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Abstract In this investigation, general approximate solutions for the stress intensity factor (SIF) and con-
figuration force (CF) are derived, respectively, based on the Eshelby theory for the interaction between an
inhomogeneous inclusion of arbitrary shape undergoing a stress-free transformation strain and plane stress
mode II crack. For common inclusion shapes, some simplified approximate formulae are also developed. Then,
the relationship between the normalized CF and SIF is discussed, as well as the effects of inclusion shape,
location, and size on the CF and SIF of a plane stress mode II crack. To give deep insight into the complex
three-dimensional interaction between an inclusion undergoing a stress-free transformation strain and a crack,
two typical cases of the triaxial stress state are analyzed, and no significant difference occurs among most
engineering materials.

1 Introduction

Thin films including inclusions have various applications in the fields such as semiconductors [1], solar cells
[2], engine [3] and intelligent coating sensors [4,5], and the interfacial debonding between the matrix and
inclusions of the composite film is one of the main failure factors in these applications. An uncontrolled
debonding may deteriorate the properties of the device [6]. Subsequently, the penetration/deflection behavior
of a crack accessing an inclusion-matrix interface plays a dominant role in the design of a composite thin film
[7,8], and this behavior is strongly influenced by the interaction between the crack and the inhomogeneity.
On the other hand, the interaction is mainly influenced by the differences of the elastic properties between the
inclusion and matrix, the size and shape as well as the distribution in the matrix of the inclusion. Hence, a
large number of the investigations has been reported on the crack-inhomogeneity interaction in the past years
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Fig. 1 A plane stress mode II crack interacts with an inclusion of arbitrary shape undergoing a stress-free transformation strain

[9]. Because of its complexity, only a few analytical solutions can be obtained, such as elliptical inclusion [10]
and circular inclusion [11].

An inhomogeneous inclusion can be transformed to a homogenous one with an equivalent transformation
strain based on the Eshelby theory [12].Thus, the interaction between crack and inclusion can be evaluated
from the transformation toughening theory [13] and the configuration force theory [14]. Recently, based on
this approach some approximate analytical solutions have been obtained for the interaction of an inclusion
of arbitrary shape with mode I and mode II cracks evaluated by stress intensity factors (SIFs) [15–18] and
configuration forces (CFs) [19]. However, these solutions neglect the fact that an inhomogeneous inclusion
may be subjected to a stress-free transformation strain induced by micro-cracking [20], thermal expansion
mismatch, etc., and are limited to the plane strain. In the present work, the interaction between an inclusion of
arbitrary shape undergoing a stress-free transformation strain and plane stress mode II crack is investigated.

2 Model and formulation

As shown in Fig. 1, the inclusion undergoes a stress-free transformation strain, eT∗, and simultaneously
sustains an applied strain field of the mode II crack tip, eA. A differential element dA is considered in this
work. According to the Eshelby approach [12,21,22], the equivalent transformation strain in dA, eT, is given
by

eT=[(Ci − Cm)S + Cm]−1[(Cm − Ci)eA + CieT∗] (1)

where S is the Eshelby tensor, dependent solely upon the shape of the inclusion and Poisson’s ratio of the
matrix material. Cm and Ci are the elastic tensors of the matrix and the inclusion material, respectively.

The nonzero components for plane stress condition of eA can be expressed as

eA11 = KII

Em
√
2πr

sin θ
2

[−2 − (1 + ν) cos θ
2 cos

3θ
2

]

eA22 = KII

Em
√
2πr

sin θ
2

[
2ν + (1 + ν) cos θ

2 cos
3θ
2

]

eA12 = KII

Em
√
2πr

(1 + ν) cos θ
2

(
1 − sin θ

2 sin
3θ
2

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(2)

where Em is Young’s modulus of the matrix, and KII is the remotely applied mode II stress intensity factor
(SIF).

For simplicity, it is assumed that the matrix material and inclusion are isotropic and their Poisson’s ratios
are the same, denoted by ν. Then

Ci = αCm (3)

where

α = Ei/Em. (4)

Ei is Young’s modulus of the inclusion.
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Combining Eqs. (1) and (3) gives

eT = eTA + eTe

= (1 − α)[(α − 1)S + I]−1eA + α[(α − 1)S + I]−1eT∗ (5)

where I is the unit tensor.
The Eshelby tensor S for plane stress can be derived from that for plane strain by replacing ν with ν/(1+ν)

for a differential element with circular section inside the inclusion [23]. Thus,

S = 1

8

⎡

⎣
5 + ν 3ν − 1 0
3ν − 1 5 + ν 0
0 0 6 − 2ν

⎤

⎦ . (6)

Substituting Eqs. (2) and (6) into Eq. (5) yields

eT11 = 2KII
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(7)

where

C1 = − (1−α)(1−ν)
1+α+αν−ν

, C2 = (1−α)(1+ν)
1+ν+3α−αν

C3 = C5 = 4α
1+ν+3α−αν

, C4 = 2α
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. (8)

2.1 Configuration force (CF)

Per unit thickness of the differential element, the reduction in elastic energy is given by [24]

dW = − σ A
i j e

T
i jdA (9)

where σ A
i j is the stress field of the mode II crack tip, expressed as
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Then,

dW = −
(
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In the absence of body forces, from Eq. (11) the CF can be obtained [25],

Fr =
∫

�

dFr = −
∫

�

∂
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(dW ) = −

∫

�

(
K 2
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The total CFs along x and y directions are, respectively, expressed as

Fx =
∫

�

dFx =
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�

dFr cos θ, (14)

Fy =
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�

dFy =
∫

�
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2.2 Stress intensity factor (SIF)

Under plane stress conditions, the change of the crack tip stress intensity factor can be expressed as [16]

dK tip
II = Em

16
√
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Substituting Eqs. (7) and (17) into Eq. (16) and then integrating Eq. (16) over the whole domain�, the K tip
II /KII

can be expressed as

K tip
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and

C6 = (1 − α)
[
11(1 + αν2 − ν2) + 19α − 2αν

]

4(1 + ν + 3α − αν)(1 + α + αν − ν)
. (20)

In addition, the CF and SIF formulae for plane strain are formally identical to Eqs. (13) and (18). However,
the constants C1,C2,C3,C4,C5 in Eq. (13) and C1,C2,C3,C4,C5,C6 in Eq. (18) are different from those of
plane strain, in which ν is replaced with ν/(1 + ν) for plane stress.

3 Simple formulas for special inclusion shapes

To visualize the basic characters of the CF and SIF, some special inclusion shapes are taken as examples:
(i) A small circular inclusion of radius R centered at (r0, θ ). From Eqs. (13) and (18), the CF and SIF can be
approximated by

Fr = −
(

R2K 2
II

2Emr20
f I + R2KII

2

√
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2r30
fII

)

, (21)
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√
π

2r30
gII. (22)
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(a) (b)

(c)

Fig. 2 Mode II crack interacts with some special inclusions: a the circular ring-shaped inclusion in the front of a crack tip
symmetrically (r0 >> w); b the lamellar inclusion perpendicular to the x-axis and centered at (r0, 0)(l >> w); c the lamellar
inclusion lies on the x-axis (l >> w)

(ii) As shown in Fig. 2a, for a circular ring-shaped inclusion, by use of dA≈wr0dθ in Eqs. (13) and (18),
respectively, then

Fr = − wK 2
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(iii) As shown in Fig. 2b, for a lamellar inclusion perpendicular to the x-axis, by use of approximation
dA ≈ wrdθ/cos θ in Eqs. (13) and (18), respectively, then
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Fig. 3 Normalized CFFr/KII
√
r0 and SIFK

tip
II /KII as functions of the angle θ for a mode II crack interacting with two isosceles

right-angled triangular inclusions of different α and eT∗ calculated from Eqs. (13) and (18), respectively, at the fixed ν = 0.3 and
KII/Em

√
r0 = 1

(iv) As shown in Fig. 2c, for a lamellar inclusion lying on the x-axis, by use of dA = wdr and sin θ = 0, cos
θ = 1 in Eqs. (13) and (18), respectively, then
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4 Numerical examples and discussion

As an example, Fig. 3 shows the variations of the normalized configuration force (CF) and crack tip stress
intensity factor (SIF) for a pair of isosceles right-angled triangular inclusions which are symmetrically about
the crack line at different angles θ for various stress-free transformation strains eT∗. When the effect of stress-
free transformation strain is considered, the normalized repulsion force (Fr > 0) decreases for α > 1, and



The interaction of a mode II crack 1317

0.0
0.5

1.0
0.5

0.0

−1.5
−1.0

−0.5

0.0

0.5

1.0
0.8

0.9

1.0

1.1

1.2

1.3

1.4

Em/Ei

Fr/KII
√

r0

K
ti
p

I
I

/
K

I
I

Ei/Em

Fig. 4 Normalized CFFr/KII
√
r0 and SIFK tip

II /KII as functions of Ei/Em for a mode II crack interacting with a rectangular
inclusion of eT∗

11 = eT∗
22 = 0.02, eT∗

12 = 0.04 calculated from Eqs. (13) and (18), respectively, at the fixed r0 = w = l/1.5,
ν = 0.3, and KII/Em

√
r0 = 1

0 1 2 3 4 5
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

β = l/w

F
r
/
K

I
I
√ r 0

α = 2.0, e
11
T* = e

22
T* = 0.02, e

12
T* = 0.04

α = 0.5, e
11
T* = e

22
T* = 0.02, e

12
T* = 0.04

 Eq.(13)
 Eq.(25)

(a) 

0 1 2 3 4 5
0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

β = l/w

K
ti
p

I
I

/
K

I
I

α = 2.0, e
11
T* =  e

22
T* = 0.02, e

12
T* = 0.04

α = 0.5, e
11
T*  = e

22
T* = 0.02, e

12
T* =0.04

 Eq.(18)
 Eq.(26)

(b) 

Fig. 5 Normalized CFFr/KII
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tip
II /KII as functions of β for a mode II crack interacting with a rectangular inclusion

of α = 0.5, 2.0 and eT∗
11 = eT∗

22 = 0.02, eT∗
12 = 0.04 at the fixed ν = 0.3 and KII/Em
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the attraction force (Fr < 0) increases for α < 1. On the other hand, the normalized stress intensity factor
increases for both α > 1 and α < 1.

Figure 4 shows a relationship between the Ei/Em , the normalized CF and SIF. The CF between the mode
II crack and a rectangular inclusion is attraction for a soft one (Ei/Em < 1) and repulsion for a hard inclusion
(Ei/Em > 1), which is in accordance with the prediction that a soft (hard) inclusion enhances (reduces) the
effective SIF. When Ei/Em < 1, the normalized attraction force increases as the modulus ratio decreases
and the normalized SIF also increases as the modulus ratio decreases, indicating that the conditions are more
favorable for the crack penetration.When Ei/Em > 1, the normalized repulsion force increases as themodulus
ratio increases, and the normalized SIF decreases as the modulus ratio increases, suggesting that the conditions
accelerate the crack deflection.

To check the accuracy of the approximate solution, the interaction of a crack and a rectangular inclusion of
area w × 2l = r20 centered at (r0, 0) where r0 is a constant is shown in Fig. 5. The normalized CFFr/KII

√
r0

and SIFK tip
II /KII as functions of β(= l/w) for α = 0.5, 2 are obtained by integrating Eqs. (13) and (18),

respectively, under the condition that the rectangular inclusion keeps its area constant, but changes its shape.
The approximate values of Eqs. (25) and (26) are compared with the integrating values of Eqs. (13) and (18) for
the case of β = l/w >> 1, respectively. As shown in Fig. 5, the approximate Eqs. (25) and (26) for β > 1.5
agree well with the prediction of Eqs. (13) and (18), respectively.

Figure 6 shows the mode II crack interacting with the multi-phase elastic inclusion centered at (r0, 0),
which is a four-layer circular inclusion with different modulus. The elastic modulus for the soft inclusion and
hard inclusion is E j+1

i = 0.5E j
i and E j+1

i = 2E j
i ( j = 1, 2, 3), respectively. As shown in Fig. 6, it suggests

that the CF between a mode II crack and the multi-phase inclusion is attraction for a soft one and repulsion for
a hard inclusion, which is in agreement with the prediction that a soft (hard) inclusion ahead of a mode II crack
enhances (reduces) the effective SIF for the modulus ratio (0 ∼ ∞) between the matrix and the multi-phase
inclusion.

In the engineering applications, the interaction between a crack and inclusion behaves in three dimensions
(3D). However, it is difficult to find an analytical solution for the three-dimensional problem, and an alternative
approach is to simplify the 3D problem into 2D. On the other hand, the plane strain and plane stress describe
two typical cases of the triaxial stress state. As shown in Fig. 7, for both CF and SIF, the predictions of the
plane stress solution fairly approach to the plane strain for most engineering materials with a Poisson’s ratio
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Fig. 7 Normalized CFFr/KII
√
r0 and SIFK tip

II /KII as functions of Ei/Em for a mode II crack interacting with a rectangular
inclusion of eT∗

11 = eT∗
22 = 0.02, eT∗

12 = 0.04 calculated from Eqs. (13) and (18) for plane stress and plane strain, respectively, at
the fixed r0 = w = l/1.5, ν = 0.3, ν = 0.5 and KII/Em

√
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v = 0.3. The prominent difference between plane stress and plane strain occurs only at a large v-value (e.g.,
v = 0.5). Hence, it is expected that the 2D solution may approach the 3D analysis.

Finally, it should be noted that the Eshelby equivalent inclusion theory is mathematically rigorous only
for an infinite matrix containing a single ellipsoidal inclusion. But many activities have been made to extend
it into different problems for using the Eshelby theory in more engineering problems [26–29]. As validated
by experimental results [30], some numerical examples [8,15,16] and available classical solutions [31], the
extended application of the Eshelby theory has extremely good accuracy.

5 Conclusions

Based on the Eshelby theory, an inhomogeneous inclusion can be transformed into a homogenous one with
an equivalent transformation strain. The interaction between crack and inclusion can then be evaluated from
the configuration force theory and transformation toughening theory. General solutions for the stress intensity
factor (SIF) and configuration force (CF) to investigate the interaction between a plane stress mode II crack
and an inhomogeneous inclusion of arbitrary shape undergoing some stress-free transformation strain are
developed, respectively, and some simplified approximate solutions for several special inclusion shapes are
obtained which are very beneficial for engineering applications. The present solutions provide a novel method
to interpret the behavior of crack penetration/deflection in the composite films. It is worth to note that the
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special advantage of the present approach is that the basic equation, in an integral form, can be customarily
used to the inclusion with arbitrary shape.
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