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Abstract This paper introduces and discusses a weighted form of the dual mean-square error criterion by con-
sidering weighted contributions of forward and return replacements adjusted by a specific non-dimensional
weight coefficient. The simplicity and accuracy of the proposed weighted dual equivalent linearization tech-
nique are checked on several random vibration systems in comparison with other criteria. It is shown that the
corresponding accuracy can be significantly improved for a large range of nonlinearity of investigated vibration
systems.

1 Introduction

Most phenomena in our world are essentially nonlinear and described by nonlinear equations. We might sim-
plify nonlinear phenomena as linear ones to make them easier to understand; however, for further investigation
nonlinear phenomena should be treated as nonlinear problems. Thus, the study of nonlinear problems is of
crucial importance not only in all areas of physics but also in engineering and in other disciplines. In particular,
it appears that the analysis of vibration based on nonlinear mathematical models requires appropriate methods.
In the theory of random vibration, the stochastic equivalent linearization method that replaces a nonlinear sys-
tem by an equivalent linear one is a popular method since it preserves some essential properties of the original
nonlinear system. The method has been described in numerous review articles [1,2], and was summarized in
the monographs by Roberts and Spanos [3] and Socha [4]. About the efficiency and versatility of the stochastic
linearization method, Elishakoff and Crandall have written: It allows obtaining estimates of the response of the
system when the exact solution is unavailable; in contrast to the perturbation technique, its realization does not
demand smallness of the parameter; on the other hand, unlike the Monte Carlo simulation, it does not involve
extensive computational cost. Although its accuracy may be not very high, this is remedied by the fact that the
stochastic excitation itself need not be known quite precisely [2]. Canor et al. [5] also have written: Owing
to its accessible implementation and rapidity, the equivalent linearization has become a common probabilistic
approach for the analysis of large-dimension nonlinear structures.

The equivalent linearization method has been used in many research papers. An equivalent linearization-
based analytical approach is developed in [6,7] for the analysis of nonlinear energy harvesters under random
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excitations. The nonlinear flutter system of an airfoil is investigated in [8,9] using the equivalent linearization
method. An approach based on the equivalent linearizationmethod is proposed in [10] to determine the approx-
imate analytical solution for the H∞ optimization of the three-element dynamic vibration absorber attached
to the damped primary structure. Jalali proposed in [11] a method for equivalent linearization of nonlinear
restoring forces where numerical investigations revealed that the proposed method is efficient in the analysis
of weakly nonlinear hysteretic systems. Silva-Gonzlez et al. [12] have used the stochastic equivalent lineariza-
tion method for investigating inelastic nonlinear structural systems subjected to seismic ground motions. Su
et al. [13] have developed an efficient procedure based on the equivalent linearization method for nonlinear
structures subjected to nonstationary random excitations. The technique of equivalent linearization is used
in [14] to investigate the thermal radiation of small satellites with a single-node model. A new equivalent
linearization method using a Gaussian mixture distribution model has been developed in [15] for nonlinear
random vibration analysis.

The essential of the equivalent linearization method is how to find the linearization coefficients for a
given nonlinear system. In the literature, several criteria of equivalent linearization have been suggested to
define the linearization coefficients where the original version is the conventional criterion [16] that minimizes
the mean-square of equation error. Despite the aforementioned advantages, the main disadvantage of this
criterion is that its accuracy decreases as the nonlinearity is increasing, in many cases it results in unacceptable
errors. Hence, other different equivalent linearization criteria have been developed in order to improve the
accuracy of an approximate solution, see for example [1,4,17,18]. Recently, a dual criterion was proposed in
[19,20] where the linearization coefficients are determined from the dual replacement involving forward and
return replacements. Application of the dual criterion to three nonlinear systems, namely Duffing, Van der
Pol and Lutes–Sarkani oscillators, has shown an improved accuracy of the approximate solutions for cases
where the nonlinearity is of intermediate level [20,21]. A possible reason may be the fact that the forward
and return replacements would have different roles in adjusting the replacement error rather than being the
same. In [22,23], a weighted dual criterion is investigated by considering the weight parameter as a piecewise
linear function of the squared correlation coefficient which is defined by the interpolation method of least
squares from available exact solutions of several nonlinear restoring oscillators. The main restriction of the
piecewise linear weight parameter is that it represents only a limited class of nonlinear oscillators. In this paper,
we therefore develop a more sophisticate form of the weight parameter. The simplicity and accuracy of the
proposed weighted dual error criterion are then checked on several random vibration systems with nonlinear
restoring or nonlinear damping. It is obtained that the corresponding accuracy can be significantly improved
for a large range of nonlinearity of investigated vibration systems.

2 Weighted dual criterion

We consider firstly the problem of equivalent replacement: Given random functions A and B with zero mean
and A is replaced by kB where k is an equivalent replacement coefficient to be found from an equivalent
replacement criterion. When the function B is considered as linear one, the equivalent replacement is known
as equivalent linearization. Let us denote:

r2 = 〈AB〉2
〈
A2
〉 〈
B2
〉 (1)

where 〈·〉 is the expectation operator. One notes that the parameter r2 is precisely the squared correlation
coefficient that is used as a measure of the linear dependence between two functions A, B [24]. Following the
Cauchy–Schwarz inequality, one has

r2 ≤ 1, (2)

and r2 = 1 when A is proportional to B, A = αB, α = const. It has been observed that the conventional
equivalent replacement has a one-way sense. Indeed, the conventional replacement ofA by kB can be considered
as the forward replacement from the original function A to its counterpart B and illustrated schematically as
follows:

A → kB. (3)
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For the conventional mean-square error criterion [16], the equivalent replacement coefficient k is found from
the condition:

ef ≡ 〈
(A − kB)2

〉 → min
k

(4)

where the index “f” denotes the forward replacement. The criterion (4) gives the forward equivalent replacement
coefficient:

kf = 〈AB〉
〈
B2
〉 . (5)

Supposing now kf B is found one gets back to A using the return replacement

kf B → λA (6)

where the return coefficient λ is found from the corresponding mean-square replacement error criterion:

er ≡ 〈
(kB − λA)2

〉 → min
λ

(7)

where k = kf . Using (7), (5), and (1), one obtains

λr = kf
〈AB〉
〈
A2
〉 = 〈AB〉2

〈
A2
〉 〈
B2
〉 = r2. (8)

The index “r” denotes the return replacement. The minimal mean-square errors of forward and return replace-
ments can be calculated using (1), (4), (5), (7), (8), respectively,

ef min = 〈
(A − kf B)2

〉 = 〈
A2〉− 2kf 〈AB〉 + k2f

〈
B2〉 = (1 − r2)

〈
A2〉 , (9)

er min = 〈
(kf B − λr A)2

〉 = k2f
〈
B2〉− 2kfλr 〈AB〉 + λ2r

〈
A2〉 = r2(1 − r2)

〈
A2〉 . (10)

It is observed from (9) and (10) that the squared correlation coefficient r2 can play a key role in the equivalent
replacement problem since it appears naturally in minimal square errors of forward and return replacements.

In order to improve the accuracy of the equivalent replacement coefficient, the dual approach was recently
proposed in [19] and has been developed in [20–23,25]. One of the significant advantages of the dual approach
is its consideration of two different aspects of a problem in question allowing the investigation to be more
appropriate. Application of the dual approach to the problem of replacement means this problem should
combine two forward and return replacements (3) and (6) in a weighted dual replacement:

A → kwB → λwA (11)

characterized by a weighted dual mean-square error criterion [22,23]:

ew ≡ (1 − p)ef + per = (1 − p)
〈
(A − kwB)2

〉+ p
〈
(kwB − λwA)2

〉 → min
kw,λw

(12)

where the index “w” denotes the weighted dual replacement, p is a non-dimensional weight parameter which
plays a role in adjusting the contributions of forward and return replacements in order to obtain the best
replacement of A by kB. When p = 0 the criterion (12) leads to the conventional mean-square error criterion
[16]; and when p = 1/2 it leads to the dual mean-square error criterion investigated in [20]. An expression of
the weight parameter p is proposed in [22,23] as a piecewise linear function of r2. In this paper, we consider
a more sophisticated form of the weight parameter p satisfying the condition:

0 ≤ p ≤ 1. (13)

Given a weight parameter p, the criterion (12) yields minimum necessary and sufficient conditions,

∂ew
∂kw

= 0,
∂ew
∂λw

= 0,
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which gives kw and λw, respectively,

kw = (1 − p + pλw)
〈AB〉
〈
B2
〉 , λw = kw

〈AB〉
〈
A2
〉 . (14)

Equation (14) shows that the return replacement can contribute to the equivalent replacement coefficient kw
through the return coefficient λw that plays a complementary role. Solving (14), one obtains:

kw = 1 − p

1 − pr2
〈AB〉
〈
B2
〉 , λw = 1 − p

1 − pr2
r2. (15)

Thus, it is shown that if the weight parameter p is known, using the weighted dual mean-square error
criterion (12), the original function A can be replaced by kwB where the equivalent replacement coefficient kw
can be found from (15). The squared correlation coefficient r2 also appears naturally in both kw and λw. Thus,
the main problem is now reduced to how the weight parameter p can be chosen. This problem is complicated
and needs an intensive study. Here we use an empirical research approach based on actual observations and
experiences that help to suggest a formula for the weight parameter. The validity of the formula will be tested
by different examples. For this purpose, firstly it is observed that the return replacement er is introduced in (12)
due to that the minimal mean-square forward error determined by (9) differs from zero. Hence, one assumes
that the weight parameter p can be a function of ef min, and a linear relation is of the first choice:

p = ηef min (16)

where η is a dimensional coefficient which makes p non-dimensional satisfying (13). Substituting (9) into (16)
yields

p = η(1 − r2)
〈
A2〉 . (17)

The further discussion has large dispersion. Here a possible inference is used as follows. The original function
A is given, and its counterpart kf B has been extracted from A. Both of them play certainly key roles in the
equivalent replacement problem. Thus, the dimensional coefficient η can be taken as an effect sum of these
two things as Eq. (18), noting (1) and (5),

η = 1
〈
A2
〉+ 〈

(kf B)2
〉 = 1

〈
A2
〉+

( 〈AB〉
〈B2〉

)2 〈
B2
〉 = 1

(1 + r2)
〈
A2
〉 . (18)

Finally, substituting (18) into (17) yields the following expression for the non-dimensional weight parameter
p:

p = 1 − r2

1 + r2
(19)

which satisfies (13). It is obtained in (19) again that the non-dimensional weight parameter p depends on the
parameter r2 indicating the difference level between A and B. Substituting (19) into (15) yields the weighted
dual equivalent replacement coefficient:

kw = 2r2

1 + r4
〈AB〉
〈
B2
〉 . (20)

Thus, using the weighted dual mean-square error criterion (12) with the weight parameter (19) the original
random function A can be replaced by the equivalent random function kwB, where the weight dual equivalent
replacement coefficient kw is found from (20) and r2 takes form (1). In the next Section, the accuracy of the
proposed weighted dual mean-square error criterion will be investigated for several nonlinear systems.
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3 Applications

3.1 Power-law oscillators

Consider the nonlinear system consisting of a linear damper with damping coefficient 2h, a linear restoring
force ω2

0x , and a nonlinear restoring force g (x),

ẍ + 2hẋ + ω2
0x + g (x) = σ ξ̇ (t) (21)

where h, ω0, and σ are real positive constants, g (x) is an odd function, and ξ̇ (t) is Gaussian white noise
excitation with zero mean and unit intensity. Indeed, Eq. (21) may represent a class of power-law oscillators.
For instance, when the restoring force g (x) in (21) has the form (22):

g (x) = γ x3 (22)

with γ a real positive constant, the equation is said to be a Duffing oscillator [3]. When the restoring force in
(21) has the form (23),

g (x) = γ x1/3, (23)

then the equation is said to be the cubic-root oscillator [1,3]. For any odd restoring force g (x), the probability
density function of the nonlinear oscillator (21) takes the form (24):

W (x) =
exp

{
− 4h

σ 2G (x)
}

∞∫
−∞

exp
{
− 4h

σ 2G (x)
}
dx

(24)

where G (x) is the potential energy function for the restoring force, G (x) = ∫ x
0

[
ω2
0u + g (u)

]
du [3]. Due to

the zero mean, the exact mean-square displacement response coincides with the variance one,

〈
x2
〉
e = σ 2

x,e =

∞∫
−∞

x2 exp
{
− 4h

σ 2G (x)
}
dx

∞∫
−∞

exp
{
− 4h

σ 2G (x)
}
dx

. (25)

Applying the equivalent linearization method, the desired mean-square response of the nonlinear system (21)
with two forms of the restoring force g (x) that are described in (22), (23) can be estimated by the mean-square
response of an equivalent linearization system:

ẍ + 2hẋ + (
ω2
0 + k

)
x = σ ξ̇ (t) (26)

where the nonlinear component g (x) is replaced by a linear one kx, k being the equivalent linearization
coefficient. The mean-square response defined from (26) is [3]:

〈
x2
〉 = σ 2

x = σ 2

4h
(
ω2
0 + k

) . (27)

Applying the weighted dual criterion with A = g (x) , B = x , first calculate the moments
〈
A2
〉 =〈

g2
〉
, 〈AB〉 = 〈xg〉 and the squared correlation coefficient r2, and then the weight parameter (19) and the

weighted dual equivalent linearization coefficient (20) are defined next.
For a Duffing oscillator with A = γ x3, B = x , one gets

〈
A2〉 = γ 2 〈x6

〉 = 15γ 2〈x2
〉3

,

〈AB〉 = γ
〈
x4
〉 = 3γ

〈
x2
〉2

,
〈
B2〉 = 〈

x2
〉
,
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Table 1 The errors of the approximate mean-square responses of a Duffing oscillator for h = 0.5; ω0 = 1; σ = √
2 and various

values of γ

γ
〈
x2
〉
e

〈
x2
〉
c err (%)

〈
x2
〉
regI err (%)

〈
x2
〉
regII err (%)

〈
x2
〉
d err (%)

〈
x2
〉
w err (%)

0.01 0.9721 0.9717 0.05 0.9777 0.57 0.9810 0.91 0.9794 0.75 0.9748 0.28
0.05 0.889 0.883 0.64 0.905 1.78 0.917 3.18 0.911 2.52 0.894 0.62
0.1 0.818 0.805 1.49 0.837 2.34 0.856 4.64 0.846 3.54 0.821 0.47
0.5 0.579 0.549 5.29 0.592 2.15 0.620 7.09 0.606 4.67 0.570 1.59
1.0 0.468 0.434 7.19 0.475 1.42 0.502 7.32 0.489 4.41 0.454 2.95
5.0 0.254 0.227 10.74 0.253 0.51 0.272 6.81 0.262 3.17 0.240 5.76
10.0 0.189 0.167 11.77 0.187 1.17 0.201 6.48 0.194 2.67 0.176 6.62

r2 = 3/5. (28)

Using the results in (28) to calculate the weight parameter (19) and the weighted dual equivalent linearization
coefficient (20) gives

p = 1/4, (29)

kw = 45

17
γ
〈
x2
〉
. (30)

Substituting the defined equivalent linearization coefficient from (30) to (27), yields

45

17
γ
〈
x2
〉2
w + ω2

0

〈
x2
〉
w − σ 2

4h
= 0. (31)

Solving (31), one obtains the approximate mean-square response,

〈
x2
〉
w = 17

90γ

⎡

⎣−ω2
0 +

√

ω4
0 + 45

17
γ

σ 2

h

⎤

⎦ . (32)

The approximate mean-square response (32) is compared in Table 1 with the exact solution (25), also with
the ones obtained by other equivalent linearizations, i.e., conventional, one-step regulation, two-step regulation,
and dual criteria, with the corresponding indexes “c, regI, regII, d”, respectively. Those solutions are available
in [20]:

〈
x2
〉
c = 1

6γ

⎛

⎝−ω2
o +

√

ω4
o + 3

γ σ 2

h

⎞

⎠ , (33)

〈
x2
〉
regI = 3

14γ

⎛

⎝−ω2
o +

√

ω4
o + 7

3

γ σ 2

h

⎞

⎠ , (34)

〈
x2
〉
regII = 39

154γ

⎛

⎝−ω2
o +

√

ω4
o + 77

39

γ σ 2

h

⎞

⎠ , (35)

〈
x2
〉
d = 7

30γ

⎛

⎝−ω2
o +

√

ω4
o + 15

7

γ σ 2

h

⎞

⎠ . (36)

For the cubic-root oscillator, the calculations are similar to those for the Duffing oscillator. With A =
γ x1/3, B = x , the calculated moments and the squared correlation coefficient are, respectively,

〈
A2〉 = γ 2 〈x2/3

〉 = 25/6√
2π

Γ

(
5

6

)
γ 2〈x2

〉1/3
,
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〈AB〉 = γ
〈
x4/3

〉 = 21/6

3
√
2π

Γ

(
1

6

)
γ
〈
x2
〉2/3

,

〈
B2〉 = 〈

x2
〉
,

r2 = 1

18
√

π

[
Γ
( 1
6

)]2

Γ
(
5
6

) . (37)

In the above equations, we use the integration formula [3]:

∞∫

0

un exp
(
−aub

)
du = 1

b
a− n+1

b Γ

(
n + 1

b

)
(38)

where the Gamma function Γ (s) is given by:

Γ (s) =
∞∫

0

us−1 exp (−u) du. (39)

Using the results in (37) to calculate the weight parameter (19) and the weighted dual equivalent linearization
coefficient (20), one obtains:

p =
18

√
πΓ

(
5
6

)
− [

Γ
( 1
6

)]2

18
√

πΓ
(
5
6

)
+ [

Γ
( 1
6

)]2 , (40)

kw = R
21/6

3
√
2π

Γ

(
1

6

)
γ

1
〈
x2
〉1/3 (41)

where it is denoted

R = 2r2

1 + r4
=
⎡

⎣ 1

9
√

π

[
Γ
( 1
6

)]2

Γ
(
5
6

)

⎤

⎦

⎡

⎢
⎣1 +

⎡

⎣ 1

18
√

π

[
Γ
( 1
6

)]2

Γ
(
5
6

)

⎤

⎦

2
⎤

⎥
⎦

−1

. (42)

Substituting (41) into (27) yields Eq. (43),

ω2
0

〈
x2
〉+ R

21/6

3
√
2π

Γ

(
1

6

)
γ
〈
x2
〉2/3 − σ 2

4h
= 0. (43)

Solving Eq. (43), with R given by (42), one obtains the approximate mean-square response
〈
x2
〉
w
. The approx-

imate mean-square responses determined by conventional and dual criteria are also calculated from Eq. (43)
where R = 1 and R = 1/

(
2 − r2

)
, respectively. Note that the regulation linearization procedures for nonlinear

functions with positive non-integer power are not available.
Tables 1 and 2 display the resulting comparison of the mean-square responses for h = 0.5;ω0 = 1; σ =√

2, and various values of γ . Among the largest error of approximations, in the case of a Duffing oscillator
(Table 1), the one-step regulation yields the smallest error: 2.34%, the dual criterion gives: 4.67%, and the
present weighted dual one gives a little higher one: 6.62%, while the conventional linearization provides the
worst 11.77%; in the case of the cubic-root oscillator (Table 2), the weighted dual criterion yields the smallest
error: 4.92% while the one by the dual criterion becomes the worst: 12.44% in comparison with: 6.43% by
the conventional criterion.
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Table 2 The errors of the approximate mean-square responses of a cubic-root oscillator for h = 0.5; ω0 = 1; σ = √
2 and

various values of γ

γ
〈
x2
〉
e

〈
x2
〉
c err (%)

〈
x2
〉
d err (%)

〈
x2
〉
w err (%)

0.01 0.99174 0.99174 0.00 0.9927 0.10 0.9918 0.01
0.05 0.95964 0.95958 0.01 0.964 0.50 0.960 0.04
0.1 0.9215 0.9213 0.02 0.9305 0.97 0.9222 0.07
0.5 0.6821 0.6791 0.45 0.7099 4.08 0.6818 0.04
1.0 0.493 0.486 1.29 0.525 6.65 0.490 0.60
5.0 0.106 0.101 5.31 0.119 11.73 0.102 3.93
10.0 0.042 0.039 6.43 0.047 12.44 0.040 4.92

3.2 Lutes–Sarkani dynamical system

Consider another power-law dynamical system that is governed by the first-order stochastic differential equa-
tion

ẋ + γ |x |asgn (x) = f (t) (44)

where a is a real positive number, f (t) is a zero mean, stationary Gaussian white noise with spectral density
So = const. System (44) is called the Lutes–Sarkani system [18,27], which has the probability density function
[18]:

W (x) = C exp

{

− γ |x |a+1

(a + 1) π S0

}

(45)

where C is the normalization coefficient. Due to zero mean, the mean-square response coincides with the
variance one which is formulated by [18]

〈
x2
〉
e = σ 2

x,e =
(

π So
γ

) 2
a+1

he (a) (46)

where

he (a) = (a + 1)
2

a+1 Γ

(
3

a + 1

)[
Γ

(
1

a + 1

)]−1

. (47)

The equivalent linearization equation of (44) is of the form

ẋ + kx = f (t) (48)

where k is the linearization coefficient. The variance response of (48) is [3]:

σ 2
x = π So

k
. (49)

Using the weighted dual criterion with A = γ |x |asgn (x) , B = |x | sgn (x) = x , the calculated moments and
squared correlation coefficient are, respectively,

〈
A2〉 = γ 2 〈|x |2a〉 = 1√

2π
γ 22

(
a+ 1

2

)

Γ

(
a + 1

2

)
σ 2a
x ,

〈AB〉 = γ
〈|x |a+1〉 = 1√

2π
γ 2a/2aΓ

( a
2

)
σ a+1
x ,

〈
B2〉 = 〈

x2
〉 = σ 2

x ,

r2 = a2
[
Γ
( a
2

)]2

2
√

πΓ
(
a + 1

2

) (50)
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where it is used the Gamma function Γ (s) (39) to calculate the integral
〈|x |a〉 = σ a

x

∫∞
−∞

|u|a√
2π

exp
{
− u2

2

}
du

[18,27]. Next, using (50) to define the weight parameter (19) and the weighted dual equivalent linearization
coefficient (20) gives:

p =
[

1 − a2
[
Γ
( a
2

)]2

2
√

πΓ
(
a + 1

2

)

][

1 + a2
[
Γ
( a
2

)]2

2
√

πΓ
(
a + 1

2

)

]−1

, (51)

kw = 2r2

1 + r4
2a/2aΓ

( a
2

)

√
2π

γσ a−1
x = a2

[
Γ
( a
2

)]2
√

πΓ
(
a + 1

2

)

⎡

⎣1 +
(

a2
[
Γ
( a
2

)]2

2
√

πΓ
(
a + 1

2

)

)2
⎤

⎦

−1
2a/2aΓ

( a
2

)

√
2π

γσ a−1
x .

(52)

Substituting (52) into (49) yields the approximate variance response

σ 2
x,w =

(
π So
γ

) 2
a+1

hw (a) (53)

where it is denoted

hw (a) =
⎡

⎣ 1

2r2
1+r4

2a/2aΓ ( a
2 )√

2π

⎤

⎦

2
a+1

=
⎡

⎣1 +
(

a2
[
Γ
( a
2

)]2

2
√

πΓ
(
a + 1

2

)

)2
⎤

⎦

2
a+1[

a2
[
Γ
( a
2

)]2
√

πΓ
(
a + 1

2

)

]− 2
a+1

[ √
2π

2a/2aΓ
( a
2

)

] 2
a+1

. (54)

The approximate variance σ 2
x determined by other equivalent linearizations, i.e., conventional, one-step reg-

ulation, two-step-regulation, and dual criteria are available in [20,27], and they have the form (46) with the
corresponding functions h(a), respectively,

hc (a) =
[ √

2π

2a/2aΓ
( a
2

)

] 2
a+1

, (55)

hregI (a) =
[
√

π2− a+1
2

Γ
( 4a−1

2

)
Γ
( 2a+1

2

)

[
Γ
( 3a
2

)]2
Γ
( a+2

2

)

] 2
a+1

, (56)

hregII (a) =
⎡

⎢
⎣

√
π2− a+1

2
Γ
( 6a−3

2

)
Γ
( 2a+1

2

) [
Γ
( 4a−1

2

)]2

[
Γ
(
5a−2
2

)]2[
Γ
( 3a
2

)]2
Γ
( a+2

2

)

⎤

⎥
⎦

2
a+1

, (57)

hd (a) =
[

2 − a2
[
Γ
( a
2

)]2

2
√

πΓ
(
a + 1

2

)

] 2
a+1

[ √
2π

2a/2aΓ
( a
2

)

] 2
a+1

. (58)

For the Lutes–Sarkani systemwith various values of a, the percentage errors of the mentioned approximate
variances through the values of h(a) in comparison with the exact one (47) are given in Table 3 where for
information the corresponding squared correlation coefficient r2 is also given. It is noted that the application
of the regulation criteria introduced in [26,27] is only available for the case of positive integer exponents a.
As seen in Table 3, the weighted dual criterion yields the best approximation with 9.7% of the largest error in
comparison with 41%, 25.8%, 14.6%, and 30.5% provided by the conventional, one-step regulation, two-step
regulation, and dual criteria, respectively. Table 3 also shows that the ranges of the value of r2 for which the
errors are less than 10% are: from 0.82 to 1 by conventional linearization; from 0.39 to 1 corresponding to the
exponent a > 1 by one-step regulation and dual criteria; from 0.14 to 1 corresponding to a > 1 by two-step
regulation criterion; and from 0.08 to 1 by the proposed criterion, respectively.
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Table 3 The errors of approximate responses h(a) of the Lutes–Sarkani system for various a (N/A: not available)

a he (a) hc (a) err (%) hregI (a) err (%) hregII (a) err (%) hd (a) err (%) hw (a) err (%) r2

1/7 1.689 1.453 13.98 2.150 27.28 1.561 7.55 0.75
1/6 1.648 1.435 12.96 2.060 24.95 1.525 7.51 0.77
1/5 1.596 1.410 11.62 1.947 21.98 1.479 7.32 0.79
1/4 1.525 1.375 9.80 N/A N/A 1.800 18.08 1.421 6.81 0.82
1/3 1.423 1.320 7.24 1.606 12.85 1.343 5.66 0.86
1/2 1.268 1.223 3.58 1.343 5.91 1.227 3.21 0.93
1.0 1.000 1.000 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.00
2.0 0.776 0.732 5.69 0.782 0.77 0.820 5.67 0.804 3.59 0.739 4.84 0.85
3.0 0.676 0.577 14.59 0.655 3.15 0.712 5.28 0.683 1.06 0.615 9.07 0.60
4.0 0.618 0.476 22.85 0.562 8.99 0.625 1.22 0.577 6.61 0.558 9.69 0.39
5.0 0.579 0.405 29.92 0.492 15.02 0.555 4.01 0.490 15.36 0.529 8.60 0.24
6.0 0.551 0.353 35.90 0.437 20.68 0.499 9.40 0.421 23.48 0.509 7.47 0.14
7.0 0.529 0.312 40.96 0.393 25.82 0.452 14.55 0.368 30.52 0.492 6.96 0.08

3.3 Van der Pol oscillator and cubic damping oscillator

Consider two nonlinear damped oscillators in which the damping forces are presented by cubic monomials.
The first one is the Van der Pol oscillator governed by

ẍ + (−α + γ x2
)
ẋ + ω2

ox = σ ξ̇ (t) (59)

where α, γ, ωo, and σ are real positive constants, and ξ̇ (t) is Gaussian white noise excitation with zero mean
and unit intensity. Using the weighted dual error criterion with A = γ x2 ẋ, B = ẋ , the calculated moments
and squared correlation coefficient are, respectively,

〈
A2〉 = γ 2 〈x4 ẋ2

〉 = 3γ 2ω2
0

〈
x2
〉3

,

〈AB〉 = γ
〈
x2 ẋ2

〉 = γω2
0

〈
x2
〉2

,
〈
B2〉 = 〈

ẋ2
〉 = ω2

0

〈
x2
〉
,

r2 = 1/3. (60)

Substituting (60) into (19) yields

p = 1/2. (61)

The result (61) shows that the weighted dual linearization gives the same value of the weight parameter p as
the dual linearization does for the Van der Pol oscillator. A comparison of the approximate solutions obtained
by Monte Carlo simulation and by conventional, dual, and regulation criteria is available in [20]. The result
shows that the largest error of the dual criterion is 5.5% and of the two-step regulation linearization is 7.3%,
whereas the smallest error of the conventional linearization method is 23.3% and of the one-step regulation
linearization is 5.5%, respectively.

The second cubic damped oscillator is

ẍ + α ẋ + γ ẋ3 + x = f (t) (62)

where α, γ are real positive constants, f (t) is a zero mean, stationary Gaussian white noise with spectral
density So = const. The probability density function defined by the equivalent nonlinearization method
(ENLE) [3,17] is considered as being the exact one,

W (x) = C

∞∫

−∞
e
− 1

π S0

[
α
(
x2+ẋ2

)+ 3
4 γ
(
x2+ẋ2

)2]

dẋ, (63)

where C is the normalization coefficient. Then the exact mean-square displacement is given by Eq. (64):

〈
x2
〉
ENLE =

∞∫

−∞
x2W (x) dx . (64)
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The equivalent linearization equation to (62) is of the form

ẍ + (α + b) ẋ + x = f (t) (65)

where b is the linearization coefficient, and the corresponding mean-square displacement is given by [3]:

〈
x2
〉 = π S0

α + b
. (66)

Using the weighted dual criterion with A = γ ẋ3, B = ẋ , the calculated moments and squared correlation
coefficient are, respectively,

〈
A2〉 = γ 2 〈ẋ6

〉 = 15γ 2〈ẋ2
〉3

,

〈AB〉 = γ
〈
ẋ4
〉 = 3γ

〈
ẋ2
〉2

,
〈
B2〉 = 〈

ẋ2
〉 = 〈

x2
〉
,

r2 = 3/5. (67)

Using (67) one defines the weight parameter (19) and the weighted dual equivalent linearization coefficient
(20):

p = 1/4, (68)

bw = 15

17
3γ

〈
ẋ2
〉
. (69)

Substituting (69) into (66) yields

45

17
γ
〈
x2
〉2
w + α

〈
x2
〉
w − π S0 = 0. (70)

Solving (70) one obtains the approximate mean-square displacement:

〈
x2
〉
w = 17

90γ

[

−α +
√

α2 + 180

17
γπ S0

]

. (71)

The approximate mean-square response
〈
x2
〉
w (71) is compared with the exact solution (64), also with the ones

obtained by other equivalent linearizations, i.e., conventional and dual criteria. These approximatemean-square
displacements are, respectively,

〈
x2
〉
c = 1

6γ

[
−α +

√
α2 + 12γπ S0

]
, (72)

〈
x2
〉
d = 7

30γ

[

−α +
√

α2 + 60

7
γπ S0

]

. (73)

Table 4 displays the resulting comparison of the mean-square solutions for π S0 = α; γ = βα, and various
values of β. Among the largest error of approximations, the proposed criterion yields the smallest one 3.87%,
the dual criterion gives about 6.10%, while the conventional criterion gives 9.17%.
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Table 4 The errors of the approximate mean-square displacements of a cubic damping oscillator for π S0 = α; γ = βα and
various values of β

β
〈
x2
〉
e

〈
x2
〉
c err (%)

〈
x2
〉
d err (%)

〈
x2
〉
w err (%)

1 0.460 0.434 5.66 0.489 6.14 0.454 1.34
2 0.358 0.333 6.99 0.380 6.10 0.350 2.26
3 0.306 0.282 7.66 0.324 6.02 0.297 2.73
4 0.272 0.250 8.09 0.288 5.95 0.264 3.05
5 0.248 0.227 8.43 0.262 5.84 0.240 3.32
6 0.229 0.210 8.65 0.243 5.80 0.221 3.48
7 0.215 0.196 8.85 0.227 5.73 0.207 3.64
8 0.203 0.184 8.96 0.214 5.73 0.195 3.72
9 0.192 0.175 9.09 0.203 5.70 0.185 3.82
10 0.184 0.167 9.17 0.194 5.69 0.176 3.87

3.4 Oscillator with nonlinear damping by displacement and velocity

Consider the nonlinear stochastic oscillator governed by Eq. (74),

ẍ + ζ

(
1

2
ẋ2 + ω2

0

2
x2
)a

ẋ + ω2
0x = f (t) , (74)

where ζ is the damping constant, ω0 is the undamped natural frequency, a is a positive constant, and f (t)
is a Gaussian white noise process with spectral density So = const. The exact mean-square response of the
oscillator (74) is (see [3]):

〈
x2
〉
e = 1

ω2
0

(
π S0
ζ

) 1
a+1

he (a) (75)

where it is denoted:

he (a) = (a + 1)1/(a+1)Γ

(
2

a + 1

)[
Γ

(
1

a + 1

)]−1

. (76)

The equivalent linearization equation to (74) is of the form:

ẍ + bẋ + ω2
0x = f (t) (77)

where b is the linearization coefficient, and the mean-square response is given by [3]:

〈
x2
〉 = π S0

bω2
0

. (78)

Using the weighted dual error criterion with A = ζ
(
ẋ2/2 + ω2

0x
2/2

)a
ẋ; B = ẋ , the calculated moments and

squared correlation coefficient are, respectively,

〈
A2〉 = ζ 2

〈(
ẋ2/2 + ω2

0x
2/2

)2a
ẋ2
〉
= ζ 2Γ (2a + 2)

〈
ẋ2
〉2a+1

,

〈AB〉 = ζ
〈(
ẋ2/2 + ω2

0x
2/2

)a
ẋ2
〉
= ζΓ (a + 2)

〈
ẋ2
〉a+1

,

〈
B2〉 = 〈

ẋ2
〉 = ω2

0

〈
x2
〉
,

r2 = [Γ (a + 2)]2[Γ (2a + 2)]−1. (79)

Using (79) one defines the weight parameter (19) and the weighted dual equivalent linearization coefficient
(20):

p = Γ (2a + 2) − [Γ (a + 2)]2

Γ (2a + 2) − [Γ (a + 2)]2
, (80)
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Table 5 The errors of the approximate responses h(a) of the considered oscillator with various values of a

a he (a) hc (a) err (%) hd (a) err (%) hw (a) err (%) r2

0.0 1.000 1.000 0.00 1.000 0.00 1.00 0.00 1.000
0.5 0.864 0.827 4.28 0.890 3.01 0.83 3.79 0.884
1.0 0.798 0.707 11.38 0.816 2.33 0.74 7.76 0.667
1.5 0.757 0.619 18.31 0.735 2.92 0.69 8.81 0.460
2.0 0.729 0.550 24.51 0.657 9.91 0.67 7.89 0.300
2.5 0.708 0.496 29.93 0.588 16.96 0.66 6.40 0.188
3.0 0.691 0.452 34.65 0.529 23.42 0.66 5.18 0.114
3.5 0.678 0.415 38.78 0.480 29.14 0.65 4.52 0.068
4.0 0.667 0.384 42.42 0.439 34.12 0.64 4.40 0.040
4.5 0.657 0.357 45.64 0.404 38.47 0.63 4.72 0.023
5.0 0.649 0.334 48.51 0.375 42.27 0.61 5.39 0.013

bw = 2[Γ (a + 2)]2[Γ (2a + 2)]−1

1 + [Γ (a + 2)]4[Γ (2a + 2)]−2 ζΓ (a + 2)
〈
ẋ2
〉a

. (81)

Substituting (81) into (78) one obtains the approximate mean-square response as:

〈
x2
〉
w = 1

ω2
0

(
π S0
ζ

) 1
a+1

hw (a) (82)

where

hw (a) =
[

1 + [Γ (a + 2)]4[Γ (2a + 2)]−2

2[Γ (a + 2)]2[Γ (2a + 2)]−1Γ (a + 2)

] 1
a+1

. (83)

The approximate mean-square responses
〈
x2
〉
determined by conventional and dual criteria also take the form

(75) where he(a) is replaced, respectively, by [3]

hc (a) =
[

1

Γ (a + 2)

] 1
a+1

(84)

and

hd (a) =
[
2 − [Γ (a + 2)]2[Γ (2a + 2)]−1

Γ (a + 2)

] 1
a+1

. (85)

The percentage errors of the considered approximate mean-square responses through the values of h(a) in
comparison with the exact one (76) are given in Table 5. It is seen that the weighted dual criterion gives the
largest error as 8.81% in comparison with 42.27 and 48.51% provided by the dual and conventional criteria,
respectively.

4 Conclusions

The study of nonlinear problems is of crucial importance not only in all areas of physics but also in engineering
and in other disciplines. In the theory of random vibration, the stochastic equivalent linearization method that
replaces a nonlinear system by an equivalent linear one is a popular method since it preserves some essential
properties of the original nonlinear system. The essential of the equivalent linearization method is how to find
the linearization coefficients for a given nonlinear system. The accuracy of the linearization coefficients can
be improved by using the dual approach that combines two forward and return replacements in a weighted
dual replacement. In this paper a weighted dual mean-square error criterion is introduced and discussed by
considering weighted contributions of forward and return replacements. Introducing the weight parameter
p makes the weighted dual mean-square error criterion more flexible than the conventional and dual mean-
square error criteria. An empirical research approach is used to choose a specific form of p. The application to
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several nonlinear random systems has shown the improved accuracy of the proposed weighted dual equivalent
linearization technique for a quite large range of nonlinearity. It appears that the weighted dual approach has
a potential to become an effective technique and it ought to be explored for further studies.
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