lie symmetry of the non-material volumes

Choose the infinitesimal transformations t and qi of Lie group as the following

t∗ = t + Δt, q∗
i (t∗) = qi (t) + Δqi , (i = 1, 2, . . . , n), (4)

and their expanding forms are

t∗ = t + ετ(t, q j ), q
∗
i (t∗) = qi (t) + εξi (t, q j ), (5)

where ε is an infinitesimal parameter and τ and ξi represent the infinitesimal generators. Take the infinitesimal
generator vector

X (0) = τ
∂

∂ t
+ ξs

∂

∂qs
(6)

and its first extension vector

X (1) = X (0) + (ξ̇s − q̇s τ̇ )
∂

∂ q̇s
(7)

and the second extension vector

X (2) = X (1) + (
ξ̈s − q̇s τ̈ − 2τ̇ αs

) ∂

∂q̈s
. (8)

By using the definition of Lie symmetries [15], the invariance of non-material volumes Eq. (3) under
infinitesimal transformation (4) leads to

X (2) (q̈s) =X (1) (αs) . (9)

Substituting Eq. (8) into Eq. (9) yields

ξ̈s − q̇s τ̈ − 2τ̇ αs = τ
∂αs

∂ t
+ ξk

∂αs

∂qk
+ (ξ̇k − q̇k τ̇ )

∂αs

∂ q̇k
. (10)

Equation (10) is called the determining equations of Lie symmetry of non-material volumes (3).
If the generators τ and ξi of infinitesimal transformations (4) satisfy the determining equation (10), then

the corresponding transformations are called the Lie symmetrical transformations of non-material system (3).

4 Lie symmetry and Noether conserved quantity of the non-material volumes

For the non-material volumes, the Lie symmetries can indirectly lead to Noether conserved quantities. The
following theorem gives the condition of the existence of conserved quantities indirectly induced by Lie
symmetries.

Theorem 1 For non-material volumes (3), if the generators of infinitesimal transformations (4) satisfy the
determining equation (10), and there exists a gauge function GN (t, q, q̇) satisfying the following condition

Tu τ̇ + X (1) (Tu) + (Qk + Zk) (ξs − q̇sτ) + ĠN = 0, (11)

then system (3) furnishes the following Noether conserved quantities:

IN = Tuτ + ∂Tu
∂ q̇s

(ξs − q̇sτ) + GN = const. (12)



1776 W.-A. Jiang, L.-L. Xia

Proof Differentiating Eq. (12) with respect to t , and by virtue of Eq. (11), we have

dIN
dt

= Ṫuτ + Tu τ̇ + ∂Tu
∂ q̇s

(
ξ̇s − q̈sτ − q̇s τ̇

) + d

dt

∂Tu
∂ q̇s

(ξs − q̇sτ) − Tu τ̇ − X (1) (Tu)

− (Qk + Zk) (ξs − q̇sτ)

=
(

∂Tu
∂t

+ ∂Tu
∂qs

q̇s + ∂Tu
∂q̇s

q̈s

)
τ − ∂Tu

∂ q̇s
q̈sτ + d

dt

∂Tu
∂ q̇s

(ξs − q̇sτ) − ∂Tu
∂t

τ

− ∂Tu
∂qs

ξs − (Qk + Zk) (ξs − q̇sτ)

= (ξs − q̇sτ)

(
d

dt

∂Tu
∂q̇k

− ∂Tu
∂qk

− Qk − Zk

)

= 0. (13)

Consequently, IN is a conserved quantity.

5 Lie symmetry and Hojman conserved quantity of the non-material volumes

Lie symmetries can directly lead to Hojman conserved quantities under the particular infinitesimal transfor-
mations in which time is not varied as

t∗ = t, q∗
i (t∗) = qi (t) + Δqi , (i = 1, 2, . . . , n). (14)

And the corresponding determining equations of non-material volumes (3) was reduced to the following form:

d̄

dt

d̄

dt
ξs = ∂αs

∂qk
ξk + ∂αs

∂q̇k

d̄

dt
ξk, (15)

where

d̄

dt
= d

dt
+ q̇s

∂

∂qs
+ αs

∂

∂q̇s
.

Theorem 2 For non-material volumes (3), if the generators of particular infinitesimal transformations (14)
satisfy the reduced Lie symmetrical determining Eq. (15), and there exists a function μ(t, q, q̇) satisfying the
condition

∂αs

∂q̇s
+ d̄

dt
lnμ = 0, (16)

then system (3) gives the following Hojman conserved quantities,

IH = 1

μ

∂

∂qs
(μξs) + 1

μ

∂

∂q̇s

(
μξ̇s

) = const. (17)

Proof Differentiating Eq. (17) with respect to time yields

d̄IH
dt

= d̄

dt

(
1

μ

∂μ

∂qs
ξs

)
+ d̄

dt

∂ξs

∂qs
+ d̄

dt

[
1

μ

∂μ

∂q̇s

d̄ξs
dt

+ ∂

∂q̇s

d̄ξ̇s
dt

]
. (18)

We introduce the following relations:

d̄

dt

(
∂μ

∂q̇s

d̄ξs
dt

)
= ∂

∂q̇s

d̄

dt

(
d̄

dt
ξs

)
− ∂

∂qs

d̄

dt
ξs − ∂αk

∂q̇s

(
∂

∂q̇k

d̄

dt
ξs

)
(19)

and
d̄

dt

∂ξs

∂qs
= ∂

∂qs

d̄

dt
ξs − ∂αk

∂qs

∂ξs

∂q̇k
. (20)
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Taking the partial derivative of Eq. (15) with respect to q̇s yields

∂

∂q̇s

d̄

dt

d̄

dt
ξs = ∂

∂q̇s

(
∂αs

∂qk
ξk

)
+ ∂

∂q̇s

(
∂αs

∂q̇k

d̄

dt
ξs

)
. (21)

Substituting Eqs. (19), (20), (21) and (16) into Eq. (18), one has

d̄IH
dt

= d̄

dt

(
1

μ

∂μ

∂qs
ξs

)
+ d̄

dt

(
1

μ

∂μ

∂q̇s

d̄ξs
dt

)
+ ∂2αs

∂qk∂q̇s
ξk + ∂2αs

∂q̇k∂q̇s

d̄

dt
ξk

= 1

μ

∂μ

∂q̇s

[
d̄

dt

d̄

dt
ξs − ∂αs

∂qk
ξk − ∂αs

∂q̇k

d̄

dt
ξk

]

= 0. (22)

6 Lie symmetry and Lutzky conserved quantity of the non-material volumes

Lie symmetries can also directly lead to Lutzky conserved quantities under generally infinitesimal transfor-
mations (4).

Theorem 3 For non-material volumes (3), if the generators of generally infinitesimal transformations (4)
satisfy the Lie symmetrical determining equation (10), and there exists a function GL (t, q, q̇) satisfying the
following condition

∂

∂q̇s

[
Λsk

Λ
(Qk + Zk)

]
= d̄GL

dt
, (23)

then system (3) provides the following Lutzky conserved quantities:

IL = 2

(
∂ξs

∂qs
− q̇s

∂τ

∂qs

)
− n

d̄τ

dt
+ X (1) (lnΛ) − X (1) (lnGL) = const. . (24)

Proof One can easily demonstrate a relation

∂αs

∂q̇s
− ∂

∂q̇s

[
Λsk

Λ
(Qk + Zk)

]
+ d̄

dt
(lnΛ) = 0. (25)

In addition, if τ and ξs satisfy Eq. (4), for any functionΦ (t, q, q̇), Fu and Chen [25, p. 256, Eq. (11)] presented
the relationship that

d̄

dt
X (1) (Φ) = X (1)

(
d̄

dt
Φ

)
+ d̄

dt
τ
d̄

dt
Φ. (26)

From Eq. (15), one can obtain

∂

∂q̇s

[
d̄

dt

d̄

dt
ξs − q̇s

d̄

dt

d̄

dt
τ − 2αs

d̄

dt
τ − X (1) (αs)

]

= d̄

dt

[
2

(
∂ξs

∂qs
− q̇s

∂τ

∂qs

)
− n

d̄τ

dt

]
− X (1)

(
∂αs

∂q̇s

)
− d̄

dt
τ

∂αs

∂q̇s
. (27)

According to Eqs. (25) and (26), using Eq. (23) yields

d̄

dt
IL = d̄

dt

[
2

(
∂ξs

∂qs
− q̇s

∂τ

∂qs

)
− n

d̄τ

dt
+ X (1) (lnΛ) − X (1) (lnGL)

]

= ∂

∂q̇s

[
d̄

dt

d̄

dt
ξs − q̇s

d̄

dt

d̄

dt
τ − 2αs

d̄

dt
τ − X (1) (αs)

]

= 0. (28)
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7 Lie symmetry and Mei conserved quantity of the non-material volumes

If the Lie symmetry of the non-material volumes is a form invariance, then the Lie symmetry can lead to a
Mei conserved quantity. The necessary and sufficient condition under which the Lie symmetry of the non-
material volumes is a form invariance is that the generating functions satisfy the criterion equations of the form
invariance

d̄

dt

∂X (1) (Tu)

∂q̇s
− ∂X (1) (Tu)

∂qs
= X (1) (Qk + Zk) . (29)

Theorem 4 For non-material volumes (3), if the generators τ and ξi of particular infinitesimal transformations
(14) satisfy the Lie symmetrical determining equation (15), the criterion equation (29) of the form invariance,
and there exists a function GM (t, q, q̇) satisfying the following condition

X (1)
{
X (1) (Tu)

}
+ X (1) (Tu)

d̄τ

dt
+ X (1) (Qk + Zk) (ξs − q̇sτ) + d̄GM

dt
= 0, (30)

then system (3) produces the following Mei conserved quantity:

IM = X (1) (Tu) τ + ∂X (1) (Tu)

∂q̇s
(ξs − q̇sτ) + GM = const. (31)

Proof Differentiating Eq. (31) with respect to time, using Eq. (15) and Eqs. (29–30) yields

d̄

dt
IM =

[
∂X (1) (Tu)

∂t
+ q̇s

∂X (1) (Tu)

∂qs
+ αs

∂X (1) (Tu)

∂q̇s

]
τ + d̄

dt

(
∂X (1) (Tu)

∂q̇s

)
(ξs − q̇sτ)

+ X (1) (Tu)
d̄

dt
τ + ∂X (1) (Tu)

∂q̇s

(
d̄

dt
ξs − αsτ − q̇s

d̄

dt
τ

)
− X (1) (Tu)

d̄

dt
τ

− X (1)
{
X (1) (Tu)

}
− X (1) (Qk + Zk) (ξs − q̇sτ)

=
{
d̄

dt

∂X (1) (Tu)

∂q̇s
− ∂X (1) (Tu)

∂qs
− X (1) (Qk + Zk)

}
(ξs − q̇sτ)

= 0. (32)

8 Example

To illustrate the applicability of the Lie symmetry and conserved quantity of Sects. 4–7, an ideal two-
dimensional problem of a rotating drum which has been derived by Casetta et al. [8, p. 705, Eq. (67)] is
considered, and the governing equation of motion for the system can be described as

1

2
ρlπ

(
R0 − εφ

2π

)4

φ̈ = Π, (33)

where Π = Π(φ) is the torque acting upon the control volume, the corresponding kinetic energy is

Tu = 1

4
ρlπ

(
R0 − εφ

2π

)4

φ̇2, (34)

the flux of kinetic energy is
∫

∂Vu

1

2
ρυ2

(
∂v
∂q̇k

− ∂u
∂q̇k

)
· nd∂Vu = 1

2
ρεl

(
R0 − εφ

2π

)3

φ̇2, (35)

and the flux of linear momentum of the systems is
∫

∂Vu

ρv
∂v
∂q̇k

(v − u) · nd∂Vu = ρεl

(
R0 − εφ

2π

)3

φ̇2. (36)
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It is noted that ε represents the thickness of a thin strip, l its width, ρ describes mass density, φ = φ(t) is the
rotation angle, R0 is the original radius, Vu describes the control volume, ∂Vu is the control surface, v is the
velocity of the material particles instantaneously included in Vu , and ∂Vu = εl.

According to the definition of Lie symmetries, the Lie symmetrical determining equation (10) gives

ξ̈1 − φ̇τ̈ − 2τ̇
2Π

ρlπ

(
R0 − εφ

2π

)−4

= ξ1

(
R0 − εφ

2π

)−5 [
2

ρlπ

(
R0 − εφ

2π

)
∂Π

∂φ
+ 4εΠ

ρlπ2

]
. (37)

Due to φ = φ(t) being an implicit function, it is difficult to find the exact solution of Eq. (37). We can find
an approximate series solution of Eq. (37) as

τ = 1, ξ1 =
n∑

i, j=0

ai jφ
i t j . (38)

Note that Eq. (68) of Casetta et al. [8] can be simplified as

φ̇2 = C + 4

ρlπ

∫ (
R0 − εφ

2π

)−4

Π (φ) φ̇dt

= C + 4

ρlπ

∫ (
R0 − εφ

2π

)−4

Π (φ) dφ

= Ψ (φ) . (39)

Substituting Eqs. (33), (38) and (39) into Eq. (37) and equating coefficients of t and φ in the resulting
equations obtain the coefficients ai j .

Theorem 1 gives the Noether conserved quantity as follows:

IN = 1

4
ρlπ

(
R0 − εφ

2π

)4

φ̇2 + GN = const., (40)

where

GN =
∫ [

1

2
ερl

(
R0 − εφ

2π

)3

φ̇2ξ1 +
(

Π +
∫

1

2
ερl

(
R0 − εφ

2π

)3

φ̇2

) (
ξ1 − φ̇

)]
dt.

Theorem 2 presents the Hojman conserved quantity as

IH = ξ1

μ

∂μ

∂φ
+ ∂ξ1

∂φ
+ ξ̇1

μ

∂μ

∂φ̇
+ ∂ξ̇1

∂φ̇
= const., (41)

where

μ = exp

[
1

4
ρlπφ̇2 −

∫ (
R0 − εφ

2π

)−4

Πdφ

]
.

Theorem 3 leads to the Lutzky conserved quantity as follows:

IL = 2
∂ξ1

∂φ
+ X (1) (lnΛ) − X (1) (lnGL) = const., (42)

where

GL = 1

4
ρlπφ̇2 −

∫ (
R0 − εφ

2π

)−4

Πdφ.

Theorem 4 produces the Mei conserved quantity:

IM = X (1) (Tu) + ∂X (1) (Tu)

∂φ̇

(
ξ1 − φ̇

) + GM = const., (43)
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where

GM =
∫ {

X (1)
[
X (1) (Tu)

]
+ X (1)

(
Π − 1

2
ερl

(
R0 − εφ

2π

)3
) (

ξ1 − φ̇
)}

dt.

Let
ξ1 = 0. (44)

Since α does not explicitly depend on time and φ̇, the determining equation (10) is reformatted in the
following form

−φ̇τ̈ − Ξτ̇ = 0. (45)
So one particular solution can be written as

τ =
∫

e
− ∫

Ξ

φ̇
dt
dt, (46)

where

Ξ = 4Π

ρlπ

(
R0 − εφ

2π

)−4

.

Then, corresponding conserved quantities (40), (42) and (43) will also be given as the following: Noether
conserved quantity

IN = Tuτ − ∂Tu
∂ φ̇

φ̇τ + GN = const., (47)

where

GN =
∫ [

Πφ̇τ − Tu τ̇ − X (1) (Tu)
]
dt,

Lutzky conserved quantity

IL = −2φ̇
∂τ

∂φ
− n

d̄τ

dt
+ X (1) (lnΔ) − X (1) (lnGL) = const., (48)

where

GL =
∫

∂

∂φ̇

(
Δsk

Δ
Π

)
dt,

and Mei conserved quantity

IM = X (1) (Tu) τ − ∂X (1) (Tu)

∂φ̇
φ̇τ + GM = const., (49)

where

GM = −
∫ {

X (1)
[
X (1) (Tu)

]
+ X (1) (Tu)

d̄τ

dt
− X (1) (Π) φ̇τ

}
dt .

9 Conclusions

This paper focuses on theLie symmetry and conserved quantity of non-material volumes under Lie symmetrical
transformations.Thedetermining equations ofLie symmetry of non-material volumes are derivedby employing
the definition of Lie symmetry. Noether, Hojman, Lutzky and Mei conserved quantities of the non-material
volumes are calculated under Lie symmetrical transformations. The proof of the theorem on four kinds of
conserved quantities is given. The example of a rotating drum uncoiling a strip is employed to illustrate the
applicability of the Lie symmetry of non-material volumes, and four kinds of new conserved quantities are
proposed.
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