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Abstract This paper concerns themotion of a viscous steady incompressible fluid through amembrane, where
themembrane is built up by impermeable spheroidal particles covered by a porous layer. In thiswork,we discuss
the hydrodynamic permeability of a membrane built up by spheroidal particles. Cell model technique has been
used to find the hydrodynamic permeability of the membrane. The emphasis is placed on the hydrodynamic
permeability of the membrane and its controlling parameters like the permeability of the porous medium,
particle volume fraction, deformation parameters, stress jump coefficient. The dependency of the hydrodynamic
permeability of the membrane on the above controlling parameters is discussed graphically. Some previous
results for hydrodynamic permeability and drag force are verified.

1 Introduction

Flow through a porous medium made of a swarm of particles has always been a topic of immense interest
due to its numerous applications in various fields of science and engineering, such as ground water flow, flow
through sand beds, petroleum reservoirs, flow through biological tissues and filtration processes. However,
modelling and formulation of such a complex fluid dynamical system are a big challenge to mathematicians so
as to arrive at a satisfactory approximation of the system at macroscopic level, which includes employing the
Darcy [1] or the Brinkman equation [2] for the flow through the porous region and the Stokes equation [3] in
the free flow region with appropriate and physically realistic boundary conditions for a suitable approximation
of the system.

TheDarcy equation ismore suitable for amediumwith lowpermeability and inhomogeneous porosity, as for
a higher-permeable region the equation yields a contradictory result (higher flow at zero pressure difference).
To overcome this drawback, Brinkman suggested a modification in Darcy’s equation by adding a term for
viscous forces using different viscosities in the porous medium due to the porosity effect, and it worked well
for both low- and high-permeable regions. However, for inhomogeneous porous media, the formulation has
some limitations near the boundary as suggested by Veerapanneni [4].

The flow of a viscous fluid through a random assemblage of particles is a challenging task due to the
complexity involved in its modelling and formulation as we intend to have complete information about the
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flow field and other relevant quantities such as drag near all the particles. In order to overcome this problem,
it was suggested that instead of going for flow information near each particle, the attempt should be made
to compute the same near one particle confined in a hypothetical cell surface and appropriate and physically
realistic boundary conditions should be imposed on the concerned particle to include the effect of neighbouring
particles on the particle confined within the hypothetical cell. This approach is known as cell model technique.
Uchida [5] made the first attempt in this direction by taking a spherical particle covered in a cubical cell.
Although the cubical cell is space filling, differences in the inner and outer geometry made the problem
mathematically very complicated. In order to overcome this problem, Happel [6,7] took both the particle and
cell surface of the same geometry and employed the condition of vanishing shear stress at the cell to take into
account the zero friction exerted by neighbouring particles on the particle concerned. Kuwabara [8] followed
the same approach with vanishing rotation at the cell surface and observed the exchange of mechanical energy
between fluid envelope and the environment. Mehta–Morse [9]/Cunningham [10] used the uniform velocity
condition on the fluid envelope confining the concerned particle, which takes into account the homogeneity of
flow at the fluid envelope. Kvashnin [11] used the condition that the tangential component of velocity attains
its extreme value at the cell surface along the radial direction, signifying symmetry in the flow. There are
many authors who applied the above formulations in various physical models. Yadav et al. [12] evaluated the
hydrodynamic permeability of a swarm of solid spherical particles with a porous layer for all four cell model
formulations using a stress jump at the fluid–porous interface. Deo et al. [13] gave a detailed review of work
done in this area along with a comparative analysis of all the four formulations for a swarm of cylindrical
particles.

In addition to the above, there are many more papers on flow through a swarm of spherical and cylindrical
particles, but the geometry of the particles may be more complicated than spherical or cylindrical shapes. The
Stokes stream function formulation E4ψ = 0 (where E4 is a well-known operator [14]) is relatively simple in
Cartesian, cylindrical or spherical coordinate systems due to the separable nature of the Stokes stream function
in all of them. However, there are several complex geometries where this property does not hold for the stream
function formulation equation governing axi-symmetric Stokes flow. In the quest for modelling flows through
an assemblage of particles with complex geometry, many authors made attempts to look for Stokes’ stream
function solutions in other coordinate systems and the spheroidal coordinate system is one of them. The non-
separability of E4ψ = 0 in a spheroidal coordinate system hampers the development of modelling the flows
through an assemblage of spheroidal particles.Despite these complexities, theflowpast spheroidal or ellipsoidal
bodies attracted researchers in the nineteenth century. Oberbeck [15] analytically investigated the creeping
flow due to steady translatory motion of an ellipsoid embedded in an unbounded fluid medium by solving the
equation in a Cartesian coordinate system. Sampson [16] analysed the Stokes flow past a spheroid embedded
in an unbounded fluid medium and translating around its main axis. The advantage of Sampson’s work was use
of spheroidal coordinate systems in the analysis. Axi-symmetric Stokes’ flow past a spheroid in an unbounded
fluid and translating around its main axis was analytically studied in spheroidal coordinates by Payne and Pell
[17]. They also obtained the solution for their problem by a suitable transformation of Oberbeck’s solution for
an ellipsoid leading to a change of coordinates. Happel and Brenner [14] also analytically solved the creeping
flow problem past a spheroid in spheroidal coordinates. Acrivos and Taylor [18] studied flow past an arbitrary
particle and obtained the expression for drag force for a slightly but arbitrarily deformed sphere. Epstein and
Masliyah [19] investigated the Stokes’ flow through swarm of oblate spheroids and elliptical cylinders. They
observed that for low aspect ratios and high volumetric particle concentrations, there is significant deviation
in Kozeny constant for axi-symmetric flow past both types of particles. Although this analysis was based on
numerical solutions only. Ramkissoon [20] studied symmetric slowflowpast a fluid spheroidal particle (slightly
deformed from a sphere) in an unbounded medium and also covered the flow past an oblate spheroidal particle
as a special case. It was also observed that with equal volume of fluid sphere and oblate fluid spheroid, the fluid
sphere will experience less resistance. Palaniappan [21] analysed creeping flow of an incompressible viscous
fluid past a deformed sphere (slightly deformed from spherical shape) with slip-stick boundary conditions up
to a first-order approximation of the deformation parameter by obtaining the stream function for the flow field
in terms of the Gegenbauer function and deduced the dependence of the functional form of the hydrodynamic
drag on the eccentricity of the spheroid, and unlike the previous result [20], the drag on the spheroid need not
be linear due to a change in boundary conditions. He observed that the slip-stick boundary condition parameter
significantly affects the drag force experienced by the deformed sphere and also found a relatively smaller
drag on the deformed sphere in comparison to the drag on a slightly oblate spheroid. Dassios et al. [22] used
the semi-separable nature of the stream function satisfying Stokes’ equation in spheroidal coordinates to get
the analytical solution of axi-symmetric creeping flow past an oblate/prolate spheroid in a spheroidal cell by
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deriving a complete set of generalized eigenfunctions. Dassios et al. [23] used the Stokes stream function
obtained for a spheroidal coordinate system in [22] to analyse the spheroid-in-cell problem using Happel and
Kuwabara boundary conditions and concluded the superiority of the Happel condition over the Kuwabara
condition due to smaller loss of mechanical energy. Burganos et al. [24] discussed the convergence of the
semi-separable expansion of the Stokes stream function up to first order and observed a high level of accuracy
for the axis ratio lying in the range

[ 1
5 , 5

]
and solid volume fraction lying in the range of [0, 0.3]. Ramkissoon

[25] analytically studied the slip flow past an approximate spheroid and concluded that among sphere and
spheroid (equatorial radius of the spheroid the same as that of the sphere), the oblate spheroid experiences
a relatively smaller drag than the sphere and the proportion to which it reduces remains the same for both
no-slip and perfect-slip cases. Zlatanovski [26] investigated creeping flow past a porous prolate spheroidal
particle using eigenvalues and eigenfunctions of the stream function for the porous region and graphically
discussed the effect of focal distance and permeability parameter on drag force and stream lines. Dutta and
Deo [27] evaluated the drag force experienced by particles of cylindrical, spherical, deformed sphere and oblate
spheroid geometry by considering Stokes flow past a swarm of particles with slip and Kuwabara boundary
conditions. They used the stream function formulation up to first order of the deformation parameter to obtain
the stream function. Srinivasacharya [28] studied the effect of permeability on the drag force experienced by a
porous approximate sphere by using the Brinkman and Stokes stream function formulation for flow in a porous
region and a clear fluid region, respectively, and also deduced the results for flow past a spherical body as a
special case (deformation parameter tends to zero). Deo [29] evaluated the drag force experienced by each
deformed porous oblate spheroidal particle in a cell using the Happel boundary condition. Deo and Gupta [30]
investigated the Stokes flow past a swarm of porous approximately spheroidal particles using the Kuwabara
boundary condition at the cell surface. They studied the dependence of the drag force on the permeability of
the medium for different values of the deformation parameters for a spheroid in an unbounded medium and
also analysed the effect of volume fraction of drag force for a spheroid in a cell case. Yadav and Deo [31]
investigated the creeping flow past a porous spheroid embedded in another porous medium and observed the
effect of the permeability parameter for one medium on shear stress and drag experienced by the particle for
different porosities and different values of permeability parameters for the other medium. Yadav et al. [32]
evaluated the permeability of a swarm of deformed porous spheroidal particles using the cell model technique
and graphically discussed the behaviour of drag force and hydrodynamic permeability with volume fraction,
permeability parameter, deformation parameter, etc.

The present paper concerns the creeping flow past a swarm of solid spheroidal particles covered with
porous layers with a particle in cell approach. All four cell model boundary conditions have been employed
on the hypothetical cell surface, and the effect of volume fraction and other parameters on the drag force has
been studied.

2 Mathematical formulation of the problem

In the presentmodel,wehave taken amembranewhich consists of identical deformed spheroid particles covered
by the porous layer. In this model, we are assuming that the axis of each deformed spheroidal particle in the
membrane is parallel and all spheroidal particles are identical. Due to the above assumption, the considered
membrane will become homogeneous and isotropic. Here, we assume that the steady, axi-symmetric, viscous,
incompressible fluid is flowing through the membrane with uniform velocity Ũ (|Ũ| = Ũ ) directed along the
positive z axis and the porous deformed spheroid particles are stationary. To find the hydrodynamic permeability
of the membrane built up by the above identical deformed spheroid particles, we select a single particle from
the swarm and assume that it is confined within a hypothetical cell whose shape is the same as the selected
deformed spheroidal particle (Fig. 1).

This type of problem arises when the shape of the swarm of porous sphere will change because of the
applied force from the fluid flowing through the swarm of porous spherical particles. Let the surface of an
inner impermeable spheroid named as SIm be

r̃ = ã(1 + βmGm(ζ )), ã = d1(1 − ε), (1)

and the surface of a porous spheroid named as SP be

r̃ = b̃(1 + βmGm(ζ )), b̃ = d2(1 − ε). (2)
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Fig. 1 Physical model and coordinate system of the problem

The equation of the outer cell surface, i.e. the hypothetical surface SH , is

r̃ = c̃(1 + βmGm(ζ )), c̃ = d3(1 − ε). (3)

Here, βm is the deformation coefficient and Gm(ζ ) is the Gegenbauer function of first kind. Further, we
assume that the coefficient βm is sufficiently small, so that the higher powers of βm may be neglected. Under
is assumption, the flow of fluid outside the porous region will be governed by the Stokes equation (Happel and
Brenner [14]) with continuity condition:

∇̃ p̃o = μ̃o�̃ṽo, ∇̃.ṽo = 0. (4)

The flow of fluid through the porous region will be governed by the Brinkman equation [2], the governing
equation for flow inside the porous medium together with continuity condition being

∇̃ p̃i = μ̃i �̃ṽi − k̃ṽi , ∇̃.ṽi = 0, (5)

where k̃ is the hydrodynamic resistance of the porous region, which is inversely proportional to the hydrody-
namic permeability.

3 Solution of the problem

Let us introduce the following non-dimensional variables:

1

γ
= c̃

b̃
, r = r̃

b̃
, ∇ = ∇̃.b̃, � = �̃.b̃2, p = p̃

p̃o
, p̃o = Ũ .μ̃o

b̃
, s = so

λ
,

so = b̃

R̃b
, λ2 = μ̃i

μ̃o
, ν = ṽ

Ũ
, k = k̃ã2, R̃b =

√
μ̃o

k̃
, and ψo,i = ψ̃

Ũ ã2
. (6)
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By using the above non-dimensional variables, the governing equations (4)–(5) can be reduced in dimensionless
form as:

{∇ po = �νo

∇.νo = 0, (7)
{∇ pi = λ2�νi − s20ν

i

∇.νi = 0.
(8)

Due to axi-symmetric flow, all the physical quantities are independent of ϕ. Therefore, the velocity compo-
nent ṽϕ vanishes along ϕ-direction. Thus, the non-vanishing velocity components (vr , vθ , 0), satisfying the
equations of continuity in both regions, can be defined in terms of stream functions as:

vor = 1

r2 sin θ

∂ψo

∂θ
; voθ = − 1

r sin θ

∂ψo

∂r
, (9)

vir = 1

r2 sin θ

∂ψ i

∂θ
; viθ = − 1

r sin θ

∂ψ i

∂r
. (10)

By using Eqs. (9) and (10) in Eqs. (7) and (8), respectively, we can find the stream function formulation of
Eqs. (7) and (8) in spherical polar coordinates (r, θ, ϕ) with the origin located at the centre of the spheroidal
particle.

With this formulation, our differential equations (7) and (8) reduce to following fourth-order partial differ-
ential equations:

E2(E2ψo) = 0, (11)

E2(E2 − s2)ψ i = 0, (12)

where the operator

E2 = ∂2

∂r2
+ (1 − ζ 2)

r2
∂2

∂ζ 2 , ζ = cos θ. (13)

The tangential and normal stresses (Langlois [33]) for both regions are given by:

σ o
rζ (r, θ) = 1

r sin θ

[
∂2ψo

∂r2
− 2

r

∂ψo

∂r
− (1 − ζ 2)

r2
∂2ψo

∂ζ 2

]
, (14)

σ o
rr = −po + 2

∂vor

∂r
, (15)

σ i
rζ (r, θ) = λ2

r sin θ

[
∂2ψ i

∂r2
− 2

r

∂ψ i

∂r
− (1 − ζ 2)

r2
∂2ψ i

∂ζ 2

]
(16)

σ i
rr = −pi + 2λ2

∂vir

∂r
(17)

Now, again using Eqs. (9) and (10) in Eqs. (7) and (8), respectively, we will find the following relations:

∂po

∂r
= − 1

r2 sin θ

∂

∂θ
(E2ψo); ∂po

∂θ
= 1

sin θ

∂

∂r
(E2ψo); (18)

∂pi

∂r
= − λ2

r2 sin θ

∂

∂θ
(E2ψ i ) − s20v

i
r ;

1

r

∂pi

∂θ
= λ2

r sin θ

∂

∂r
(E2ψ i ) − s20v

i
θ . (19)

Therefore, we can find the pressure in both regions by using Eqs. (18) and (19).
The regular solution of the Stokes equation (11) on the axis of symmetry for axi-symmetric incompressible

creeping flow can be expressed (Happel and Brenner [14]) as

ψo(r, ζ ) =
∞∑

n=2

[Anr
n + Bnr

−n+1 + Cnr
−n+3 + Dnr

n+2]Gn(ζ ). (20)
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The complete regular solution of equation (11) on the axis of symmetry for axi-symmetric incompressible
slow flow can be expressed (Zlatanovski [26]) as:

ψ i (r, ζ ) =
∞∑

n=2

[
A∗
nr

n + B∗
nr

−n+1 + C∗
n y−n(sr) + D∗

n yn(sr)
]
Gn(ζ ), (21)

where ψ i are the stream functions and Gn(ζ ) is the Gegenbauer function of first kind and related to the
Legendre function Pn(ζ ) of first kind by the relation

Gn(ζ ) = Pn−2(ζ ) − Pn(ζ )

(2n − 1)
, n ≥ 2. (22)

Also, we have used the symbols

y±n(sr) =
√

πr

2
sν I±ν(sr), ν = n − 1

2
, (23)

where I±ν(sr) are the modified Bessel functions of first kind and of order ν (Abramowitz and Stegun [34]).
In particular, we have

y1(sr) = sinh(sr), y2(sr) = s cosh(sr) − 1

r
sinh(sr),

y−1(sr) = cosh(sr), y−2(sr) = σ sinh(sr) −
(
1

r

)
cosh(sr). (24)

Now, G0(ζ ) and G1(ζ ) will not be the part of solution because if we retain the terms multiplied by G0(ζ )and
G1(ζ ), then velocities will become irregular on the z axis. Therefore, we may now take the stream function
inside the porous region as:

ψ i = [a∗
2r

2 + b∗
2r

−1 + c∗
2 y−2(sr) + d∗

2 y2(sr)]G2(ζ )

+
∞∑

n

[A∗
nr

n + B∗
nr

−n+1 + C∗
n y−n(sr) + D∗

n yn(sr)]Gn(ζ ), (25)

while the stream function outside the porous region can be taken as:

ψo = [a2r2 + b2
r

+ c2r + d2r
4]G2(ζ ) +

∞∑

n

[Anr
n + Bnr

−n+1 + Cnr
−n+3 + Dnr

n+2]Gn(ζ ). (26)

It is important to note that the coefficients a2, b2, c2, d2, a∗
2 , b

∗
2, c

∗
2 and d∗

2 contribute to the flow past an
impermeable sphere composed by a porous layer (Yadav, et al. [12]), and consequently, we expect that all
other coefficients in (25) and (26) are of order βm . Therefore, except where these coefficients enter, we may
take the surface to be perfect sphere instead of either of their exact forms (1) or (2).

Boundary conditions
In order to find the solution of the above boundary value problem, it is necessary to define suitable boundary
conditions which are physically realistic and mathematically consistent. The suitable boundary conditions for
this problem are continuity of velocity components and normal stress along with the discontinuity in tangential
stress at r = 1 + βmGm(ζ ), which was proved by Ochoa-Tapia and Whitaker [35,36] with the help of the
volume averaging technique and continuity of the radial components of the fluid velocity on the outer cell
surface with suitable assumption of cell model technique for different models.

Mathematically,

On the impermeable surface r = �(1 + βmGm(ζ ))

vir = 0, viθ = 0. (27)

On the porous surface r = 1 + βmGm(ζ )
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continuity of velocity components:
vor = vir , voθ = viθ , (28)

continuity of normal stress:

−po + 2
∂vor

∂r
= −pi + 2λ2

∂vir

∂r
, (29)

stress jump condition:

λ2

(
1

r

∂vir

∂θ
+ ∂viθ

∂r
− viθ

r

)

−
(
1

r

∂vor

∂θ
+ ∂voθ

∂r
− voθ

r

)
= β√

k
viθ . (30)

On the hypothetical cell surface: r = 1
γ
(1 + βmGm(ζ ))

The continuity of the radial components of fluid velocity:

vor = cos θ. (31)

Assumption of cell model technique for different models:
Happel [6,7] assumes that the tangential stress vanishes on the outer cell surface:

σ o
rζ (r, θ) = 0, i.e.,

∂2ψo

∂r2
− 2

r

∂ψo

∂r
− (1 − ζ 2)

r2
∂2ψo

∂ζ 2 = 0, (32)

Kuwabara [8] assumes that the vorticity is zero on the outer cell surface, i.e. the curl of the velocity vector (ṽo)
vanishes on the outer cell surface:

rot(ṽo) = 0 i.e.
∂2ψo

∂r2
+ (1 − ζ 2)

r2
∂2ψo

∂ζ 2 = 0, (33)

Kvashnin [11] introduced a symmetry condition on the outer cell surface:

∂voθ

∂r
= 0, (34)

Mehta–Morse [9] assumes homogeneity of the flow on the outer cell surface:

voθ = − sin θ. (35)

Determination of arbitrary constants
With the help of stream function given by Eqs. (25) and (26) for both the regions respectively, we can obtain
the components of velocity, shear and normal stress and pressure for both regions by using formulae (9)–(10)
and (14)–(19). Substituting the values of po,pi ,v0r , vir , voθ , viθ , σ o

rζ (r, θ) and σ i
rζ (r, θ) in Eqs. (27)–(35) and

using the following identities:

y′
n(sr) = s2yn−1(sr) + 1 − n

r
yn(sr), y′−n(sr) = s2y−n+1(sr) + 1 − n

r
y−n(sr),

y′′
n (sr) =

[
s2 + n(n − 1)

r2

]
yn(sr), y′′−n(sr) =

[
s2 + n(n − 1)

r2

]
y−n(sr),

Gm(ζ )G2(ζ ) = − (m − 2)(m − 3)

2(2m − 1)(2m − 3)
Gm−2(ζ ) + m(m − 1)

(2m + 1)(2m − 3)
Gm(ζ )

− (m + 1)(m + 2)

2(2m − 1)(2m + 1)
Gm+2(ζ ),

P1(ζ )Gm(ζ ) = (m − 2)

(2m − 1)(2m − 3)
Pm−3(ζ ) + 1

(2m + 1)(2m − 3)
Pm−1(ζ )

− (m + 1)

(2m + 1)(2m − 1)
Pm+1(ζ ),
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we obtain
[�3a∗

2 + b∗
2 + �y−2(s�)c

∗
2 + �y2(s�)d

∗
2 ]P1(ζ ) + [3�3a∗

2 + s2�2y−1(s�)c
∗
2 + s2�2y1(s�)d

∗
2 ]

βm(ζ )Gm(ζ )P1(ζ ) +
∞∑

n

[�n+1A∗
n + �−n+2B∗

n + �y−n(s�)C
∗
n + �y−n(s�)D

∗
n ]Pn−1(ζ ) = 0, (36)

[2�3a∗
2 − b∗

2 + (s2�2y−1(s�) − �y−2(s�))c
∗
2 + (s2�2y1(s�) − �y2(s�))d

∗
2 ]G2(ζ )

+[6�3a∗
2 + {s2�3y−2(s�) + 2s2�2y−1(s�)}c∗

2 + {s2�3y2(s�) + 2s2�2y1(s�)}d∗
2 ]βm(ζ )

Gm(ζ )G2(ζ ) +
∞∑

n

[n�n+1A∗
n + (1 − n)�−n+2B∗

n + �2y′−n(s�)C
∗
n + �2y′

n(s�)D
∗
n ]Gn(ζ ) = 0, (37)

[a2 + b2 + c2 + d2 − a∗
2 − b∗

2 − d∗
2 y−2(s) − d∗

2 y2(s)]P1(ζ ) + [2a2 − b2 + c2 + 4d2 − 2a∗
2 + b∗

2

+ c∗
2(y−2(s) − s2y−1(s)) + d∗

2 (y2(s) − s2y1(s))]βm(ζ )Gm(ζ )P1(ζ )

+
∞∑

n

[An + Bn + Cn + Dn−A∗
n − B∗

n − C∗
n y−n(s) − D∗

n yn(s)]Pn−1(ζ ) = 0, (38)

[2a2 − b2 + c2 + 4d2 − 2a∗
2 + b∗

2 − c∗
2(s

2y−1(s) − y−2(s)) − d∗
2 (s2y1(s) − y2(s))]G2(ζ )

+[2a2 + 2b2 + 12d2 − 2a∗
2 − 2b∗

2 − c∗
2(s

2 + 2)y−2(s) − d∗
2 (s2 + 2)y2(s)]βm(ζ )G2(ζ )Gm(ζ )

+
∞∑

n

[nAn + (1 − n)Bn + (3 − n)Cn + (n + 2)Dn − nA∗
n − (1 − n)B∗

n − C∗
n {s2y−n+1(s) + (1 − n)y−n(s)}

− D∗
n (s

2yn−1(s) + (1 − n)yn(s))]Gn(ζ ) = 0, (39)
[12b2 + 6c2 + 12d2 + 2s2λ2a∗

2 − (s2λ2 + 12λ2)b∗
2 − {12λ2y−2(s) − 4λ2s2y−1(s)}c∗

2

−{12λ2y2(s) − 4λ2s2y1(s)}d∗
2 ]P1(ζ ) + [−12b2 + 6c2 + 48d2 + 8λ2s2a∗

2 − (s2λ2 − 12λ2)b∗
2

+{(4s2λ2 + 12λ2)y−2(s) − 4s2λ2y−1(s)}c∗
2 + {(4s2λ2 + 12λ2)y2(s) − 4s2λ2y1(s)}d∗

2 ]βm(ζ )Gm(ζ )P1(ζ )

+
∞∑

n

4(2 − n)An + 4(n + 1)Bn + 4(n2 + n − 3)

n
Cn + 4(n2 − 3n − 1)

1 − n
Dn

+
{
2λ2s2

n − 1
+ 4λ2(n − 2)

}
A∗
n −

{
2λ2s2

n
+ 4λ2(n + 1)

}
B∗
n + {4λ2s2y−n+1(s) − 4λ2(n + 1)y−n(s)}C∗

n

+{4λ2s2yn−1(s) − λ2(n + 1)yn(s)}D∗
n ]Gm(ζ ) = 0, (40)

[
− 6b2 − 6d2 − 2β√

k
a∗
2 + (6λ2 + β√

k
)b∗

2 +
{
(λ2((s2 + 6)y−2(s) − 2s2y−1(s)) − β√

k
(s2y−1(s) − y−2(s))

}
c∗
2

+
{
(λ2((s2 + 6)y2(s) − 2s2y1(s)) − β√

k
(s2y1(s) − y2(s))

}
d∗
2

]
G2(ζ ) + [6b2 − 24d2 − 6β√

k
a∗
2 − 6λ2b∗

2

+
{
λ2((s4 + 2s2)y−1(s) − (s2 + 6)y−2(s)) − β√

k
s2(2y−1(s) + y−2(s))

}
c∗
2 + {λ2((s4 + 2s2)y1(s) − (s2 + 6)y2(s))

− β√
k
s2(2y1(s) + y2(s))}d∗

2 ]βm(ζ )Gm(ζ )G2(ζ ) +
∞∑

n

[−2n(n − 2)An − 2(n2 − 1)Bn − 2n(n − 2)Cn − 2(n2 − 1)Dn

+ (λ2(2n2 − 4n) − β√
k
n)A∗

n + {2λ2(n2 − 1) + β√
k
(n − 1)}B∗

n + {λ2((s2 + 2n2 − 2)y−n(s) − 2s2y−n+1(s))

− β√
k
(s2y−n+1(s) + (1 − n)y−n(s))}C∗

n + {λ2((s2 + 2n2 − 2)yn(s) − 2s2yn−1(s))

− β√
k
(s2yn−1(s) + (1 − n)yn(s))}D∗

n ]Gm(ζ ) = 0, (41)

[a2γ 2 + b2γ
5 + c2γ

3 + d2 + γ 2]P1(ζ ) −
[

3b2γ
5 + c2γ

3 − 2d2]βm(ζ )Gm(ζ )P1(ζ ) +
∞∑

n

[Anγ
4−n

+ Bnγ
n+3 + Cnγ

n+1 + Dnγ
2−n

]

Pn−1(ζ ) = 0. (42)
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Happel’s boundary condition:

[6b2γ 5 + 6d2]G2(ζ ) + [24b2γ 5 + 6d2]βm(ζ )Gm(ζ )G2(ζ )

+
∞∑

n

[(2n2 − 4n)Anγ
4−n + (2n2 − 2)Bnγ

n+3 + (2n2 − 4n)Cnγ
n+1

+ (2n2 − 2)Dnγ
2−n]Gm(ζ ) = 0. (43)

Kuwabara’s boundary condition:

[−2γ 3c2 + 10d2]G2(ζ ) + [2γ 3c2 + 20d2]βm(ζ )Gm(ζ )G2(ζ )

+
∞∑

n

[(6 − 4n)γ n+1Cn + (4n + 2)γ 2−nDn]Gm(ζ ) = 0. (44)

Kvashnin’s boundary condition:

[3γ 5b2 − γ 3c2 + 8d2]G2(ζ ) + [−12γ 5b2 + 2γ 3c2 + 8d2]βm(ζ )Gm(ζ )G2(ζ )

+
∞∑

n

[n(n − 2)γ 4−n An + (n2 − 1)γ n+3Bn + (n − 1)(n − 3)γ n+1Cn

+ n(n + 2)γ 2−nDn]Gm(ζ ) = 0. (45)

Mehta–Morse’s boundary condition:

[2γ 2a2 − γ 5b2 + γ 3c2 + 4d2 + 2γ 2]G2(ζ ) + [3γ 5b2 − γ 3c2 + 8d2]βm(ζ )Gm(ζ )G2(ζ )

+
∞∑

n

[nγ 4−n An + (1 − n)γ n+3Bn + (3 − n)γ n+1Cn + (n + 2)γ 2−nDn]Gm(ζ ) = 0. (46)

In this way, we obtain seven equations containing eight arbitrary constants in leading terms. Thus, the values of
the arbitrary constants appearing in the leading terms will depend on the selection of the model used, i.e. on the
boundary conditions (43)–(46). All the arbitrary constants can be obtained by using the perturbation method.

Solving the leading terms in Eqs. (36)–(42) by taking each model, respectively, with the help of Mathe-
matica software, we can find the arbitrary constants a2, b2, c2, d2, a∗

2 , b
∗
2, c

∗
2 and d

∗
2 . Substituting these values

corresponding to each model into Eqs. (36)–(46), we have

∞∑

n

[�n+1A∗
n + �−n+2B∗

n + �y−n(s�)C
∗
n + �y−n(s�)D

∗
n ]Pn−1(ζ ) = 0, (47)

∞∑

n

[n�n+1A∗
n + (1 − n)�−n+2B∗

n + �2y′−n(s�)C
∗
n + �2y′

n(s�)D
∗
n ]Gn(ζ )

= p2βm[Em−2Gm−2(ζ ) + EmGm(ζ ) + Em+2Gm+2(ζ )], (48)
∞∑

n

[An + Bn + Cn + Dn−A∗
n − B∗

n − C∗
n y−n(s) − D∗

n yn(s)]Pn−1(ζ ) = 0, (49)

∞∑

n

[nAn + (1 − n)Bn + (3 − n)Cn + (n + 2)Dn − nA∗
n − (1 − n)B∗

n − C∗
n {s2y−n+1(s) + (1 − n)y−n(s)}

− D∗
n(s

2yn−1(s) + (1 − n)yn(s))]Gn(ζ ) = q2βm[Em−2Gm−2(ζ ) + EmGm(ζ ) + Em+2Gm+2(ζ )], (50)
∞∑

n

4(2 − n)An + 4(n + 1)Bn + 4(n2 + n − 3)

n
Cn + 4(n2 − 3n − 1)

1 − n
Dn +

{
2λ2s2

n − 1
+ 4λ2(n − 2)

}
A∗
n

−
{
2λ2s2

n
+ 4λ2(n + 1)

}
B∗
n + {4λ2s2y−n+1(s) − 4λ2(n + 1)y−n(s)}C∗

n + {4λ2s2yn−1(s)

− λ2(n + 1)yn(s)}D∗
n ]Gm(ζ ) = s2βm[Tm−2Pm−3(ζ ) + Tm Pm−1(ζ ) + Tm+2Pm+1(ζ )], (51)
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∞∑

n

[−2n(n − 2)An − 2(n2 − 1)Bn − 2n(n − 2)Cn − 2(n2 − 1)Dn +
(

λ2(2n2 − 4n) − β√
k
n

)
A∗
n

+ {2λ2(n2 − 1) + β√
k
(n − 1)}B∗

n + {λ2((s2 + 2n2 − 2)y−n(s) − 2s2y−n+1(s)) − β√
k
(s2y−n+1(s)

+ (1 − n)y−n(s))}C∗
n + {λ2((s2 + 2n2 − 2)yn(s) − 2s2yn−1(s))

− β√
k
(s2yn−1(s) + (1 − n)yn(s))}D∗

n ]Gm(ζ )

= u2βm[Em−2Gm−2(ζ ) + EmGm(ζ ) + Em+2Gm+2(ζ )], (52)
∞∑

n

[Anγ
4−n + Bnγ

n+3 + Cnγ
n+1 + Dnγ

2−n]Pn−1(ζ )

= w2βm[Tm−2Pm−3(ζ ) + Tm Pm−1(ζ ) + Tm+2Pm+1(ζ )]. (53)

Happel’s boundary condition:

∞∑

n

[(2n2 − 4n)Anγ
4−n + (2n2 − 2)Bnγ

n+3 + (2n2 − 4n)Cnγ
n+1 + (2n2 − 2)Dnγ

2−n]Gm(ζ )

= t2βm[Em−2Gm−2(ζ ) + EmGm(ζ ) + Em+2Gm+2(ζ )]. (54)

Kuwabara’s boundary condition:

∞∑

n

[(6 − 4n)γ n+1Cn + (4n + 2)γ 2−nDn]Gm(ζ )

= t2βm[Em−2Gm−2(ζ ) + EmGm(ζ ) + Em+2Gm+2(ζ )]. (55)

Kvashnin’s boundary condition:

∞∑

n

[n(n − 2)γ 4−n An + (n2 − 1)γ n+3Bn + (n − 1)(n − 3)γ n+1Cn + n(n + 2)γ 2−nDn]Gm(ζ )

= t2βm[Em−2Gm−2(ζ ) + EmGm(ζ ) + Em+2Gm+2(ζ )]. (56)

Mehta–Morse’s boundary condition:

∞∑

n

[nγ 4−n An + (1 − n)γ n+3Bn + (3 − n)γ n+1Cn + (n + 2)γ 2−nDn]Gm(ζ )

= t2βm[Em−2Gm−2(ζ ) + EmGm(ζ ) + Em+2Gm+2(ζ )], (57)

where

p = 2c2 − 10d2 + s2b1d
∗
2 ,

q2 = 2c2 − 10d2 + s2y−2(s)c
∗
2 + s2y2(s) d

∗
2 ,

s2 = [24b2 − 36d2 − 6λ2s2a∗
2 − 24λ2b∗

2 − {(4s2λ2 + 12λ2)y−2(s) − 8s2λ2y−1(s)}c∗
2

− {(4s2λ2 + 12λ2)y2(s) − 8s2λ2y1(s)}d∗
2 ],

u2 = [30d2 + 8β√
k
a∗
2 + β√

k
b∗
2 − {λ2s4y−1(s) − 3β√

k
s2y−1(s) + β√

k
(1 − s2)y−2(s)}c∗

2

− {λ2s4y1(s) − 3β√
k
s2y1(s) + β√

k
(1 − s2)y2(s)}d∗

2 ,

w2 =

⎧
⎪⎪⎨

⎪⎪⎩

c2γ 3 − 5d2, for theHappelmodel
3b2γ 5 + 3d2, for theKuwabaramodel
2c2γ 3 − 10d2, for theKvashninmodel
0, for theMehta–Morsemodel
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t2 =

⎧
⎪⎨

⎪⎩

−30d2, for the Happel model
−30d2, for the Kuwabara model
2c2γ 3 − 40d2, for the Kvashnin model
2c2γ 3 − 10d2, for the Mehta–Morse model

Em−2 = −m − 3

2
Tm−2, Em = m(m − 1)Tm, Em+2 = m + 2

2
Tm+2,

Tm−2 = m − 2

(2m − 1)(2m − 3)
, Tm = 1

(2m + 1)(2m − 3)
, Tm+2 = 1 + m

(2m + 1)(1 − 2m)
.

The non-vanishing coefficients An, Bn,Cn, Dn, A∗
n, B

∗
n ,C∗

n and D∗
n which correspond to n = m−2,m,m+2

can be obtained from Eqs. (47)–(53) together with one of the models (54)–(57).
Therefore, we have determined the explicit expression for the stream functions for the flow outside and

inside of the porous deformed spheroid as:

ψo =
[
a2r

2 + b2
r

+ c2r + d2r
4
]
G2(ζ ) + [Am−2r

m−2+Bnr
−m+3+Cm−2r

−m+5 + Dm−2r
−m+4]Gm−2(ζ )

+ [
Amr

m + Bmr
−m+1 + Cmr

−m+3 + Dmr
m+2]Gm(ζ ) + [Am+2r

m+2 + Bm+2r
−m−1 + Cm+2r

−m+1

+ Dm+2r
m+4]Gm+2(ζ ), (58)

ψ i = [
a∗
2r

2 + b∗
2r

−1 + c∗
2 y−2(sr) + d∗

2 y2(sr)
]
G2(ζ ) + [A∗

m−2r
m−2 + B∗

m−2r
−m+3

+C∗
m−2y−m+2(sr) + D∗

m−2ym−2(sr)]Gm−2(ζ ) + [A∗
mr

m + B∗
mr

−m+1 + C∗
m y−m(sr)

+ D∗
m ym(sr)]Gm(ζ ) + [

A∗
m+2r

m+2 + B∗
m+2r

−m−1 + C∗
m+2y−m−2(sr)D

∗
m+2ym+2(sr)

]
Gm+2(ζ ).

(59)

3.1 Hydrodynamic
permeability of a membrane built up by an impermeable oblate spheroid coated by a porous layer

Here, we consider the steady, axi-symmetric flow of viscous, incompressible fluid through an impermeable
oblate spheroid coated with a porous layer as a particular example of the preceding analysis. The Cartesian
equation of a porous oblate spheroid enclosing an impermeable spheroid can be taken as

x2 + y2

d2
+ z2

d2(1 − ε)2
= 1, (60)

where d is the equatorial radius of the porous oblate spheroid and ε is the deformation parameter which we
will take very small so that we can omit the squares and higher powers of ε. The polar form of the equation
of the porous oblate spheroid can be written as

r̃ = b̃(1 + 2εG2(ζ )). (61)

Here, it may be mentioned that for ε > 0, the shape of the spheroid will be oblate, whereas for ε < 0 the shape
will become prolate. Comparison with Eq. (1) leads to the values of m = 2, βm = 2ε.

Since A0, B0,C0, D0, A∗
0, B

∗
0 ,C∗

0 , D
∗
0 all become zero and further using (61), we find from Eqs. (58)

and (59) that the stream functions around and through the porous oblate spheroid enclosing an impermeable
spheroid are

ψo =
[
a2r

2 + b2
r

+ c2r + d2r
4
]
G2(ζ )

+ [
A2r

2 + B2r
−1 + C2r + D2r

4]G2(ζ ) + [
A4r

4 + B4r
−3 + C4r

−1 + D4r
6]G4(ζ ), (62)

ψ i = [
a∗
2r

2 + b∗
2r

−1 + c∗
2 y−2(sr) + d∗

2 y2(sr)
]
G2(ζ ) + [

A∗
2r

2 + B∗
2r

−1 + C∗
2 y−2(sr) + D∗

2 y2(sr)
]
G2(ζ )

+ [
A∗
4r

4 + B∗
4r

−3 + C∗
4 y−4(sr) + D∗

4 y4(sr)
]
G4(ζ ). (63)
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Investigation of flow in concentrated dispersive systems, built up by porous oblate spheroidal particles enclos-
ing a solid core (into which any membranes also fall), is important for both natural and industrial processes.
In this paper, we are interested to see the effect of particle volume fraction, deformation parameter, viscosity
and permeability of the porous medium, etc., on the drag force exerted by the fluid on the membrane and the
hydrodynamic permeability of the membrane.

The drag force experienced by the porous oblate spheroid enclosing a solid core under the condition of
stress jump can be investigated by using the formula (Happel and Brenner, [14], p. 115) as

F̃ = πμ̃oŨ b̃

π∫

0

� 3 ∂

∂r

(
E2ψo

� 2

)
rdθ. (64)

Here, � = r sin θ and

E2ψo = −2

[{
(c2 + C2)

(
1

r

)
− 5(d2 + D2)r

2
}
G2(ζ ) +

{
5C4

1

r3
− 9D4r

4
}
G4(ζ )

]
. (65)

Using the value of E2ψo in Eq. (64) and integrating, we get the drag force experienced by the porous oblate
spheroid enclosing a solid core as:

F̃ = 4πμ̃odŨ [(1 − ε)c2 + C2]. (66)

It is important to note that only the Stokes coefficients c2 and C2 of the stream function contribute to the drag
force. The values of c2 for each model can be obtained by solving the leading terms of Eqs. (36)–(42) with
one of the Eqs. (43)–(46). Solving Eqs. (47)–(53) with one of the Eqs. (54)–(57) for m = 2, we can find the
values of A2, B2,C2, D2, A∗

2, B
∗
2 ,C∗

2 , D
∗
2 , A4, B4,C4, D4, A∗

4, B
∗
4 ,C∗

4 and D∗
4 .

The hydrodynamic permeability of a membrane L̃11 is defined as the ratio of the uniform flow rate Ũ to
the cell gradient pressure F̃/Ṽ [14]:

L̃11 = Ũ

F̃/Ṽ
, (67)

with Ṽ = 4
3πd

2
2 c̃ being the volume of the cell.

Substituting the value of F̃ from Eq. (66) and the value of Ṽ from above into (67), we obtain the hydro-
dynamic permeability of a membrane as:

L̃11 = 1

3γ 3

(1 − ε)

{(1 − ε)c2 + C2}
d2

μ̃o
= L11

d2

μ̃o
, (68)

with L11 = 1
3γ 3

(1−ε)
{(1−ε)c2+C2} being the dimensionless hydrodynamic permeability of a membrane. By substitut-

ing the value of C1 and C2 for all models in the above equation, respectively, we can obtain the dimensionless
hydrodynamic permeability of a membrane for all models.

The effect of penetrability s on the non-dimensional hydrodynamic permeability, L11, of a membrane con-
structed by impermeable oblate spheroidal particles covered by a porous layer is shown in Fig. 2. This figure
shows that the non-dimensional hydrodynamic permeability, L11, of a membrane decreases with increasing
penetrability parameter s for all four models, at γ = 0.8, λ = 1, ε = 0.05, � = 0.5, k = 0.5 and β = 0.5.
From the graph, it is also observed that the rate of decrease in the hydrodynamic permeability of a membrane
for Mehta–Morse’s model is higher than for the other three models.

The variation of the natural logarithm of the non-dimensional hydrodynamic permeability, L11, of a mem-
brane with the viscosity ratio λ in the cell for all four models, at γ = 0.4, s = 5, ε = 0.1, � = 0.5, k = 0.5
and β = 0.5, is explained in Fig. 3. From the graph, we can reach the interpretation that the hydrodynamic
permeability of a membrane decreases by increasing the viscosity ratio, i.e., the flow of the fluid becomes
difficult with increasing inner viscosity. Also, we found that the nature of graph’s turn means that the decrease
in hydrodynamic permeability slows down with viscosity ratio if we take γ = 0.5 or more.

Figure 4 represents the inter-dependence of the natural logarithm of the non-dimensional hydrodynamic
permeability, L11, of a membrane with cell volume fraction γ for all four models, at λ = 2, s = 4, ε = 0.1
and β = 0.5. The graph shows that the hydrodynamic permeability of a membrane in the cell decreases by
increasing the particle volume fraction γ . Also we are getting the interpretation that the rate of decrease in L11
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Kvashnin 
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11Ln( )L

s
Fig. 2 Variation of natural logarithm of the dimensionless hydrodynamic permeability, L11, of a membrane with parameter s for
the all four models at, γ = 0.8, λ = 1, ε = 0.05, � = 0.5, k = 0.5 and β = 0.5

11Ln( )L

Fig. 3 Variation of natural logarithm of the dimensionless hydrodynamic permeability, L11, of a membrane with parameter λ for
all four models at, γ = 0.4, s = 5, ε = 0.1, � = 0.5, k = 0.5 and β = 0.5

11Ln( )L

γ

Fig. 4 Dependence of natural logarithm of the dimensionless hydrodynamic permeability, L11, of a membrane with parameter γ
for all models at, λ = 2, s = 4, ε = 0.1, � = 0.5, k = 0.5 and β = 0.5

is low for high values of particle volume fraction γ for Kuwabara’s and Kvashnin’s model and almost equal;
it is high for high values of particle volume fraction γ for Happel’s and Mehta–Morse’s model; and all four
models agree on a very low particle volume fraction, which is similar to the case of a membrane built up by
spherical and cylindrical particles. The effect of the deformation coefficient ε on the natural logarithm of the
non-dimensional hydrodynamic permeability, L11, of amembrane for all fourmodels, at λ = 1, s = 5, γ = 0.6
and β = 0.5, is discussed in Fig. 5. This figure shows that the hydrodynamic permeability of a membrane
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ε

11Ln( )L

Fig. 5 Variation of natural logarithm of the dimensionless hydrodynamic permeability, L11, of a membrane with parameter ε for
all models at, λ = 1, s = 5, γ = 0.6, � = 0.5, k = 0.5 and β = 0.5

LnL11

β

Fig. 6 Variation of natural logarithm of the dimensionless hydrodynamic permeability, L11, of a membrane with the stress jump
coefficient β at γ = 0.3, ε = 0.3 s = 5, � = 0.5, k = 0.5 and λ = 1

decreases with an increase of the deformation parameter ε. The value of the hydrodynamic permeability of a
membrane for Mehta–Morse’s model is higher than the value of hydrodynamic permeability of a membrane
for the other three models for higher deformation parameter.

The effect of the stress jump coefficient on the non-dimensional hydrodynamic permeability, L11, of a
membrane for all four models is shown in Fig. 6 when λ = 1, γ = 0.3, s = 5, ε = 0.3, � = 0.5 and k = 0.5.
From the graph, we can reach the interpretation that the hydrodynamic permeability of a membrane increases
by increasing the stress jump coefficient.

3.2 Hydrodynamic permeability of a membrane built up by porous oblate spheroid

In this section,we consider amembrane (Fig. 7a) built up by porous oblate spheroids and steady, axi-symmetric,

viscous, incompressible fluid is flowing through a membrane with uniform velocity Ũ(

∣∣
∣Ũ

∣∣
∣ = Ũ ) along the

positive z axis and the membrane is assumed as stationary. This model can be obtained by taking � → 0 in the
preceding analysis of Sect. 3.1.

To find the hydrodynamic permeability of a membrane during the flow of the fluid, we used the cell model
technique, and hence, we select a porous oblate r̃ = ã(1+ 2εG2(ζ )) from the membrane and assume that it is
confined by the hypothetical cell r̃ = b̃(1+ 2εG2(ζ )) with the same geometry as the porous oblate (Fig. 7b).
In this case, the stream function formulation of the governing equations for the flow outside the porous region
and inside the porous region, respectively, will become:
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z-axis z-axis θv rv

  d2         d1

porous oblate 

hypothe�cal cell 

(a) (b)
Fig. 7 aMembrane built up by porous oblate spheroid. b Coordinate system of the problem
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s

Fig. 8 Variation of natural logarithm of the dimensionless hydrodynamic permeability, L11, of a membrane built up by porous
oblate spheroid with parameter s for the all four models at, γ = 0.8, λ = 1, ε = 0.05, k = 0.5 and β = 0.5

ψo =
[
a2r

2 + b2
r

+ c2r + d2r
4
]
G2(ζ ) + [

A2r
2 + B2r

−1 + C2r + D2r
4]G2(ζ )

+ [
A4r

4 + B4r
−3 + C4r

−1 + D4r
6]G4(ζ ), (69)

ψ i = [
a∗
2r

2 + d∗
2 y2(sr)

]
G2(ζ ) + [A∗

2r
2 + D∗

2 y2(sr)]G2(ζ ) + [A∗
4r

4 + D∗
4 y4(sr)]G4(ζ ). (70)

The arbitrary constants a2, b2, c2, d2, A2, B2,C2, D2, A4, B4,C4, D4, a∗
2 , d

∗
2 , A∗

2, D
∗
2 , A

∗
4 and D∗

4 can be
obtained by using the boundary conditions (28)–(30) on the porous–fluid interface and (31)–(35) on the
hypothetical cell with the perturbation method approach. After finding the arbitrary constants, we can obtain
the permeability of the membrane with the help of L11 = 1

3γ 3
(1−ε)

{(1−ε)c2+C2} .
The effect of various parameters like permeability parameter s, viscosity ratio λ, particle volume fraction

γ , deformation parameter ε and stress jump coefficient β on the dimensionless hydrodynamic permeability,
L11, of a membrane built up by porous oblate spheroids is shown in Fig. 8, 9, 10, 11 and 12. These figures
clearly show the effect of these parameters on the hydrodynamic permeability of the membrane. The nature of
the variation in the dimensionless hydrodynamic permeability, L11, of a membrane built up by porous oblate
spheroidwith different parameters are almost same as in the case of amembrane built up by impermeable oblate
spheroids coated with a porous layer. From these figures, it is also observed that the dimensionless hydrody-
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Fig. 9 Variation of natural logarithm of the dimensionless hydrodynamic permeability, L11, of a membrane built up by porous
oblate spheroid with parameter λ for all four models at, γ = 0.4, s = 5, ε = 0.1, k = 0.5 and β = 0.5

11Ln( )L

γ
Fig. 10 Dependence of natural logarithm of the dimensionless hydrodynamic permeability, L11, of amembrane built up by porous
oblate spheroid with parameter γ for all models at, λ = 2, s = 4, ε = 0.1, k = 0.5 and β = 0.5

ε

11Ln( )L

Fig. 11 Variation of natural logarithm of the dimensionless hydrodynamic permeability, L11, of a membrane built up by porous
oblate spheroid with parameter ε for all models at, λ = 1, s = 5, γ = 0.6, � = 0.5, k = 0.5 and β = 0.5

namic permeability, L11, of a membrane built up by porous oblate spheroids is higher than the hydrodynamic
permeability, L11, of a membrane built up by impermeable oblate spheroids coated with a porous layer.

The ratio � of drag force F̃ = 4πμ̃odŨ [(1 − ε)c2 + C2] to Stokes force F̃S = 6πdμ̃oŨ will be

� = 2

3
[(1 − ε)c2 + C2]. (71)
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LnL11

β

Fig. 12 Variation of natural logarithm of the dimensionless hydrodynamic permeability, L11, of a membrane built up by porous
oblate spheroid with the stress jump coefficient β at γ = 0.3, ε = 0.3 s = 5, k = 0.5 and λ = 1

λ

sΩ

Fig. 13 Variation of � with λ and s when β = 0.5 and ε = 0.3

The effect of viscosity ratio λ and permeability parameter s on the drag force ratio� is shown in Fig. 13. From
this figure, we obtain that the drag force ratio � increases with increasing viscosity ratio λ and permeability
parameter s. It is also found that the variation in� for higher values of viscosity ratio λ becomes almost constant
for a given permeability parameter s. The variation of�with deformation parameter ε and permeability param-
eter s is shown in Fig. 14 with the conclusion that the ratio � increases with the permeability parameter s, but
it decreases when the deformation parameter ε increases. The effect of viscosity ratio, deformation parameter
and stress jump coefficient, permeability parameter on � is discussed in Figs. 15 and 16, respectively.

Particular Cases

i. Flow through a membrane composed of a porous oblate spheroid in an unbounded medium
When b̃ → ∞, i.e. γ → 0, our present problem will become the porous oblate spheroid in an unbounded
medium. In this case, the values of hydrodynamic drag force and drag force ratio (with stokes force) �,
respectively, become

F̃ = 4πμ̃od1Ũ X, (72)

� = 2

3
X, (73)



1886 P. K. Yadav et al.

ε

s

Ω

Fig. 14 Variation of � with ε and s when β = 0.5 and λ = 5

λ

ε
Ω

Fig. 15 Variation of � with λ and ε when β = 0.5 and s = 5
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Fig. 16 Variation of � with β and s when λ = 5 and ε = 0.5
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ii. Flow through solid oblate spheroid in a cell
Under the limiting case s → ∞, the considered physical problems will reduce to the problem of flow through
the solid oblate spheroid in a cell. In this case, the values of dimensionless hydrodynamic permeability for all
the models become:
Happel’s model:

L11 = − 5(−1 + γ )4(1 + γ )2(2 + γ + 2γ 2)2(−1 + ε)

3γ 3(3 + 2γ 5)(−5(−2 − γ + γ 3 + 2γ 4) + (−2 + γ (5 + 3γ (4 + γ (3 + 2γ ))))ε)
. (74)

Kuwabara’s model:

L11 = − 2(−1 + γ )4(5 + γ (6 + γ (3 + γ )))2(−1 + ε)

9γ 3(−5(−1 + γ )(5 + γ (6 + γ (3 + γ ))) + (−5 + γ (8 + 7γ (3 + γ (2 + γ ))))ε)
. (75)

Kvashnin’s model:

L11 = − 5(−1 + γ )4(16 + γ (21 + γ (15 + 8γ )))2(−1 + ε)

18γ 3(4 + γ 5)(−5γ (−5 + γ (6 + γ (7 + 8γ ))) − 16(−5 + ε) + γ (31 + γ (78 + γ (55 + 32γ )))ε)
.

(76)

Mehta–Morse’s model:

L11 = − 5(−1 + γ )3(4 + γ (7 + 4γ ))(−1 + ε)

18γ 3(1 + γ + γ 2 + γ 3 + γ 4)(−5 + ε)
. (77)

These results agree with the previously established results of Yadav et al. [32].

iii. Flow through solid oblate spheroid in an unbounded medium
When b̃ → ∞, i.e. γ → 0 and s → ∞, then the physical problem will reduce to the flow through a solid
oblate spheroid in an unbounded medium, and in this case, the drag force exerted on the solid oblate spheroid
by the flow of fluid and the drag force ratio (with Stokes force) �, respectively, are given as

F̃ = 6πμ̃od1Ũ
(
1 − ε

5

)
, (78)

� = 1 − ε

5
. (79)

The result (78) for the drag force experienced by a solid oblate spheroid in an unbounded medium agrees with
the result of Palaniappan [21], Ramkissoon [25] and Datta and Deo [27] for the flow past a rigid spheroid in
an unbounded medium.

iv. Flow through porous sphere in cell
When ε → 0, then the model discussed in Sect. 3.2 will reduce to the flow of steady, viscous, incompressible
fluid through a swarm of porous spherical particles, and in this case, the expression for the dimensionless hydro-
dynamic permeability of the membrane built up by porous spherical particles for all models will be as follows:
Happel’s model:

L11 = (s(54(−1 + γ 5) + 3(18 + 12γ 5 + s2(−3 + 6γ + 8γ 5 − 6γ 6))λ2

− s2(6 + s2)(−1 + γ )3(1 + γ )(2 + γ + 2γ 2)λ4 + αβ(9(3 − 4γ + 2γ 5 + 4γ 6)

− (−12 + s2)(−1 + γ )3(1 + γ )(2 + γ + 2γ 2)λ2))Cosh[s]
+ (−3(3 + s2)(−6 + 6γ 5 + αβ(3 − 4γ + 2γ 5

+ 4γ 6)) + (−3s2(3 + 6γ − 6(−2 + γ )γ 5 + αβ(−2 + 3γ − 3γ 5 + 2γ 6)) + s4(6 − 6γ

+ 6(−1 + γ )γ 5 + αβ(−2 + 3γ − 3γ 5 + 2γ 6)) − 6(9 + 6γ 5 + 2αβ(−2 + 3γ

− 3γ 5 + 2γ 6)))λ2 + 3s2(2 + s2)(−1 + γ )3(1 + γ )(2 + γ

+ 2γ 2)λ4)Sinh[s])/(3γ 3(s(αβ(−36(−1 + γ 5) + (−12 + s2)(3 + 2γ 5)λ2)

+ s2λ2(18(−1 + γ 5) + (6 + s2)(3 + 2γ 5)λ2))Cosh[s] − (3s2λ2(2(3 + s2)(−1 + γ 5)

+ (2 + s2)(3 + 2γ 5)λ2)

+ αβ(−12(3 + s2)(−1 + γ 5)

+ (−12 − 3s2 + s4)(3 + 2γ 5)λ2))Sinh[s])) (80)
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Kuwabara’s model:

L11 = (s(−270 − 9(−30 + s2(5 + 2γ (−6 + γ 5)))λ2 − 2s2(6 + s2)(−1 + γ )3(5 + γ (6 + γ (3

+ γ )))λ4 + αβ(9(15 + 4γ (−6 + 5γ 2 + γ 5)) − 2(−12 + s2)(−1 + γ )3(5 + γ (6

+ γ (3 + γ )))λ2))Cosh[s] + (−3(3 + s2)(−30 + αβ(15 + 4γ (−6 + 5γ 2 + γ 5)))

+ (2s4(3(5 − 6γ + γ 6) + αβ(−5 + 9γ − 5γ 3 + γ 6)) − 3s2(15 + 36γ − 6γ 6

+ 2αβ(−5 + 9γ − 5γ 3 + γ 6)) − 6(45 + 4αβ(−5 + 9γ − 5γ 3 + γ 6)))λ2 + 6s2(2

+ s2)(−1 + γ )3(5 + γ (6 + γ (3 + γ )))λ4)Sinh[s])/(45γ 3(s(αβ(12 + (−12 + s2)λ2)

+ s2λ2(−6 + (6 + s2)λ2))Cosh[s] − (s2λ2(−2(3 + s2) + 3(2 + s2)λ2)

+ αβ(4(3 + s2) + (−12 − 3s2 + s4)λ2))Sinh[s])) (81)

Kvashnin’s model:

L11 = (s(54(−8 + 3γ 5) − 18(−6(4 + γ 5) + s2(4 + γ (−9 + 4(−1 + γ )γ 4)))λ2 − s2(6

+ s2)(−1 + γ )3(16 + γ (21 + γ (15 + 8γ )))λ4 + αβ(18(12 − 18γ + 10γ 3 + 3γ 5

+ 8γ 6) − (−12 + s2)(−1 + γ )3(16 + γ (21 + γ (15 + 8γ )))λ2))Cosh[s]
+ (−6(3 + s2)(−24 + 9γ 5 + αβ(12 − 18γ + 10γ 3 + 3γ 5 + 8γ 6)) + (s4(48 − 54γ

+ 6γ 5(−3 + 4γ ) + αβ(−1 + γ )3(16 + γ (21 + γ (15 + 8γ ))))

− 12(9(4 + γ 5) + αβ(−1 + γ )3(16 + γ (21 + γ (15 + 8γ ))))

− 3s2(6(4 + 9γ + 6γ 5 − 4γ 6) + αβ(−1 + γ )3(16 + γ (21 + γ (15 + 8γ )))))λ2

+ 3s2(2 + s2)(−1 + γ )3(16 + γ (21 + γ (15 + 8γ )))λ4)Sinh[s])/(18γ 3(s(αβ(48 − 18γ 5

+ (−12 + s2)(4 + γ 5)λ2) + s2λ2(−24 + 9γ 5 + (6 + s2)(4 + γ 5)λ2))Cosh[s]
− (s2λ2((3 + s2)(−8 + 3γ 5) + 3(2 + s2)(4 + γ 5)λ2)

+ αβ(−2(3 + s2)(−8 + 3γ 5) + (−12 − 3s2

+ s4)(4 + γ 5)λ2))Sinh[s])) (82)

Mehta–Morse’s model:

L11 = (s(54(2 + 3γ 5) − 18(6 − 6γ 5 + s2(−1 + γ (3 + 2(−2 + γ )γ 4)))λ2 − s2(6

+ s2)(−1 + γ )4(4 + γ (7 + 4γ ))λ4 + αβ(18(−3 + 6γ − 10γ 3 + 3γ 5 + 4γ 6)

− (−12 + s2)(−1 + γ )4(4 + γ (7 + 4γ ))λ2))Cosh[s] + (−6(3 + s2)(6 + 9γ 5

+ αβ(−3 + 6γ − 10γ 3 + 3γ 5 + 4γ 6)) + (s4(−1 + γ )3(6(1 + γ )(2 + γ + 2γ 2)

+ αβ(−1 + γ )(4 + γ (7 + 4γ ))) − 12(−9 + 9γ 5 + αβ(−1 + γ )4(4 + γ (7 + 4γ )))

− 3s2(αβ(−1 + γ )4(4 + γ (7 + 4γ )) − 6(1 + γ (3 + 2(−3 + γ )γ 4))))λ2 + 3s2(2

+ s2)(−1 + γ )4(4 + γ (7 + 4γ ))λ4)Sinh[s])/(18γ 3(s(αβ(−6(2 + 3γ 5) + (−12

+ s2)(−1 + γ 5)λ2) + s2λ2(6 + 9γ 5 + (6 + s2)(−1 + γ 5)λ2))Cosh[s]
+ (s2λ2(−(3 + s2)(2 + 3γ 5) − 3(2 + s2)(−1 + γ 5)λ2) + αβ(2(3 + s2)(2 + 3γ 5)

− (−12 − 3s2 + s4)(−1 + γ 5)λ2))Sinh[s])) (83)

These results agree with the result of Yadav et al. [12].

v. Flow through porous sphere in an unbounded medium
When b̃ → ∞, i.e. γ → 0, ε = 0, then model discussed in Sect. 3.2 will reduce to the flow through a porous
sphere in an unbounded medium. In this case, the hydrodynamic drag force experienced by the porous sphere
and the drag force ratio (with Stokes force) � become:
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F̃ = 12πμ̃oŨãλ2s2[s(−6 + λ2(6 + s2))coshs + (−3λ2(2 + s2) + 2(3 + s2))sinhs]
s(−54 + λ2(54 + s2(−9 + 2λ2(6 + s2))))coshs − 3(−6(3 + s2) + λ2(18 + (3 + 4λ2)s2 + 2(−1 + λ2)s4))sinhs

,

� =
[
1 + 9

2λs2
+ 1

2(1 − λ) − λ/Q

]−1
,

where

Q = 1 + 3

s2
−

(
1 − tanh s

s

)−1

.

When λ = 1, then the value of the hydrodynamic drag force exerted by fluid on the porous sphere of radius ã
will be

F̃ = 6πμ̃oãŨ

[
1 + λ2 + 3

2s2

]−1

, λ2 = sinh s/(s cosh s − sinh s),

and the dimensionless hydrodynamic drag force ratio �

� =
[(

1 − tanh s

s

)−1

+ 3

2s2

]−1

.

These results agree with the previously established results of Vasin and Filippov [37].

vi. Flow through solid sphere in cell
When s → ∞ and ε = 0, then our present problem reduces to fluid flow through a solid sphere in a cell. Here,
the dimensionless hydrodynamic permeability of a membrane for all the models is given as:

Happel’s model:

L11 = −2γ 6 + 3γ 5 − 3γ + 2

6γ 8 + 9γ 3 ,

which agrees with the expression in Ref. [7];

Kuwabara’s model:

L11 = − 2(γ 6 − 5γ 3 + 9γ − 5

45γ 3 ,

which agrees with the expression in Ref. [8];

Kvashnin’s model:

L11 = − (γ − 1)3(8γ 3 + 15γ 2 + 21γ + 16

18γ 8 + 72γ 3 ,

which agrees with the expression in Ref. [11].

Mehta–Morse’s model:

L11 = (1 − γ )3(4γ 2 + 7γ + 4)

18γ 3(γ 4 + γ 3 + γ 2 + γ + 1)
,

The above expression for permeability agrees with the expression in Ref. [9];

vii. Flow through solid sphere in an unbounded medium
The flow of viscous, steady, incompressible fluid through a solid sphere in an unboundedmedium is the limiting
case of the previous section for γ → 0.

The drag force F experienced by the solid sphere in an unbounded medium is given as:

F̃ = 6πμ̃oãŨ .

This is a well-known result for the drag force reported earlier by Stokes [3].
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4 Conclusions

Stokes flow past a swarm of oblate spheroidal particles has been studied, and the effect of volume fraction,
porosity, permeability parameter, stress jump coefficient on hydrodynamic permeability and drag force (rel-
ative to Stokes drag) is analysed. Limiting cases of porous oblate spheroidal particles have been separately
investigated, and previously established results of Stokes drag, and drag on porous spheres for all four cell
models have been deduced to validate our model.
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