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Abstract This paper studies the free vibrational behavior of porous functionally graded nanoshells using
nonlocal strain gradient theory. A nonlocal parameter and a strain gradient parameter are employed to describe
both stiffness reduction and stiffness enhancement of nanoshells. Porosities are evenly and unevenly distributed
thorough the thickness of the nanoshell. The gradation of material properties having porosities is described
using a modified power-law function. The nanoshell is modeled via first-order shear deformation theory, and
Galerkin’s method is implemented to obtain vibration frequencies. Shape functions which satisfy available
classical and nonclassical boundary conditions in nonlocal strain gradient theory are proposed. It is shown that
the vibrational behavior of the nanoshell is influenced by the porosity volume fraction, porosity distribution,
nonlocal coefficient, strain gradient coefficient, boundary conditions and radius-to-thickness ratio.

1 Introduction

Size-dependent modeling and analysis of micro/nanostructures can be performed using various nonclassical
elasticity theories such as surface elasticity-, nonlocal and strain gradient-based theories [1–8]. Among them,
the nonlocal elasticity theory of Eringen [9] is the most employed theory for static and dynamic analysis of
nanobeams and nanoplates [10–19]. The simplest model of this theory introduces a scale parameter which
results in a stiffness reduction mechanism. By defining this parameter, it is possible to consider wide-range
interaction between atoms. Actually, bending rigidity of the nanostructure and their vibration frequencies and
buckling loads are decreased by considering the nonlocal stress field effect. However, nonlocal elasticity theory
is not able to consider strain gradient effects in modeling of nanostructures.

Nonlocal strain gradient calibration of nanostructures via experiments and molecular dynamic simulation
shows that their mechanical characteristics can be described using two scale parameters [20–22]. In fact, these
two scale parameters consider the stiffness-softening and stiffness-hardening effects due to nonlocal stress
field and strain gradients on mechanical behavior of nanostructures.

Thus, the present author’s works are mainly focused on analysis of nanobeams and nanoplates based
on nonlocal strain gradient theory [23–26]. Application of nonlocal strain gradient theory for modeling and
analysis of nanostructures is still at the beginning stage, and only few papers are published in this field [27–33].

In recent years, static and dynamic analyses of nanoshells have attracted the attention of several researchers.
Zaera et al. [34] studied axisymmetric free vibration of closed thin spherical nanoshells based on nonlocal elas-
ticity theory. Ke et al. [35] examined vibration behavior of cylindrical nanoshells under thermo-electrical fields
and different boundary conditions using nonlocal elasticity theory. Rouhi et al. [36,37] studied vibration char-
acteristics of cylindrical nanoshells with different shell theories based on surface elasticity theory. Mehralian
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et al. [38] performed buckling analysis of piezoelectric cylindrical nanoshells with functionally graded mate-
rial properties. Farajpour et al. [39] investigated free vibration and buckling behaviors of microtubules using
piezoelectric nanoshells under electric voltage and thermal loading. Also, Sun et al. [40] performed buckling
analysis of size-dependent cylindrical nanoshells with functionally graded material properties.

In the process of functionally graded material (FGM) fabrication, the existence of porosities and micro-
voids inside thematerials possibly occurs due to technical problems. For example, shrinkages between adjacent
compositions of metal and ceramic phases in FGMs can occur during the sintering process, which may lead
to a number of porosities spreading inside the materials [41]. In addition, by using a multi-step sequential
infiltration technique for producing FGMs, it was observed that the porosities appear mostly at the middle
zone of the FGM specimens. This is because it is difficult to infiltrate the secondary material into the middle
zone completely, while at the top and bottom zones, the process of material infiltration can be performed easier
and leaves less porosity. Based on this information about porosities in FGMs, it is important to consider the
porosity effect on dynamic behavior of engineering structures made of FGMs carrying porosities. Also, in the
case of nanoscale beams and plates, porosities have a great influence on their mechanical characteristics, as
shown by several researchers [42,43]. Literature review shows that there is no study on vibration of porous
nanoshells based on nonlocal strain gradient theory.

In this research, free vibration analysis of FG nanoshells with porosities is carried out applying nonlocal
strain gradient theory and first-order shell model. Two scale parameters are used to describe the size-dependent
behavior of nanoshell. Even and uneven distributions of porosity have been considered. Material properties
are dependent on the porosity volume fraction, and they are graded in the thickness direction according to
power-law function. The governing equations are derived via Hamilton’s principle, and vibration frequencies
are obtained implementing Galerkin’s technique. Based on the presented solution, it is possible to apply
simply supported and clamped boundary conditions in the axial direction of NSGT cylindrical nanoshell. It is
demonstrated that vibration frequencies of porous nanoshells are prominently affected by porosities volume
fraction, porosity distribution, nonlocality, strain gradients and geometrical parameters.

2 Modeling of nanoshells based on NSGT

The stress field based on NSGT can be described as a contribution of a nonlocal stress σ
(0)
i j and a higher-order

stress field ∇σ
(1)
i j as [43]:

σi j = σ
(0)
i j − ∇σ

(1)
i j , (1)

where the stresses σ
(0)
i j and σ

(1)
i j are, respectively, related to strain εi jand strain gradient ∇εi jby [26,43]:

σ
(0)
i j =

∫
V
Ci jklα0(x, x

′, e0a)ε′
kl(x

′)dx ′, (2a)

σ
(1)
i j = l2

∫
V
Ci jklα1(x, x

′, e1a)∇ε′
kl(x

′)dx ′, (2b)

where e0a and e1a are called lower- and higher-order nonlocal parameters;Ci jkl denotes the elastic coefficients.
Also, α0(x, x ′, e0a) and α1(x, x ′, e1a) denote nonlocal Kernel functions. As discussed in previous investiga-
tions, selection of appropriate forms of these functions results in the following expression of constitutive
equation for nonlocal strain gradient theory [26]:

[1 − (e1a)2∇2][1 − (e0a)2∇2]σi j = Ci jkl [1 − (e1a)2∇2]εkl − Ci jkll
2[1 − (e0a)2∇2]∇2εkl (3)

in which ∇2denotes the Laplacian operator. For simplicity, supposing e1 = e0 = e in Eq. (3) yields the
following equation [24]:

[1 − (ea)2∇2]σi j = Ci jkl [1 − l2∇2]εkl . (4)
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Fig. 1 Configuration of porous nanoshell with porosity distributions

3 Porous nanoshell model with different porosity distributions

Assume a porous nanoshell with thickness h as illustrated in Fig. 1. In the process of functionally graded
material (FGM) fabrication, the existence of porosities and micro-voids inside the materials possibly occurs
due to technical problems. For example, the shrinkages between adjacent compositions of metal and ceramic
phases in FGMs can occur during the sintering process, which may lead to a number of porosities spreading
inside the materials. In addition, by using multi-step sequential infiltration technique for producing FGMs, it
was observed that the porosities appear mostly at the middle zone of the FGM specimens. This is because it is
difficult to infiltrate the secondary material into the middle zone completely, while at the top and bottom zones,
the process of material infiltration can be performed easier and leaves less porosity. Based on this information
about porosities in FGMs, it is important to consider the porosity effect on dynamic behavior of engineering
structures made of FGMs carrying porosities.

Two types of porosity distribution have been considered: (1) even distribution and (2) uneven distribution.
In the case of even distribution, porosities are randomly distributed in the material structure. Moreover, in the
case of uneven distribution, the porosities are distributed around the cross-sectional mid-zone and the amount
of porosity diminishes at the top and bottom of the cross section.

The effective material properties of the porous FG nanoshell including Young’s modulus (E) and density
are variable across the thickness direction based on the modified power-law model as [42]:

E(z) = (Ec − Em)

(
z

h
+ 1

2

) p

+ Em − (Ec + Em)
ξ

2
for even porosities, (5a)

E(z) = (Ec − Em)

(
z

h
+ 1

2

) p

+ Em − ξ

2
(Ec + Em)

(
1 − 2 |z|

h

)
for uneven porosities, (5b)

where p is the material gradation index and m and c are corresponding to the material properties of the top
and bottom surfaces, respectively; ξ is the porosity volume fraction.

Assumingfirst-order shear deformation shellmodel, the displacement field of the nanoshell can be supposed
as:

u1 (x, θ, z, t) = u (x, θ, t) + zϕx (x, θ, t) , (6a)

u2 (x, θ, z, t) = v (x, θ, t) + zϕθ (x, θ, t) , (6b)

u3(x, θ, z, t) = w(x, θ, t), (6c)

where u, v and w are axial, circumferential and transverse displacements, respectively; ϕxand ϕθ are rotations
about axial and circumferential axis.

It is now possible to obtain the strains based upon the present shell model as [22]:

εxx = ∂u

∂x
+ z

∂ϕx

∂x
,
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εθ = 1

R
(
∂v

∂θ
+ w + z

∂ϕθ

∂θ
),

γxθ = 1

R

∂u

∂θ
+ ∂v

∂x
+ z

R

∂ϕx

∂θ
+ z

∂ϕθ

∂x
,

γzx = ϕx + ∂w

∂x
, γzθ = ϕθ + 1

R

∂w

∂θ
− v

R
. (7)

Now, Hamilton’s principle can be written as:

∫ t

0
δ(U − T − V )dt = 0, (8)

here, U is strain energy, T is kinetic energy, and V is work done by external forces and

δU =
∫
V
(σi jδεi j + σ

(1)
i j δ∇εi j )Rdxdθdz, (9)

δV =
∫
V

(
Nr0 + Nx0

∂2w

∂x2
+ Nθ0

R2

∂2w

∂θ2
+ kw + kp

(
∂2w

∂x2
+ 1

R2

∂2w

∂θ2

))
δwRdxdθdz, (10)

δK =
∫
V

((
∂δu1
∂t

)2

+
(

∂δu2
∂t

)2

+
(

∂δu3
∂t

)2
)
Rdxdθdz, (11)

in which σi j , σ
(1)
i j , εi jand ∇εi jare defined in the previous chapter. Also, Nr0, Nx0and Nθ0 are radial, axial and

torsional mechanical loads, respectively, which are discarded in this study. Also, kw and kp are Winkler and
Pasternak foundation coefficients.

Using Hamilton’s principle in Eq. (8) and Eqs. (9)–(11), the governing equations can be obtained as [22]:

∂Nxx

∂x
+ 1

R

∂Nxθ

∂θ
= I0

∂2u

∂t2
+ I1

∂2ϕx

∂t2
, (12a)

∂Nxθ

∂x
+ 1

R

∂Nθθ

∂θ
+ Qzθ

R
= I0

∂2v

∂t2
+ I1

∂2ϕθ

∂t2
, (12b)

∂Qxz

∂x
+ 1

R

∂Qzθ

∂θ
− Nθθ

R
= + I0

∂2w

∂t2
, (12c)

∂Mxx

∂x
+ 1

R

∂Mxθ

∂θ
− Qxz = I1

∂2u

∂t2
+ I2

∂2ϕx

∂t2
, (12d)

∂Mxθ

∂x
+ 1

R

∂Mθθ

∂θ
− Qθ z = I1

∂2v

∂t2
+ I2

∂2ϕθ

∂t2
, (12e)

in which

(I0, I1, I2) =
∫ h/2

−h/2
(1, z, z2)ρ(z)dz (13)

and

{Nxx , Nθθ , Nxθ } =
∫ h/2

−h/2
{σxx , σθθ , σxθ }dz, (14a)

{Mxx , Mθθ , Mxθ } =
∫ h/2

−h/2
{σxx , σθθ , σxθ }zdz, (14b)

{Qxz, Qzθ } = κs

∫ h/2

−h/2
{σxz, σzθ }dz, (14c)

in which κs = 5/6 is the shear correction factor.
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Based on the NSGT, the constitutive relations of the nanoshell can be stated as:

(1 − μ∇2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σxx
σθθ

σxθ
σxz
σzθ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= E(z)

1 − v2
(1 − λ∇2)

⎛
⎜⎜⎜⎝

1 v 0 0 0
v 1 0 0 0
0 0 (1 − v)/2 0 0
0 0 0 (1 − v)/2 0
0 0 0 0 (1 − v)/2

⎞
⎟⎟⎟⎠

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx
εθθ

γxy
γxz
γzθ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(15)

in which μ = ea/L and λ = l/L are normalized nonlocal and strain gradient parameters, respectively. The
nonlocal parameter ea consists of a characteristic internal length (a), for instance lattice parameter, C–C
bond length and granular distance and a constant (e) dependent on each material. Usually, the value of e is
experimentally estimated by comparing the scattering curves of plane waves and atomistic dynamics.

Integrating Eq. (15) over the nanoshell thickness, the resultants presented in Eqs. (14) can be obtained as
presented in Appendix A.

The governing equations in terms of the displacements for a NSGT nanoshell can be derived by substituting
Eqs. (A1)–(A8) into Eq. (12) as follows:

(1 − λ∇2)

[
A11

∂2u

∂x2
+ B11

∂2ϕx

∂x2
+ A12

R

(
∂2v

∂x∂θ
+ ∂w

∂x

)
+ B12

R

∂2ϕθ

∂x∂θ

+ A66

R

(
1

R

∂2u

∂θ2
+ ∂2v

∂x∂θ

)
+ B66

R

(
1

R

∂2ϕx

∂θ2
+ ∂2ϕθ

∂x∂θ

)]
+ (1 − μ∇2)

[
−I0

∂2u

∂t2
− I1

∂2ϕx

∂t2

]
= 0, (16a)

(1 − λ∇2)

[
A66

(
1

R

∂2u

∂x∂θ
+ ∂2v

∂x2

)
+ B66

(
1

R

∂2ϕx

∂x∂θ
+ ∂2ϕθ

∂x2

)

A12

R

∂2u

∂x∂θ
+ B12

R

∂2ϕx

∂x∂θ
+ A11

R2

(
∂2v

∂θ2
+ ∂w

∂θ

)
+ B11

R2

∂2ϕθ

∂θ2

Ã66

R

(
ϕθ + 1

R

∂w

∂θ
− v

R

)]
+ (1 − μ∇2)

[
−I0

∂2v

∂t2
− I1

∂2ϕθ

∂t2

]
= 0, (16b)

(1 − λ∇2)

[
Ã66

(
∂ϕx

∂x
+ ∂2w

∂x2

)
+ Ã66

R

(
∂ϕθ

∂θ
+ 1

R

∂2w

∂θ2
− 1

R

∂v

∂θ

)

− A12

R

∂u

∂x
− B12

R

∂ϕx

∂x
− A11

R2

(
∂v

∂θ
+ w

)
− B11

R2

∂ϕθ

∂θ

]
+ (1 − μ∇2)

[
−I0

∂2w

∂t2

]

+ (1 − μ∇2)

(
−kww + kp

(
∂2w

∂x2
+ 1

R2

∂2w

∂θ2

))
= 0, (16c)

(1 − λ∇2)

[
B11

∂2u

∂x2
+ D11

∂2ϕx

∂x2
+ B12

R

(
∂2v

∂x∂θ
+ ∂w

∂x

)
+ D12

R

∂2ϕθ

∂x∂θ

B66

R

(
1

R

∂2u

∂θ2
+ ∂2v

∂x∂θ

)
+ D66

R

(
1

R

∂2ϕx

∂θ2
+ ∂2ϕθ

∂x∂θ

)
− Ã66

(
ϕx + ∂w

∂x

)]

+ (1 − μ∇2)

[
−I1

∂2u

∂t2
− I2

∂2ϕx

∂t2

]
= 0, (16d)

(1 − λ∇2)

[
B66

(
1

R

∂2u

∂x∂θ
+ ∂2v

∂x2

)
+ D66

(
1

R

∂2ϕx

∂x∂θ
+ ∂2ϕθ

∂x2

)

B12

R

∂2u

∂x∂θ
+ D12

R

∂2ϕx

∂x∂θ
+ B11

R2

(
∂2v

∂θ2
+ ∂w

∂θ

)
+ D11

R2

∂2ϕθ

∂θ2

− Ã66

(
ϕθ + 1

R

∂w

∂θ
− v

R

)]
+ (1 − μ∇2)

[
−I1

∂2v

∂t2
− I2

∂2ϕθ

∂t2

]
= 0, (16e)

in which:

A11 =
∫ h/2

−h/2

E(z)

1 − v2
dz, B11 =

∫ h/2

−h/2

E(z)

1 − v2
zdz, D11 =

∫ h/2

−h/2

E(z)z2

1 − v2
dz,
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A12 =
∫ h/2

−h/2

vE(z)

1 − v2
dz, B12 =

∫ h/2

−h/2

vE(z)

1 − v2
zdz, D12 =

∫ h/2

−h/2

vE(z)z2

1 − v2
dz,

A66 =
∫ h/2

−h/2

E(z)

2(1 + v)
dz, B66 =

∫ h/2

−h/2

E(z)

2(1 + v)
zdz, D66 =

∫ h/2

−h/2

E(z)

2(1 + v)
z2dz,

Ã66 = ks

∫ h/2

−h/2

E(z)

2(1 + v)
dz. (17)

4 Solution procedure

In this section, Galerkin’s method is implemented to solve the governing equations of nonlocal strain gradient
porous nanoshells. Thus, the displacement field can be calculated as:

u =
∞∑

m=1

∞∑
n=1

Umn
∂Xm(x)

∂x
cos (nθ) eiωnt , (18)

v =
∞∑

m=1

∞∑
n=1

VmnXm(x) sin (nθ) eiωn t , (19)

w =
∞∑

m=1

∞∑
n=1

WmnXm(x) cos (nθ) eiωn t , (20)

ϕx =
∞∑

m=1

∞∑
n=1

�mn
∂Xm(x)

∂x
cos (nθ) eiωnt , (21)

ϕθ =
∞∑

m=1

∞∑
n=1

�mnXm(x) sin (nθ) eiωnt , (22)

where (Umn , Vmn , Wmn , �mn , �mn) are the unknown coefficients and the function Xm satisfies the boundary
conditions in x-direction. The classical and nonclassical boundary conditions at x = 0, L can be represented
by:
Simply supported–simply supported (S–S)

w = 0 geometric boundary condition

∂2w

∂x2
= ∂4w

∂x4
= 0 force boundary conditions (23a)

Clamped–clamped (C–C)

w = ∂w

∂x
= 0 geometric boundary conditions

∂3w

∂x3
= 0 force boundary condition (23b)

By substituting Eqs. (18)–(22) into Eqs. (16) and using the Galerkin’s method, one obtains

{[K ] + ω2
n[M]}

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Umn
Vmn
Wmn
�mn
�mn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 0 (24)

in whichωn is the natural frequency. The components of mass and stiffness matrices are presented in Appendix
B. Also, nondimensional parameters are defined as:

� = 100ωnh

√
ρc

Ec
, Kw = kwL4

D2
, Kp = kpL2

D2
,
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Table 1 Comparison of natural frequencies of size-dependent nanoshells

L/2R MD (Mehralian et al. [22]) NSGT (Mehralian et al. [22]) Present

4.86 1.138 1.209 1.208
8.47 0.466 0.448 0.447
13.89 0.190 0.192 0.193
17.47 0.122 0.126 0.126

Fig. 2 Variation of dimensionless frequency of the nanoshell versus length scale parameter for various nonlocal parameters
(R/h =20, p =1, ξ =0)

D2 = Ech3

12(1 − v2)
, μ = ea

L
, λ = l

L
. (25)

Finally, setting the coefficient matrix to zero gives the natural frequencies. The function Xm for considered
boundary conditions is defined by:

Xm (x) = sin
(mπ

L
x
)
for S–S, (26)

Xm (x) = sin2(
mπ

L
x) for C–C. (27)

It is clear that above functions satisfy boundary conditions presented in Eq. (23) at x = 0, L .

5 Numerical results and discussion

This section studies free vibrational behavior of porous functionally graded (FG) nanoshells using nonlocal
strain gradient theory (NSGT). A nonlocal parameter and a strain gradient parameter are employed to describe
both stiffness reduction and stiffness enhancement of nanoshells. Porosities are evenly and unevenly distributed
through the thickness of the nanoshell. In Table 1, vibration frequencies of nanoshells based on first-order shell
model and nonlocal strain gradient theory are compared with those reported by Mehralian et al. [22] using
molecular dynamic simulation. For comparison, varying nonlocal parameter μ = 3.3 − 3.5 nm2 and strain
gradient parameter λ = 0.1 − 0.4 nm2 are considered. Results are in excellent agreement with those of
Mehralian et al. [22]. In the present study, the material properties of FG nanoshell are considered as:

• Ec = 380GPa, ρc = 3800 kg/m3, vc = 0.3
• Em = 70GPa, ρm = 2707 kg/m3, vm = 0.3
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Fig. 3 Variation of dimensionless frequency of the nanoshell versus radius-to-thickness ratio for various porosity volume fractions
(L/h =20, μ =0.2, λ =0.1)

Figure 2 examines the effects of nonlocal and strain gradient parameters on nondimensional vibration fre-
quency of FG nanoshells with S–S and C–C boundary conditions when R/h = 20, p = 1 and ξ = 0. It is
possible to obtain the frequency results of nonlocal elasticity theory without strain gradients by setting λ=0.
Based on NSGT, increasing strain gradient parameter results in larger vibration frequency for every value of
nonlocal parameter. This observation highlights the stiffness enhancement effect by considering strain gradi-
ents. However, vibration frequencies become smaller with the rise of nonlocal parameter showing stiffness
reduction influence due to nonlocal stress field. The above discussion reveals that both nonlocal and strain
gradient parameters should be considered for modeling of nanoshells. In fact, by neglecting strain gradient
effect, the influence of microstructural behavior has been discarded. These observations are valid for both S-S
and C-C nanoshells.

Influences of porosity volume fraction and material gradient index on vibration frequency of FG nanoshell
with respect to radius-to-thickness ratio (R/h) are shown in Fig. 3 at L/h = 20, μ = 0.2, λ = 0.1. It is
clear that a porous nanoshell has lower natural frequencies than a perfect nanoshell (ξ = 0). In other words,
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Fig. 4 Variation of dimensionless frequency of the nanoshell versus circumferential wave number for different porosity distribu-
tions (R/h =20, p =2, ξ =0.4)

increasing porosity volume fraction results in smaller natural frequencies due to the reduction in the bending
rigidity of the nanoshell. Therefore, for better understanding of the mechanical behavior of nanoshells, it
is crucial to consider porosities inside the material structure. However, vibration frequencies reduce with
increasing material gradient index (p) due to the higher portion of metal phase at larger gradient indices. One
can also see that vibration frequencies are significantly decreased with the increase in radius-to-thickness ratio.
This is because nanoshells with higher radius-to-thickness ratios are more flexible leading to smaller vibration
frequencies.

The effect of porosity distribution on the natural frequency of porous nanoshells with respect to the cir-
cumferential wave number (n) is shown in Fig. 4 at R/h = 20, p = 2 and ξ = 0.4. It can be observed that
uneven (nonuniform) porosity distribution provides larger vibration frequencies than uniform or even porosity
distribution. This is due to the fact that in the uneven model, porosities vanished at the top and bottom sides
of the nanoshell thickness. Therefore, uneven porosity distribution gives better mechanical performance for
porous nanoshells. Also, porosity distribution effect is significantly affected by the circumferential wave num-
ber. Generally, the vibration frequency first decreases and then increases with an increase in the circumferential
wave number. However, the effect of porosity distribution becomes more significant at higher wave numbers.

Figure 5 indicates the effect of length-to-thickness ratio (L/h) of the nanoshell for different Winkler and
Pasternak foundation parameters when ξ = 0.2, μ = 0.2 and λ = 0.1. A simply supported–simply supported
nanoshell with even porosities has been considered in this figure. Similar to the radius-to-thickness ratio (R/h),
increasing L/h results in a more flexible nanoshell and smaller vibration frequencies. But, higher values of
Winkler and Pasternak foundation constants yield an increase in the bending rigidity and natural frequency of
the nanoshell. However, the surrounding shear layer (Kp) has a continuous interaction with the nanoshell and
its effect on vibration frequency is more sensible than the Winkler layer.

6 Conclusions

In this paper, the free vibration behavior of nonlocal strain gradient porous shells in an elastic medium was
explored by employing a first-order shell model. Even and uneven porosity distributions were considered. Two
scale coefficients were considered for a better size-dependent modeling of the nanoshell. It was observed that
increasing the nonlocal parameter results in reduction in the vibration frequencies. However, an inverse trend
was observed when considering strain gradient effects. An increase in porosity volume fraction gave smaller
natural frequencies. However, uneven porosity distribution provided larger frequencies compared with even
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Fig. 5 Variation of dimensionless frequency of the nanoshell versus Winkler parameter for various length-to-thickness ratios
(ξ = 0.2, μ = 0.2, λ = 0.1)

porosity distribution. Increasing the length-to-thickness and radius-to-thickness ratios led to a more flexible
nanoshell and smaller frequencies, while increasing the foundation coefficients gave larger frequencies.
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(
ϕx + ∂w

∂x

)
(A7)

(
1 − μ∇2) Qθ z = (

1 − λ∇2) Ã66
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− Ã66

R2

(
ϒ00 − λ

(
ϒ20 − n2

R
ϒ00

))
(B7)

k3,2 = − n

(
A11

R2 + Ã66
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Ã66

R2 + A11

R2

)(
ϒ00 − λ

(
ϒ20 − n2

R
ϒ00

))
(B8)

k4,2 = − n

(
B12

R
+ B66

R

)(
ϒ20 − λ

(
ϒ40 − n2

R
ϒ20

))



1194 M. R. Barati

k2,4 = + n

(
B12

R
+ B66

R

)(
ϒ11 − λ

(
ϒ31 − n2

R
ϒ11

))
(B9)

k5,2 = B66

(
ϒ20 − λ

(
ϒ40 − n2

R
ϒ20

))
− n2

B11

R2

(
ϒ00 − λ

(
ϒ20 − n2

R
ϒ00

))

+ Ã66
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