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Abstract This paper investigates the problem of a functionally graded multilayered one-dimensional
orthorhombic quasicrystal plate with simply supported edge conditions. Assuming that the functionally graded
material properties vary exponentially along the thickness direction, a solution for a functionally graded plate
subjected to top surface loading is obtained by using the pseudo-Stroh formalism. The propagator matrix
method is utilized to get the solution for the corresponding multilayered case. The exact solution is applied to a
multilayered plate made of quasicrystals and crystals. The influences of the exponential factor, load form, and
stacking sequence on physical quantities are studied in numerical examples. The exact solution can be used to
design a functionally graded multilayered plate composed of one-dimensional quasicrystals and crystals. The
numerical results can also serve as a basis for other numerical methods, such as finite element and boundary
element methods.

1 Introduction

With the first discovery of icosahedral quasicrystals (QCs) in Al–Mn alloys by Shechtman in the early 1980s,
QCs caused a revolutionary breakthrough in the field of crystallography [1–3]. QCs have a new symmetry,
which is quasiperiodic symmetry, and their structures have a long-range quasiperiodic translational order and
a long-range orientational order [4]. One-dimensional (1D) QCs refer to a three-dimensional solid with atomic
arrangement which is periodic in a plane and quasiperiodic in the direction normal to this plane. Because of
the nonperiodic structure, QCs have many special properties, such as low friction coefficient, low adhesion,
high wear resistance, low level of porosity and so on. By taking advantage of the properties of QCs, they can
be used as coatings or films of metals, and as strengthening phases to reinforce alloys in industry [5,6].

Multilayered structures, which are usually bonded together by two or more plates and beams, have been
extensively applied to engineering practices. The analyses for static and dynamic characteristics have been
proposed [7,8]. Multilayered plates [9–11] and beams [12,13] are the main research objects in the study of
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layered structures. The bonding of different materials will cause some drawbacks in joints, such as stress
concentration and micro-crack. These defects will limit the application of multilayered structures.

In order to overcome these defects, functionally gradient material (FGM) can be used. FGM has contin-
uously varying material properties along one direction. Due to the vital importance of FGM, it has attracted
the general scientists’ interest. Axisymmetric bending of FGPM circular plates based on three-dimensional
theory of piezoelectricity has been investigated [14]. Peng and Li [15] studied the thermo-elastic analysis of
a functionally graded annulus with arbitrary gradient. Pan and Han [16] derived the exact solution for func-
tionally graded layered magneto-electro-elastic plates. Yan and Jiang [17] solved the parallel dielectric crack
problem in functionally graded piezoelectric materials. The exact solutions for multidirectional functionally
graded plates were sought for the thickness domain using the state-space method [18]. Based on the transfer
matrix method, Bian et al. [19] determined the shape function and then obtained the analytical solutions for
single span and multispan functionally graded plates in cylindrical bending. The modified couple stress the-
ory was employed to analyze the size-dependent behavior of the three-dimensional FGM anisotropic elastic
composites under the surface load [20]. Zhong et al. [21] summarized the recent advances in the study on
functionally graded materials and structures, and the future development of mechanic analysis of them was
given. However, to the authors’ knowledge, little study regarding a functionally graded multilayered QC plate
has been done until now.

The pseudo-Stroh formalism [7] is used to get the solution for an FGM 1D QC plate, and the propagator
matrix method is then utilized to solve the multilayered case. Two different load forms, a normal load and
a shear load, are studied. The effects of the exponential factor and stacking sequence on physical quantities
are compared in both examples. The numerical results can reveal the static behavior of a functionally graded
multilayered 1DQCplate and serve as a basis for other numerical methods, such as finite element and boundary
element methods.

2 Basic equations

A rectangular Cartesian coordinate system (x1, x2, x3) is used to describe a 1DQC plate whose atomic arrange-
ment is quasiperiodic along the x3 direction and periodic in the x1−x2 plane. In this paper, 1D orthorhombic
QCs with the point groups 2h2h2, mm2, 2hmmh , mmmh are studied. We can get the strain–displacement
relations for 1D QCs from the linear elastic theory of QCs [22],

εi j = (
∂ j ui + ∂i u j

)
/2, w3 j = ∂ jw3, (1)

where i , j = 1, 2, 3 and repeated indices imply the summation from 1 to 3, εi j and w3 j denote the phonon
and phason strains, respectively, and ui and w3 represent the phonon and phason displacements, respectively;
∂ j = ∂/∂x j .

In the absence of body forces, the static equilibrium equations can be expressed as

∂ jσi j = 0, ∂ j H3 j = 0, (2)

where σi j and H3 j denote the stress components in the phonon and phason fields, respectively.
The linear constitutive equations for 1D orthorhombic QCs can be expressed as [23]:

σ11 = C11ε11 + C12ε22 + C13ε33 + R1w33,

σ22 = C12ε11 + C22ε22 + C23ε33 + R2w33,

σ33 = C13ε11 + C23ε22 + C33ε33 + R3w33,

σ23 = σ32 = 2C44ε23+R5w32,

σ31 = σ13 = 2C55ε31+R6w31,

σ12 = σ21 = 2C66ε12,

H33 = R1ε11 + R2ε22 + R3ε33 + K3w33,

H32 = 2R5ε23 + K2w32,

H31 = 2R6ε31 + K1w31, (3)

where Ci j ,C44,C55,C66 denote the elastic constants in the phonon field, Ki represent the elastic constants in
the phason field, and Rm(m = 1, 2, 3, 5, 6) indicate the phonon–phason coupling elastic constants.
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Fig. 1 A functionally graded multilayered 1D QC plate

Thematerial properties of FGMare exponentially distributed along the x3-direction. Therefore, thematerial
coefficients in Eq. (3) can be expressed in the following form:

Ci j (x3) = C0
i je

ηx3, Rm (x3) = R0
me

ηx3, Ki (x3) = K 0
i e

ηx3, (4)

where η is the exponential factor characterizing the degree of the material gradient in the x3-direction, and the
superscript 0 is attached to indicate the x3-independent factors in the material coefficients. When η = 0, the
material coefficients for the FGM correspond to a homogeneous material [24].

3 Problem description and general solution

As shown in Fig. 1, a functionally graded multilayered 1D orthorhombic QC plate with horizontal dimensions
x × y = Lx × Ly and a total thickness z = H is studied, which is in a rectangular Cartesian coordinate system
(x, y, z)with its four sides being simply supported. Let j denote the j-th layer of the layered plate. For layer j ,
its lower and upper interfaces are at z j and z j+1, respectively. Hence, it is apparent that z1 = 0 and zN+1 = H.
The displacements and z-direction traction stresses along the interfaces are assumed to be continuous.

For a FGM 1D QC plate, the solution of the extended displacement vector takes the following form:

u =

⎧
⎪⎨

⎪⎩

ux
uy
uz
wz

⎫
⎪⎬

⎪⎭
= esz

⎧
⎪⎨

⎪⎩

a1 cos px sin qy
a2 sin px cos qy
a3 sin px sin qy
a4 sin px sin qy

⎫
⎪⎬

⎪⎭
, (5)

where
p = nπ/Lx , q = mπ/Ly, (6)

with n and m being two positive integers. s is the eigenvalue, a1, a2, a3, a4 are the components of the corre-
sponding eigenvector, and the eigenvalue and the corresponding eigenvector are to be determined. Only one
term of a double Fourier series expansion with summations for n and m is considered in Eq. (5).

The simply supported displacement boundary conditions of a functionally graded multilayered QC plate
are given by

uy = uz = wz = 0 at x = 0 and x = Lx ,

ux = uz = wz = 0 at y = 0 and y = Ly . (7)

Inserting Eq. (5) into the constitutive equation (3) yields the extended traction vector as

t =

⎧
⎪⎨

⎪⎩

σxz
σyz
σzz
Hzz

⎫
⎪⎬

⎪⎭
= e(s+η)z

⎧
⎪⎨

⎪⎩

b1 cos px sin qy
b2 sin px cos qy
b3 sin px sin qy
b4 sin px sin qy

⎫
⎪⎬

⎪⎭
. (8)

Two vectors which are the coefficients in Eqs. (5) and (8) can be written as

a = {a1, a2, a3, a4}T , b = {b1, b2, b3, b4}T , (9)
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where the superscript T denotes the transpose of a vector or matrix.
Using Eq. (3), the relation between the vectors a and b can be easily derived as follows:

b = (−PT + sT
)
a, (10)

where

P =

⎡

⎢⎢
⎣

0 0 C0
13 p R0

1 p
0 0 C0

23q R0
2q−C0

55 p −C0
44q 0 0

−R0
6 p −R0

5q 0 0

⎤

⎥⎥
⎦ , T =

⎡

⎢⎢
⎣

C0
55 0 0 0
0 C0

44 0 0
0 0 C0

33 R0
3

0 0 R0
3 K 0

3

⎤

⎥⎥
⎦ . (11)

The other stress components in Eq. (3) can be expressed as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σxx
σxy
σyy
Hzx
Hzy

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= e(s+η)z

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1 sin px sin qy
c2 cos px cos qy
c3 sin px sin qy
c4 cos px sin qy
c5 sin px cos qy

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (12)

where ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1
c2
c3
c4
c5

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎡

⎢⎢
⎢⎢
⎣

−C0
11 p −C0

12q C0
13s −R0

1s
C0
66q C0

66 p 0 0
−C0

12 p −C0
22q C0

23s R0
2s

R0
6s 0 R0

6 p K 0
1 p

0 R0
5s R0

5q K 0
2q

⎤

⎥⎥
⎥⎥
⎦

⎧
⎪⎨

⎪⎩

a1
a2
a3
a4

⎫
⎪⎬

⎪⎭
. (13)

Substituting Eqs. (8) and (12) into the equilibrium equation (2), we get the following eigenequation:
[
Q − ηPT + s

(
P − PT + ηT

) + s2T
]
a = 0, (14)

where Q takes the following form:

Q =

⎡

⎢⎢
⎢
⎣

− (
C0
11 p

2 + C0
66q

2
) −pq

(
C0
12 + C0

66

)
0 0

−pq
(
C0
12 + C0

66

) − (
C0
22q

2 + C0
66 p

2
)

0 0
0 0 − (

C0
55 p

2 + C0
44q

2
) − (

R0
6 p

2 + R0
5q

2
)

0 0 − (
R0
6 p

2 + R0
5q

2
) − (

K 0
1 p

2 + K 0
2q

2
)

⎤

⎥⎥
⎥
⎦

. (15)

It is remarkable that Eq. (14), if the exponential factor η = 0, degenerates into the eigenequation for the
corresponding homogeneous case [7].

In view of Eqs. (10) and (14), we can take the vector b as

b = − 1

s + η
(Q + sP) a. (16)

Then, utilizing Eqs. (10) and (16), Eq. (14) can be rewritten into a 8 × 8 linear eigensystem

Nξ = sξ, ξ = {a,b}T , (17)

where

N =
[

T−1PT T−1

−Q − PT−1PT −PT−1 − ηI

]
, (18)

and I in Eq. (18) is the 4×4 unit matrix. The eigenvalues s can be obtained through making the determinant of
the characteristic matrix in Eq. (17) zero. The corresponding eigenvectors ξ are determined from Eq. (17). If
repeated roots occur, a slight change in the material constants would cause distinct roots with negligible error
[25]. Consequently, we only consider the case of different eigenvalues.

It is assumed that the first four eigenvalues have positive real parts (if the root is purely imaginary, we will
pick up the one with positive imaginary part) and the remainder have the relation with the first four as

sα+4 = − sα − η, Re (sα) > 0 (α = 1, 2, 3, 4), (19)
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Fig. 2 Stacking sequence a C/QC/C. b QC/C/QC

Table 1 Material coefficients of the Al–Ni–Co (C0
i j in 10

9 N/m2, R0
m in 109 N/m2, K 0

i in 109 N/m2)

C0
11 = C0

22 C0
12 C0

13 = C0
23 C0

33 C0
44 = C0

55 C0
66 = (C0

11 − C0
22)/2

234.3 57.4 66.6 23.2 70.2 88.5

R0
1 = R0

2 = R0
3 = R0

5 = R0
6 K 0

1 = K 0
2 K 0

3

8.85 12.2 2.4

Table 2 Material coefficients of the BaTiO3 (C0
i j in 10

9 N/m2, R0
m in 109 N/m2, K 0

i in 109 N/m2)

C0
11 = C0

22 C0
12 C0

13 = C0
23 C0

33 C0
44 = C0

55 C0
66 = (C0

11 − C0
22)/2

166 77 7. 8 162 43 44.5

R0
1 = R0

2 = R0
3 = R0

5 = R0
6 K 0

1 = K 0
2 = K 0

3

0 0

in which Re indicates the real part of a quantity. The general solution for the extended displacement vector u
and traction vector (of the z-dependent factor) t are

(
u
t

)
=

⎡

⎣
A1

〈
es

∗z
〉

A2

〈
e(−s∗−η)z

〉

B1

〈
e(s

∗+η)z
〉

B2

〈
e−s∗z

〉

⎤

⎦
(
K1
K2

)
, (20)

where
A1 = [a1, a2, a3, a4] ,A2 = [a5, a6, a7, a8] ,
B1 = [b1,b2,b3,b4] ,B2 = [b5,b6,b7,b8] ,〈
es

∗z
〉
= diag

[
es1z, es2z, es3z, es4z

]
,

(21)

K1 and K2 are two 4 × 1 constant column matrices to be determined according to the boundary conditions.
Equation (20) is the general solution for a simply supported FGM 1D QC plate. If η = 0, Eq. (20) is

same with the general solution for the corresponding homogeneous case [24]. Then, the propagator matrix is
introduced to get the solution for a multilayered case. The propagator matrix method is useful for the layered
structures and has certain advantages in the calculation [26,27].

Using Eq. (20), the column coefficient matrices K1 and K2 can be obtained as

(
K1
K2

)

j
=

⎡

⎣
A1

〈
es

∗(z−z j)
〉

A2

〈
e(−s∗−η)(z−z j)

〉

B1

〈
e(s

∗+η)(z−z j)
〉

B2

〈
e−s∗(z−z j)

〉

⎤

⎦

−1

j

(
u
t

)

j
, (22)

where the subscript j denotes layer jand s* indicates the eigenvalues of layer j , and z j ≤ z ≤ z j+1. Let z be
equal to z j and z j+1, respectively, then the column matrices can be rewritten as

(
K1
K2

)

j
=

[
A1 A2
B1 B2

]−1

j

(
u
t

)

z j

=
⎡

⎣
A1

〈
es

∗h j

〉
A2

〈
e(−s∗−η)h j

〉

B1

〈
e(s

∗+η)h j

〉
B2

〈
e−s∗h j

〉

⎤

⎦

−1

j

(
u
t

)

z j+1

, (23)
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(a) (b)

(c) (d)

Fig. 3 Contour plots of physical quantities at the top surfaces (z = 0.3m) subjected to a normal load with η = 5. a σzz for the
C/QC/C plate (N/m2), b σzz for the QC/C/QC plate (N/m2), c uz for the C/QC/C plate (10−12 m), d uz for the QC/C/QC plate
(10−12 m)

in which h j = z j+1–z j is the thickness of layer j .
Furthermore, in terms of the lower surface of layer j , the displacement vector u and traction vector t on

the upper surface can be expressed as

(
u
t

)

z j+1

=
⎡

⎣
A1

〈
es

∗h j

〉
A2

〈
e(−s∗−η)h j

〉

B1

〈
e(s

∗+η)h j

〉
B2

〈
e−s∗h j

〉

⎤

⎦

j

[
A1 A2
B1 B2

]−1

j

(
u
t

)

z j

. (24)

Under the assumption that the displacement vector u and traction vector t are continuous across the
interface, Eq. (24) can be used repeatedly. Due to the above reasons, the physical quantities can propagate
from the bottom surface z = 0 to the top surface z = H of a multilayered FGM plate. Therefore, we obtain

(
u
t

)

H
= EN (hN )EN−1 (hN−1) · · ·E2 (h2)E1 (h1)

(
u
t

)

0
, (25)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4 Contour plots on the vertical plane (y = 0.5Ly) along x-direction and through z-direction with η = 5 for Sect. 4.1. a σzz

for the C/QC/C plate (N/m2), b σzz for the QC/C/QC plate (N/m2), c Hzz for the C/QC/C plate (10−3 N/m2), d Hzz for the
QC/C/QC plate (10−3 N/m2), e uz for the C/QC/C plate (10−12 m), f uz for the QC/C/QC plate (10−12 m), g wz for the C/QC/C
plate (10−12 m), h wz for the QC/C/QC plate (10−12 m)

where

Ek (hk) =
⎡

⎣
A1

〈
es

∗hk
〉

A2

〈
e(−s∗−η)hk

〉

B1

〈
e(s

∗+η)hk
〉

B2

〈
e−s∗hk

〉

⎤

⎦

k

[
A1 A2
B1 B2

]−1

k
(k = 1, . . . , N ) (26)

is called the propagator matrix. The matrices Al and Bl (l = 1, 2) in the propagator matrix are normalized
according to

−BT
2
A1 + AT

2
B1 = I. (27)
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Fig. 5 Variation of the stress components with z at a location (x = 0.75Lx , y = 0.75Ly) of different η for Sect. 4.1. a σzz for
the C/QC/C plate, b σzz for the QC/C/QC plate, c σxx (= σyy) for the C/QC/C plate, d σxx (= σyy) for the QC/C/QC plate, e Hzz
for the C/QC/C plate, f Hzz for the QC/C/QC plate

4 Numerical examples

In this section, a multilayered FGM plate subjected to a normal force and a shear force at the top surface
with simply supported boundary conditions is studied. Two different stacking sequences of the laminated
plate, shown in Fig. 2, are considered. One of the stacking sequences is BaTiO3/Al–Ni–Co/BaTiO3 (called
C/QC/C), the other sequence is QC/C/QC, which is made of Al–Ni–Co/BaTiO3/Al–Ni–Co. The dimensions
of a multilayered FGM plate are Lx × Ly × H = 1m × 1m × 0.3m. The three layers have equal thickness
of 0.1 m. According to the material coefficients of QCs shown by Fan [23] and Sladek et al. [28], the material
properties for Al–Ni–Co are listed in Table 1, and the material coefficients for BaTiO3 obtained by Lee and
Jiang [29] are shown in Table 2.

It is important to point out that R0
m and K 0

i in the crystal are zero, on account of no phason field in classical
crystalline materials [30,31]. In order to avoid generating a singular matrix, K 0

i in the crystal is supposed to
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Fig. 6 Variation of the displacement components with z at a location (x = 0.75Lx , y = 0.75Ly) of different η for Sect. 4.1. a
uz for the C/QC/C plate, b uz for the QC/C/QC plate, c wz for the C/QC/C plate, d wz for the QC/C/QC plate

be a very small value during the calculation, about 10−8 of the corresponding value of K 0
i in QC. In addition,

the phason components in Eqs. (5), (8), and (12) are zero in the crystal layer.
In the following two numerical examples, the exact solution is applied to different stacking sequences.

Different load forms, which are a normal load and a shear load, respectively, are considered. The responses of
physical quantities with different exponential factors are studied.

4.1 A normal load

Assuming that a multilayered FGM plate subjected to a normal load at the top surface, which takes the form

σzz = σ0 sin px sin qy, (28)

where σ0 is the amplitude of the loading. Let’s assume all the other traction components on the top surface
and all traction components on the bottom surface are zero. Consequently, Eq. (25) can be simplified to

(
u (H)
t (H)

)
=

[
D1 D2
D3 D4

] (
u (0)
0

)
, (29)

where D1,D2,D3,D4 are the multiplications of the propagator matrices in Eq. (25), and t(H) is the given
traction boundary condition on the top surface, i.e.,

t (H) = {0, 0, σ0 sin px sin qy, 0}T. (30)

Inserting Eq. (30) into Eq. (29), we have the unknown displacement components at the bottom surface

u (0) = D−1
3 t (H) . (31)
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Consequently, for the displacement and traction vectors at any depth, the solution is

(
u
t

)

z
= Ez (z − zk−1)Ek−1 (hk−1) · · · E2 (h2)E1 (h1)

(
u
t

)

0
. (32)

In order to investigate the response of the layered FGM plate under a normal load at the top surface with
n = m = 1 and amplitude σ0 = −1N/m2 in Eq. (28), the exponential factor η is taken as 5. It has been
checked that the results in this section corresponding to the exponential factor η = 0 are exactly the same as
those in Yang et al. [24].

Figure 3 presents the contour plots of the phonon stress σzz and the phonon displacement uz at the top
surface with η = 5. The contour plots of physical quantities on the x−z plane at y = 0.5Ly with η = 5
are shown in Fig. 4. The maximum values of σzz at the top surface, shown in Figs. 3a, b and 4a, b, are −1,
and the minimum values of σzz at the bottom surface are zero. To a certain extent, according to the results
of the applied traction boundary condition, the accuracy of the exact solution can be proved. It should be
noted that the phonon stress σzz for the C/QC/C plate is similar to that for the QC/C/QC plate, which implies
that the stacking sequence has little influence on the phonon stress σzz , because the same load along the
z-direction is applied to the top surface for two different stacking sequences. The maximum values of σzz
occur in the center of a multilayered plate on account of the sinusoidal loading applied, and the maximum
values of the phonon displacement uz , shown in Figs. 3c, d and 4e, f, follow the same trend. However,
the maximum magnitude of uz for the C/QC/C plate is larger than that for the QC/C/QC plate. Figures 4c,
d, respectively, for the C/QC/C plate and the QC/C/QC plate, display the phason stress Hzz . The phason
displacement wz for both stacking sequences is shown in Figs. 4g, h. We can find that no phason stress and
displacement response occur in the crystal layers. The maximum values of Hzz and wz appear in the center
of a multilayered plate, and the maximum values are different for two different stacking sequences. Thus,
the stacking sequence plays an important role in the phason stresses and displacements, and the influence
is not only on the position where the response occurs, but also on the magnitude of the physical quantities.
Additionally, the physical quantities on the phonon and phason fields in Figs. 3 and 4 are symmetry with the
plane of x = 1.5m.

To illustrate the effect of the exponential factor on the physical components in the phonon and phason
fields, a multilayered FGM plate subjected to a normal load at the top surface with three different exponential
factors η, which are, respectively,−5, 0, 5, is studied. The horizontal coordinates are fixed at (x, y) = (0.75Lx ,
0.75Ly) in the analysis of the effect with different exponential factors.

Figure 5 shows the variation of the stress components in the phonon and phason fields with different η for
two different stacking sequences. The values of the phonon stress σzz on the top and bottom surfaces, shown in
Figs. 5a, b, satisfy the traction boundary conditions in Eq. (30), and σzz is not very sensitive to η. Figures 5c,
d presents the phonon stress σxx (= σyy) with different η. The values of σxx (= σyy) increase with decreasing
η. The values of Hzz in Figs. 5e, f are zero in crystal layers, because there is no phason field in the crystal.
Moreover, the magnitude of Hzz for the C/QC/C plate changes by varying η from −5 to 5. The values of Hzz
in the bottom layer for the QC/C/QC plate decrease with increasing η. Unlike the trend in the bottom layer,
the change rule of phason stress Hzz in the top layer is contrary to that of the bottom layer. From Figs. 5a, b,
e, f, it can be found that the values of stress components along the z-direction are continuous, which the agree
with our hypothesis.

The phonon displacements uz in Figs. 6a, b are continuous at the interfaces, and the magnitudes of uz vary
along with η. As for the phason displacement wz in Figs. 6c, d, the response occurs only in the QC layers, and
the values of wz alter by varying η.

4.2 A shear load

It is assumed that a shear load is applied to a multilayered FGM plate at the top surface, i.e.,

σyz = σ0 sin px cos qy. (33)

The traction boundary condition at the top surface is

t (H) = {0, σ0 sin px cos qy, 0, 0}T. (34)
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(a) (b)

(c) (d)

Fig. 7 Contour plots of physical quantities at the top surfaces (z = 0.3 m) subjected to a shear load with η = 5. a σyz for the
C/QC/C plate (N/m2), b σyz for the QC/C/QC plate (N/m2), c uz for the C/QC/C plate (10−12 m), d uz for the QC/C/QC plate
(10−12 m)

Then, substitution of Eq. (34) into Eq. (29) yields the unknown displacements at the bottom surface as

u (0) = D−1
3 t (H) . (35)

By utilizing Eq. (35) and the boundary conditions shown in Eq. (34), we can get the solution for the
displacement and traction vectors, which is the same as the solution in Eq. (32).

A multilayered FGM plate subjected to a shear load with exponential factor η = 5 is analyzed in this
section. The value of amplitude σ0 is also taken for −1. The contour plots of physical quantities at the top
surface, at the interfaces, and in the y − z plane are presented in Figs. 7, 8 and 9, respectively.

The satisfaction of the traction boundary conditions at the top and bottom surfaces of a multilayered FGM
plate can be observed from Figs. 7a, b for σyz and Figs. 9a, b, c, d, e, f for σyz , σzz , and Hzz . Owing to the
same boundary conditions applied, no differences are found on σyz for the C/QC/C plate and QC/C/QC plate
from Figs. 7a, b. It can be observed from Figs. 8a, b that the maximum values of σyzfor the C/QC/C plate are
greater than those for the QC/C/QC plate. The distribution of σyz in Figs. 7a, b and 8a, b is symmetry about
x = 0.5m and antisymmetry about y = 0.5m. The responses of σzz at the interfaces and in the y−z plane for
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(a) (b)

(c) (d)

Fig. 8 Contour plots of physical quantities at the interfaces (z = 0.2 m) subjected to a shear load with η = 5. a σyz for the C/QC/C
plate (N/m2), b σyz for the QC/C/QC plate (N/m2). c σzz for the C/QC/C plate (N/m2), d σzz for the QC/C/QC plate (N/m2)

different stacking sequences are, respectively, shown in Figs. 8c, d and 9c, d. The maximum values of σzz for
the C/QC/C plate are larger than those for the QC/C/QC plate. The response on Hzz and wz only exists in the
QC layers, and the magnitudes of Hzz and wz for the C/QC/C plate are smaller than those for the QC/C/QC
plate.

Different exponential factors, i.e., η = −5, 0, 5 for the multilayered FGMplate subjected to the shear load,
are also discussed in the following part. To show the physical quantities response of the plate with different η,
the horizontal coordinates are fixed at (x, y) = (0.75Lx , 0.75Ly).

From Figs. 10a, b, we can see that the values of σyz are zero at the bottom surface and 0.5 at the top
surface. The values of σzz , shown in Figs. 10c, d, at the top and bottom surfaces are all zero, these values are
consistent with the traction boundary conditions in Eq. (34). From Figs. 10e, f, there is a slight difference in the
magnitude of Hyz with different η. The values of Hzz for the C/QC/C plate in Fig. 10g are zero in the crystal
layers and increase with varying η from −5 to 5 in the QC layer. As for the values of Hzz for the QC/C/QC
plate in Fig. 10h, the trend is similar to that for the C/QC/C plate. From Figs. 11a, b, the values of uz are
continuous at the interfaces. Another observation is that η has a great effect on the phonon displacement uz .
Figures 11c, d show that the phason displacement wz is quite affected by different η.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 9 Contour plots on the vertical plane (x = 0.5Lx ) along y-direction and through z-direction with η = 5 for Sect. 4.2. a σyz

for the C/QC/C plate (N/m2), b σyz for the QC/C/QC plate (N/m2), c σzz for the C/QC/C plate (N/m2), d σzz for the QC/C/QC
plate (N/m2), e Hzz for the C/QC/C plate (10−3 N/m2), f Hzz for the QC/C/QC plate (10−3 N/m2), g uz for the C/QC/C plate
(10−12 m), h uz for the QC/C/QC plate (10−12 m), i wz for the C/QC/C plate (10−13 m), j wz for the QC/C/QC plate (10−13 m)
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Fig. 10 Variation of the stress components with z at a location (x = 0.75Lx , y = 0.75Ly) of different η for Sect. 4.2. a σyz for
the C/QC/C plate, b σyz for the QC/C/QC plate, c σzz for the C/QC/C plate, d σzz for the QC/C/QC plate, e Hyz for the C/QC/C
plate, f Hyz for the QC/C/QC plate, g Hzz for the C/QC/C plate, h Hzz for the QC/C/QC plate
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Fig. 11 Variation of the displacement components with z at a location (x = 0.75Lx , y = 0.75Ly) of different η for Sect. 4.2. a
uz for the C/QC/C plate, b uz for the QC/C/QC plate, c wz for the C/QC/C plate, d wz for the QC/C/QC plate

5 Discussions and conclusions

A numerical instability may occur in the matrix calculation for layered media [32,33]. The total stresses
and displacements on the system interfaces instead of reflection/transmission matrices are operated in the
stiffness matrix method [32] which is unconditionally stable. Due to the adoption of a dual coordinate sys-
tem, the method of reverberation-ray matrix [33] can ensure the stability of calculation for layered media.
In order to verify the stability of the developed pseudo-Stroh formalism, the case of the multilayered plate
subjected to a normal load with η = 50 is added in Fig. 12, which shows the variation of physical quan-
tities of the C/QC/C plate at a fixed location (0.75Lx , 0.75Ly). The satisfaction of the traction boundary
conditions at the top and bottom surfaces of a layered plate can be found from Figs. 12a, b, and the value
of uz is continuous at the interfaces. It can be seen that when η is 50, the developed pseudo-Stroh formal-
ism is numerically stable. Although numerical instability may be encountered if η is larger than 50, the
case is very rare in engineering. To deal with this rare case, another modified method could be applied
[34].

In this paper, an exact solution for a simply supported functionally graded multilayered 1D QC plate
subjected to surface loading has been obtained by using the pseudo-Stroh formalism and propagator matrix
method. In numerical results, two load forms, a normal load and a shear load, respectively, are discussed. The
effects of the exponential factor η on the phonon and phason fields are compared in numerical illustrations. The
influence of stacking sequence on the layered plate, and the stress condition at the interfaces for the laminated
plate are also studied.

The following vital features were obtained from the numerical examples: the values of stress components
and displacements in the phonon and phason fields vary with the exponential factor η; the quite different
responses of physical quantities in the phonon and phason fields are induced by different load forms; all com-
parison studies for the stacking sequence reveal the obvious effect of it on the physical fields, especially at the
interfaces of a multilayered FGM plate.
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Fig. 12 Variation of the physical quantities with z at a location (x = 0.75Lx , y = 0.75Ly) of η = 50, a σzz for the C/QC/C plate,
b Hzz for the C/QC/C plate, c uz for the C/QC/C plate, d wz for the C/QC/C plate

The numerical results can serve as a benchmark result for other numerical methods, and the exact solution
may have potential applications in the field of smart structures based on a functionally graded multilayered
1D QC plate.
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