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Abstract Polymer networks usually have many entanglements as well as a finite extensibility due to the
uncrossability and the full stretching of the network chains. In this paper, the nonaffine model proposed by
Davidson and Goulbourne is adopted to characterize the influence of entanglements and finite extensibility of
the polymer chains on the mechanical behavior of hydrogels. The Davidson–Goulbourne model only contains
three material parameters and has a simpler mathematical form than the Edwards–Vilgis slip-link model,
which is the only model that has been adopted to characterize the influence of entanglements on the swelling
deformation of polymeric gels so far. Some benchmark problems such as free swelling, constrained swelling,
uniaxial tension, equibiaxial tension in the immersed state and uniaxial compression in the isolated state are
analyzed, respectively, based on the new constitutive equations. The results show that entanglements as well
as chain extensibility have important influences on the mechanical response of hydrogels.

1 Introduction

As a series of polymer materials, hydrogels can absorb a large quantity (even over 90%) of water without
dissolving because of the physical or chemical bonds. Hydrogels are ubiquitous and can be found in foods,
trees, human and animal bodies, and so on. Their superior biocompatibility and capabilities to imbibe solvents
and swell reversibly in response to different stimuli (e.g., temperature, forces, PH values) make them attractive
material choices in myriad applications, such as drug-delivery systems [1,2], medical devices [3], tissue
engineering [4] and actuators responsive to physiological cues [5].

With the applications in various areas seeingmore andmore potential, it is imperative to develop constitutive
equations to characterize the swelling and deformation behavior of hydrogels. In essence, two approaches have
been adopted in the literature to explore the deformation of hydrogels [6]. The first is the multiphasic theory.
In this respect, one famous theory is the THB theory, which is the abbreviation of Tanaka et al. [7]. According
to the THB theory, the gel is regarded as a biphase combination of a solid and a liquid. Many investigators
have used or improved this theory to study the mechanics of hydrogels [6–8]. In spite of its remarkable
success, it is well known that the THB theory has certain limitations since it is a linear theory aiming to small
swelling ratios. However, it’s well known that large deformations are common for hydrogels [9]. What’s more,
the basic principles of the THB theory are unclear, making it hard to be extended. The second approach, the
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monophasic theory, goes back to Biot [10] who established a consolidation theory in terms of fluid-filled elastic
porous solids based on thermodynamic theory put forward by Gibbs [11] and Darcy’s law. Especially to be
mentioned, phenomena including consolidation of soils and deformation of tissues can be studied by Gibbs’
and Biot’s theories [10,11], which, however, were not specific for hydrogels. Later, some specific models
with regard to the free energy of hydrogels have been proposed based on the theories of Gibbs and Biot. The
explicit form of the free energy for the hydrogel by combining the Neo-Hookean model of hyperelasticity
with the Flory–Huggins mixing model [12,13] goes back to the seminal paper by Flory and Rehner (F–R
model) [14]. Hong et al. [15] formulated the nonlinear large deformation constitutive equations for hydrogels
based on the F–R model, which have been widely adopted to study the chemo-mechanical coupling behavior
of hydrogels [16–18]. It is worth mentioning that the Neo-Hookean model used in the F–R model is the
simplest elastic model for elastomers and is derived from the affine assumptions [19]. There has been a surge
of the free energy function of rubber hyperelasticity in other forms to characterize the mechanical behavior
of hydrogels. To name a few, Dolbow et al. modified the Neo-Hookean model to study chemically induced
swelling of hydrogels [20]. On the basis of the Mooney–Rivlin model and the Flory–Huggins mixing theory,
Wineman and Rajagopal put forward a particular free energy function for polymer gels [21] which was also
chosen by Deng and Pence to investigate the mechanical reactions of polymer gels in both saturated and
unsaturated contexts [22,23]. Pieper et al. described swelling in unfilled and filler-loaded networks by means
of the van der Waals model [24]. Chester and Anand [25] proposed a free energy function by combining the
eight-chain model and Flory–Huggins model to take chain extensibility into account for large deformation
behavior of hydrogels. Drozdov and Christiansen [26] derived a constrained chain model to study how the
strain rate affects the elastic response of hydrogels in the context of tension and compression. Li et al. [27]
adopted the Gent model to study the effect of solvent diffusion on reactive chromotropic polyelectrolyte
gel. Very recently, Okumura et al. [28] developed an extended model by introducing two scaling exponents
in the elastic strain function and investigated how the scaling exponents influence the swelling behavior of
elastomers.

Though the models mentioned above are partially successful in some ways, they are either phenomenolog-
ical models which ignore the relationship between the microscale behavior of polymer chains and macroscopic
properties of elastomers, or physics-based models that do not consider the effect of entanglements and chain
extensibility simultaneously. Real polymer networks usually give rise to many entanglements as well as a finite
extensibility due to the impenetrability and the full stretching of the network chains, respectively. The effects
of entanglements and limited extensibility have been considered in the design of responsive hydrogels [29].
A number of hyperelasticity models have been developed to characterize the influence of entanglements and
chain extensibility simultaneously on the mechanical behavior of elastomers. To mention a few, see references
[30–35]. However, the corresponding works on hydrogels are rarely found in the open literature. Recently, Yan
et al. [36,37] adopted the Edwards–Vilgis slip-link model [34] to predict the effect of chain entanglements on
mechanical behavior of polymeric gels. Yang et al. [38] further considered the influence of functionality of
junctions in hydrogels. Though the slip-link model can capture the effect of entanglements and chain extensi-
bility, Yan et al. [36,37] and Yang et al. [38] focused more on the influence of entanglements. It should also be
pointed out that the slip-link model contains four parameters and its mathematical form is very complicated
for theoretical analysis.

Very recently, Davidson and Goulbourne [35] developed a new physics-based nonaffine network model
for the nonlinear elasticity of elastomers, which has combined the concepts of the Rubinstein–Panyukov
model [39] and Arruda–Boyce model [40]. The Davidson–Goulbourne nonaffine model only contains three
material parameters, each of which has clear physical meanings, and has a simpler mathematical form than
the slip-link model. The nonaffine model can capture the strain softening, strain hardening, and deformation
state-dependent response of rubber materials undergoing finite deformations. This model is unique in its ability
to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and
can also be easily identified with the important characteristics of the macroscopic stress–stretch response. The
contribution of polymer chain entanglements in the nonaffine network model has been confirmed by Li et al.
[41] through large-scale MD molecular simulations.

In this paper, a new hybrid energy function is proposed by combining the Davidson–Goulbourne model
with the Flory–Huggins solution theory. Constitutive equations are then formulated for the chemo-mechanical
equilibrium deformation behaviors of hydrogels. Parameter selection in the new constitutive model is also
discussed. After that, several benchmark problems such as free swelling, constrained swelling, uniaxial ten-
sion, equibiaxial tension in the immersed state and uniaxial compression in the isolated state are analyzed,
respectively, based on the new constitutive equations. The results are compared with those presented by Hong



Effects of entanglements and finite extensibility 1705

et al. [42] and those reported by Yan et al. [36]. The influence of entanglements as well as finite extensibility
on the mechanical response of hydrogels are fully discussed.

2 Formulation of the constitutive equations

We apply the method proposed by Hong et al. [15] to develop the constitutive equations. According to the
Flory theory [14], the free energy of a hydrogel takes the form

W (F,C) = WS(F) + Wm(C), (1)

where Ws is the free energy due to the stretching of the network and Wm is the free energy due to the mixing
of the polymers and solvent. C is the nominal concentration of water molecules. F is the deformation gradient
relative to the dry network. B = FFT and C = FTF are the left and right Cauchy–Green deformation tensors,
respectively. Principal stretches are defined as the square roots of the eigenvalues of C (equal to those of B)
and are classically denoted λi (i = 1, 2, 3).

2.1 Elastic free energy calculated with the nonaffine model

The free energy associated with stretching the network derived from the nonaffine network model [35] can be
written as

Ws (F)=1

6
Gc

∑

i

λ2i − Gcλ
2
max ln

(
3λ2max −

∑

i

λ2i

)
+ Ge

∑

i

(
λi + 1

λi

)
− Gc ln λ1λ2λ3, (2)

where the last term in Eq. (2) is the volume expansion energy of the matrix [43] and similar terms were
introduced in the strain energy density for hydrogels in references [25–27]. λi (i = 1, 2, 3) are the principal
stretches; k is the Boltzmann constant; T is the absolute temperature;Gc,Ge, λmax are the material parameters
accounting for the cross-link density, entanglements and finite extensibility, respectively.

According to Davidson and Goulbourne [35], Gc is defined as the cross-linking modulus and we have
Gc = kTρm

N g2(1− 2/φ), where ρm is the monomer density;N is the number of monomers in a chain segment;
g denotes the affinity of the polymer chain length during deformation and is considered to be a constant. For
phantomdeformation of polymer chains,we have g = 1 and for affine deformation,we have g = (1−2/φ)−1/2.
The value of the g may therefore be used to interpolate between phantom and affine network behavior in the
range 1 ≤ g ≤ (1−2/φ)−1/2; φ is the cross-link functionality (the number of chains connected at a cross-link)
[35]. It is noted that the influence of functionality of junctions in hydrogels was considered by Yang et al. [38].
In this paper, we are not going to discuss the influences of the functionality of junctions. To compare with the
result presented byHong et al. [42],we assume g = (1−2/φ)−1/2. Thus,we haveGc = kTρm/N = NRkT .NR
is the density of cross-links (the number of polymer chains per unit reference volume); k is the Boltzmann
constant; T is the absolute temperature. It is noted that in the work by Hong et al. [41], NRkT = 105 Pa. In
this work, without loss of generality, we set Gc = 105 Pa.

Ge is the entanglement modulus on behalf of the degree of entanglements in the network. It is noted the
coefficient Ge was introduced by Gaylord and Douglas in their localization model [44–47]. In the nonaffine
model, we have Ge = kTρm/Ne, where Ne is the entanglement length, representing the number of monomers
between two adjacent entanglements. In terms of the calculations by Davidson and Goulbourne [35] and Li
et al. [41], Ge/Gc varies over a large range depending on the molecular structure of the networks. For larger
values of Ge, the chains are more highly entangled with each other. There are basically no entanglements in
the network if Ge = 0. In our paper we let Ge = 0, 10Gc, 15Gc, 20Gc, respectively, to consider different
degrees of entanglements.

λmax determines the onset of strain hardening of the network and characterizes the degree of limited
extensibility of chains. According to the previous works [35,41], we assume λmax varies from 2 to a very large
value.
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2.2 Free energy of mixing

The free energy of mixing is most commonly associated with the Flory–Huggins model [12,13], given by the
form:

Wm(C) = kT

v

[
vC ln

(
vC

1 + vC

)
+ χ

vC

1 + vC

]
, (3)

where C is the concentration of solvent molecules in the reference state, v is the volume per small molecule,
and χ is a dimensionless Flory interaction parameter. In the isothermal analysis for good solvent, χ is usually
taken to be a constant in the range of 0–1.2. In this study, we will take χ = 0.1. It should be mentioned that
there are some ways to further improve Eq. (3) [48,49].

2.3 Molecular incompressibility constraint

According to Hong et al. [15], the polymer network and the solvent as well are presumed to be incompressible.
The volume of the hydrogel contains that of the dry network along with that of the water. In other words,
the change in the volumes of molecules can be neglected because the stress is usually inadequate to lead to
molecular distortion. Under this assumption, the constraint is most commonly expressed as:

1 + vC = det F. (4)

Such a constraint is lifted in the studies of Chester et al. [50] and Bouklas et al. [51] to allow a small amount
of compressibility, which is substantially aiding in the numerical implementation [50,51]. The relaxation of
complete mechanical incompressible on other hypotheses was also proposed by Cai and Suo [52].

2.4 The new total hybrid free energy function

The total hybrid free energy function can be obtained by inserting Eqs. (2) and (3) into Eq. (1):
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(5)

Subject to the constraint (4), the concentration C in Eq. (5) is no long an independent variable and can
be expressed in terms of the deformation gradient F. The enforcement of this constrains are usually carried
out in two ways: by using the Lagrange multiplier or Legendre transformation. In practice, we usually know
about some information about of the chemical potential but not the nominal concentration C. So we introduce
another free energy function W with F and μ as independent parameters via Legendre transform:

C = − ∂Ŵ (F, μ)

∂μ
, (6)

Ŵ (F, μ) = W (F,C) − μC. (7)

Once the deformation gradient and chemical potential have been solved, the concentration C can be calculated
with Eq. (6). Combining Eqs. (4), (5), (6) and (7), we can get:

Ŵ (F,μ) = 1
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2.5 Specific constitutive equations

In this study,we are concernedwith the equilibrium state of the hydrogel rather than the instantaneousmigration
process of the water molecules. For large deformation problems, the nominal (or the first Piola–Kirchhoff)
stress tensors can be obtained by:

P = ∂Ŵ

∂F
. (9)

The true (or Cauchy) stress tensor σ and P are related by:

σ = (det F)−1PFT = 1

J
PFT = 1

J

∂Ŵ

∂F
FT . (10)

Substitution of Eq. (8) into Eq. (10), we get the Cauchy stress tensor:
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Referring to Eq. (9), the principal nominal stresses Pi can be expressed as functions of three principal stretches,
λi (i = 1, 2, 3):
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Equations (12)–(14) are the constitutive equations at the equilibrium state. We have normalized the stress by
kT/v, and normalized the chemical potential by kT .

3 Analytical results

In this section, several benchmark problemsof homogeneous deformations of hydrogel are analyzed byutilizing
the developed constitutive equations. The effects of themicrostructural parametersGe andλmax,which describe
the entanglements and finite extensibility of the network, respectively, on the mechanical response of the
hydrogel are fully discussed. Some of these problems have been analyzed by Hong et al. [42] and Yan et
al. [36] by using the Neo-Hookean model of elasticity and the slip-link model of elasticity, respectively. Our
results are compared with those presented by Hong et al. [42] and those reported by Yan et al. [36].

3.1 Free swelling

In the absence of the mechanical load and immersed in a reservoir of solvent molecules, the hydrogel swells
with no restriction till the solvent chemical potential reaches a balance with the reservoir. In this state, the



1708 J. Zhu, J. Luo

(a) (b)

(c) (d)

(e)

Fig. 1 Variation of the free swelling ratio of a cubic hydrogel with the chemical potential of the solvent molecules. a Ge =
0, λmax = ∞; b Ge = 0. λmax takes different values; c Ge = 10Gc. λmax takes different values; d λmax = 3. Ge takes different
values; e λmax = ∞. Ge takes different values

hydrogel swells to the same degree in all directions. We denote this free swelling ratio by λ1 = λ2 = λ3 = λ0,
setting the stresses in Eqs. (12)–(14) to be zero, we obtain:

vGc
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This relation determines the free swelling stretch λ0 once the chemical potential is known. λ0 is plotted against
the normalized chemical potential μ/kT in Fig. 1 for different material parameters, i.e., Ge and λmax. The
results of Hong et al. [42] are also plotted in Fig. 1a for a comparison. It can be readily observed that if we
don’t consider the effect of the entanglements and limited extensibility of the polymer chains, our results can
reduce to those given by Hong et al. [42]. It should be mentioned that as the maximum free swelling ratio of
the hydrogel is about 3.4 in Fig. 1a, λmax is set to a very large value (e.g., λmax = 10,000) in the numerical
computation in Fig. 1a to exclude the influence of finite extensibility. In the other studies, we use the same
method to exclude the influence of the limited extensibility of the polymer chains.

As illustrated in Fig. 1b, c, the free swelling ratio increases with λmax. This is natural since a larger value of
λmax implies that the free swelling of the hydrogel is less constrained by the finite extensibility of the polymer
chains. This conclusion is similar with that drawn by Yan et al. [36] (the free swelling ratio of the gel with
larger value of α is lower where α is the inextensibility parameter in the slip-link model ). Chester and Anand
came to the same conclusion by using the eight-chain model [25]. Another interesting finding from Fig. 1b, c
is that the ultimate free swelling ration is no more than λmax.

Referring to Fig. 1d, e,we can also find thatwhenGe is larger (corresponding tomore dense entanglements),
the final free swelling ratio is lower. This is reasonable from our intuition and has been confirmed by Chen et
al. by using Monte Carlo simulations [53]. However, it is noted that the free swelling ratio increases with the
density of entanglements, i.e., Ns/(Nc + Ns) in the work by Yan et al. [36].

3.2 Biaxial constrained swelling

In this section, we consider the swelling of a thin layer of hydrogel bonded on a rigid substrate. Since the
thickness of the layer is thin, one can assume that the hydrogel experiences biaxial constrained swelling.
Following Hong et al. [42] and Yan et al. [36], we assume that the prestretches of the hydrogel to be λ2 =
λ3 = λ0 = 1.5. Subsequently, the hydrogel is immersed in pure water with the chemical potential μ = 0. Due
to the constraint of the substrate, the gel layer swells to a further stretch λ1 along the normal direction of the
blanket gel layer and achieves another equilibrium state with an equal-biaxial stress. The stress normal to the
blanket layer vanishes, so that Eq. (12) gives:
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(16)

where the two in-plane stretches hold to be the initial value due to confinement by the rigid substrate, but the
out-of-plane stretch varies with the chemical potential. The normalized in-plane biaxial stress can be expressed
as:
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Referring to Eq. (16), we plot the stretch λ normal to the blanket layer against the chemical potential
μ/kT for different values of Ge and λmax, as shown in Fig. 2. In the absence of entanglements and limited
extensibility, our results can reduce to the those obtained byHong et al. [42]. Similar to the free swelling, higher
entanglement modulus and lower extensibility cause the blanket gel layer to swell less, i.e., when the network
is more densely entangled and the limited extensibility is less, the stretch of the hydrogel in the direction
normal to the layer is smaller. This conclusion is consistent with Yan et al.’s result [36]. It is of interest to
see that the stretch perpendicular to the layer direction can be significantly increased to even more than λmax
by the biaxial constraint. However, in the case of free swelling, the swelling ratio is always less than λmax as
shown in Fig. 1.

According to Eq. (17), variation of the normalized equal-biaxial compressive stress is plotted against the
chemical potential for different values of Ge and λmaxin Fig. 3. It can be easily observed that the magnitude of
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(a) (b)

(c) (d)

(e)

Fig. 2 Variation of the biaxial constrained swelling ratio of a hydrogel layer with the chemical potential of the solvent molecules.
a Ge = 0, λmax = ∞; b Ge = 0. λmax takes different values; c Ge = 10Gc. λmax takes different values; d λmax = ∞. Ge takes
different values; e λmax = 4. Ge takes different values

the equal-biaxial compressive stress increases with the increase inGe and the decrease in λmax, this conclusion
is also consistent with Yan et al.’s result [36]. Moreover, comparing Fig. 3b with 3c, the discrepancies brought
by the differences of chain extensibility will be weakened by the entanglements.
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(a) (b)

(c) (d)

(e)

Fig. 3 Variation of the equibiaxial compressive stress with the chemical potential of the solvent molecules. a Ge = 0, λmax = ∞;
b Ge = 0. λmax takes different values; c Ge = 10Gc. λmax takes different values; d λmax = ∞. Ge takes different various; e
λmax = 3. Ge takes different values

3.3 Uniaxial tension

We assume that a bar of a hydrogel is equilibrated in a solvent of chemical potential μ and is subject to a
uniaxial stress along the axial direction. The deformation state can be characterized by principal stretches,
λi (i = 1, 2, 3) where λ1 is along the axial direction. λ2 and λ3 are principle stretches along the transverse
directions, and we have λ2 = λ3. As the transverse normal stresses are zero, referring to Eqs. (13) and (14),
we have:
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(a) (b)

(c) (d)

(e)

Fig. 4 Variation of the uniaxial stress with the axial stretch. a Ge = 0, λmax = ∞, μ/kT = 0, − 0.02; b λmax = ∞. Ge takes
different values; c λmax = 6. Ge takes different values; d Ge = 0. λmax takes different values; e Ge = 10Gc. λmax takes different
values

1

3λ1

Gcv

kT
+ Gcv

kT c
λ2max

2

λ1(3λ2max − λ21 − 2λ22)
+ Gev

kT

(
1

λ1λ2
− 1

λ32λ1

)

+
[
ln

(
1 − 1

λ1λ
2
2

)
+ 1

λ1λ
2
2

+ χ

(λ1λ
2
2)

2

]
− Gcv

kTλ1λ
2
2

− μ

kT
= 0.

(18)



Effects of entanglements and finite extensibility 1713

(a) (b)

(c) (d)

(e)

Fig. 5 Variation of the equibiaxial stress with the stretch. a Ge = 0, λmax = ∞, μ/kT = 0, − 0.02; b λmax = ∞. Ge takes
different values; c λmax = 6. Ge takes different values; d Ge = 0. λmax takes different values; e Ge = 10Gc. λmax takes different
values

We can calculate λ2 with Eq. (18) once λ1 is given. λ1 is related with the nominal uniaxial stress by:
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Fig. 6 Comparison of the uniaxial stress and biaxial stress at different stretch ratios

Figure 4a–e show the relation between the nominal uniaxial stress and the axial stretch λ1. Figure 4a
indicates that our results can reduce to those presented by Hong et al. [42] if the effects of entanglements
and limited extensibility have been ignored. It’s worth to mention that when the uniaxial stress is negative,
the hydrogel is under uniaxial constrained swelling, which will not be discussed here. Thus, in Fig. 4b–e, we
assume that the hydrogel is in tension after the initial free swelling.

As shown in Fig. 4b, c, we can see that whether the limited extensibility takes effect or not, the nominal
stress increases with Ge for a given stretch ratio, or in other words, the stretch ratio λ1 decreases when Ge
increases for a given uniaxial stress. This is reasonable as the hydrogel has become stiffer when there are more
entanglements in network. Similar conclusions have been drawn by Yan et al. [36] and Chen et al. [53].

In Fig. 4d, e, we can see that for a given stretch ratio, the nominal uniaxial stress increases when λmax
decreases. This is because a smaller value of λmax implies that the strain stiffening takes place earlier and as a
result, the stress becomes larger. When the stretch ratio of the hydrogel is greater than λmax, the uniaxial stress
increases dramatically with the stretch ratio. In this case, the influence of entanglements on the uniaxial stress
has become less important, as shown in Fig. 4d, e.

3.4 Equibiaxial tension

Now we consider a cubic block of a hydrogel immersed in a solvent of chemical potential μ, and subject to
an equibiaxial tensile stress. Again, the deformation state of the block can be characterized by three principle
stretches, λi (i = 1, 2, 3). Here, we assume the biaxial tensile stresses are applied along the second and third
principal directions. Thus, we have λ2 = λ3. As the first principal stress is zero, referring to Eq. (12), we have:
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The equibiaxial stress is related to the transverse principal stretch, i.e., λ2 or λ3 through:
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The equibiaxial stress is plotted against the transverse principle stretch in Fig. 5. Similarly, we only consider
the situation that the hydrogel is under tensile stresses. In Fig. 5a, a comparison is made between our results and
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those by using the Flory–Rehner free energy function. As shown in Fig. 5a, in the absence of entanglements and
finite extensibility, our results match well with those obtained by the Flory–Rehner model [42]. Figure 5b–e
shows that the equibiaxial stress increases with the increase inGe and decrease in λmax. Comparing Fig. 5c and
Fig. 4c, we can see that when the stretch ratio exceeds λmax, the equibiaxial stress increases more dramatically
than the uniaxial stress. Furthermore, under the same stretch ratio, we can see from Fig. 6 that the biaxial stress
is greater than the uniaxial stress, which is in accordance with the experimental data in the literature [54,55].

3.5 Uniaxial compression

In this section, we discuss the deformation behavior of a swollen cubic hydrogel under uniaxial compression.
As demonstrated in Fig. 7, a cubic of a hydrogel is put on a rigid substrate, with stress free preswelling of an
isotropic stretch λ0. Unlike the former cases where the hydrogel is assumed to be immersed in the solvent, in
this case, we assume that the hydrogel is isolated from the solvent after free swelling. To study this problem
conveniently, we choose the swollen state as the reference state [56]. As proposed by Hong et al. [42], we
denote F′ = diag(λ1, λ2, λ3) and Ŵ ′(F′, μ) to be the deformation tensor and the free energy functional of the
hydrogel, respectively. Then, the deformation tensor is F = F′F0 when we take the dry gel as the reference
state. In virtue of Ŵ ′(F′, μ)dV ′ = Ŵ (F, μ) dV, dV ′ = λ30dV , we get:

Ŵ ′(F′, μ) = λ−3
0 Ŵ (F, μ). (22)

Combining Eqs. (8) and (22), we obtain that
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Substitution of Eq. (23) into Eq. (10) yields
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The state of deformation can be characterized by: stretch λ1 along the direction of the pressure and two
transverse stretches λ2 = λ3. As the stresses in the directions of λ2 and λ3 vanish, we have:
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Dry Reference state

Compressing 

Free swelling

Fig. 7 A swollen hydrogel compressed by uniaxial pressure

(a) (b)

(c) (d)

Fig. 8 Strain–stress of uniaxial compression for a swollen hydrogel. a Ge = 0, λmax = ∞, λ0 = 1.5; b Ge = 10Gc, λmax = 10.
λ0 takes various values; c λ0 = 1.5, λmax = 10.Ge takes various values; d Ge = 10Gc, λ0 = 1.5. λmax takes various values
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We assume there is no solvent loss in the compression process. Thus, the volume of the hydrogel is conserved
during the deformation, and we have [56]

det F = λ1λ2λ3 = λ1λ
2
2 = 1. (28)

Combination of Eqs. (24), (27) and Eq. (28) yields
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Equation (29) shows the relation between the compression deformation and compression stress, which is
plotted in Fig. 8. In Fig. 8, the minus in the front of σv/kT means that the direction of the stress is reversed.
Figure 8a shows that our results can be reduced to those obtained by the Flory–Rehner model. In Fig. 8b, we
can see that when the free swelling ratio is higher, smaller stresses are needed to compress the hydrogel to the
same compression deformation, i.e., 1− λ1. This is reasonable as the hydrogel has become softer when more
water has been absorbed into the hydrogel (larger free swelling ratio). From Fig. 8c, we can see that when
Ge is greater, the compression stress is higher. This seems natural since the hydrogel has become stiffer when
there are more entanglements in the network.

Figure 8d is very interesting, andwemay be confused at first glance. In the beginning, λmax has no influence
on stress, but in the later process, the small λmax is, the higher stress is, and the upward trend of the stress
becomes very sharp and abrupt. This means that in the case of the volume of the hydrogel is an invariant, with
the compress of it, the hydrogel in other two directions will expand; and when the rate of expansion surpass
λmax, the stress used to compress will increases in a sharp speed.

4 Concluding remarks

In this paper, a new hybrid free energy function composed of the nonaffine model and the Flory–Huggins
solution theory is proposed to investigate the influences of chain entanglements and limited chain extensibility
on the mechanical response of hydrogels. The nonaffine model contains fewer material parameters and has
a simpler mathematical form than the Edwards–Vilgis slip-link model. This new hybrid free energy function
can be reduced to the Flory–Rehner function if the influences of the entanglements and chain extensibility
are ignored. The nonlinear large deformation constitutive equations of the hydrogel are derived based on the
new free energy function. Five benchmark problems are analyzed by using the new constitutive equations.
The numerical results show that entanglements and limited chain extensibility have distinct influences on the
mechanical responses of hydrogels.
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