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Abstract The formulation of constitutive models for anisotropic materials such as masonry is a problem of
large complexity. One possible way is to define linear transformations on the stress tensors using fourth-order
transformation tensors that carry all the anisotropic information of thematerial. In the present paper, a new type
of evolutionary linear transformation tensor is defined, which can change the values of its components along
with the evolution of internal variables. This means the transformation laws are defined according to the current
plastic anddamage levels, and allows the constitutivemodel to describe totally different hardening and softening
behaviours of the material along different directions. First, a general procedure of formulation of anisotropic
constitutive models is given. Second, as a specific example, an orthotropic plastic–damage constitutive model
for masonry is presented. Finally, the proposed constitutive model is validated by comparing finite element
results with experimental ones pertaining to simple masonry structures under static and cyclic loading.

1 Introduction

Masonry is the oldest building material that still finds wide use in todays building construction. In many coun-
tries, the existing building heritage mainly consists of masonry structures, including monuments of enormous
architectural and historical value. The study of the behaviour of masonry structures is still of great impor-
tance [1]. Owing to the particular geometric arrangement of units (bricks, blocks) and mortar joints, masonry
exhibits macroscopically an overall orthotropic behaviour. In general, masonry structures can be analysed by
employing micro-modelling and macro-modelling procedures [2,3].

Micro-modelling, including both detailed micro-modelling and simplified micro-modelling, is considered
the most accurate tool available to analyse masonry, since the discretization is carried down to the level of
the constituents. In detailed micro-models, the units and the mortar at joints are described with continuum

Q. Fu · J. Qian · D. E. Beskos (B)
Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, Shanghai
200092, China
E-mail: dimisof@hotmail.com

Q. Fu
E-mail: qiushi.fu@gmail.com

J. Qian
State Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji University, Shanghai
200092, China
E-mail: jqian@mail.tongji.edu.cn

D. E. Beskos
Department of Civil Engineering, University of Patras, 26500 Patras, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-017-1995-0&domain=pdf


720 Q. Fu et al.

finite elements, and the unit-mortar interface is represented by discontinuous elements accounting for potential
crack or slip planes [4]. The detailed micro-modelling strategy leads to very accurate results, but requires large
computational effort. The simplified micro-modelling strategy can, to some extent, overcome this drawback.
In this strategy, expanded units represented by continuum elements are used to model both units and mortar
material, while the behaviour of the mortar joints and unit-mortar interfaces is lumped to the discontinuous
elements [5–10]. Still, applicability of both strategies of micro-modelling is generally limited to structural
details because of the intensive computational effort.

Macro-modelling, to some extent, is a compromise between accuracy and efficiency. In large-scale, espe-
cially practice-oriented analyses, detailed descriptions of interactions between units and mortar may not be
necessary. On these occasions, macro-modelling strategies, although not making any distinction between units
and joints, may still give satisfactory estimations of structural responses. Generally, the macro-models are
related to plasticity or damage constitutive laws. One can mention here the works of Cervera et al. [11] and
Faria et al. [12] on isotropic plastic–damage models and Hatzigcorgiou and Beskos [13,14] on isotropic elastic
damage models and their applications in concrete and masonry structures via finite and boundary element
methods. At this point the recent theoretical works of Voyiadjis and Kattan [15] and Baratta et al. [16] on
elastic damage with applications to masonry solids should be also mentioned. In the works of Lourenço et
al. [17,18], orthotropic continuum models were developed based on plasticity theory consisting of a Hill-type
yield criterion for compression and a Rankine-type yield criterion for tension. Internal parameters related to
both tensile and compressive fracture energies were adopted in order to guarantee mesh objectivity. In the
case of damage models, a number of orthotropic models has been also proposed. Berto et al. [19] developed
a specific damage model for orthotropic brittle materials with different elastic and inelastic properties along
the two material directions. The basic assumption of the model is the acceptance of the natural axes of the
masonry (i.e. the bed joints and the head joints directions) also as principal axes of the damage.

Homogenization techniques [20,21] can be seen as a bridge connecting micro-models and macro-models.
On the one hand, by using this technique, an anisotropicmacro-constitutive law can be obtained from themicro-
constitutive laws and geometry of the composite in such a way that the macro-constitutive law is not actually
implemented. On the other hand, material data can be obtained by using the homogenization technique as input
data for independent macro-models. One quite popular method of homogenization simplifies the geometry
of the basic unit with a two-step introduction of vertical and horizontal joints and thus without taking into
account the regular offset of vertical mortar joints [4]. However, this method results in significant errors when
the difference of stiffness of mortar and units is large, which is a very common situation in nonlinear analyses.
A more precise technique called micromechanical homogenization is based on the detailed investigation of
the elementary cell and overcomes the approximations introduced by the two-step simplified method [22–24].

Considering the fact that today micro-modelling and homogenization approaches still require considerable
computational effort when facing real case studies, the present study still focuses on macro-modelling strategy.
The effective constitutive behaviour ofmasonry features anisotropy arising from thegeometrical arrangement of
units andmortar, even if the properties of these constituents are isotropic. Therefore, an anisotropic constitutive
model is required.

As is well known, the formulation of realistic constitutive models for anisotropic solids is a problem of
large complexity. Meanwhile, in inelasticity there exist many well-developed isotropic constitutive models
[25]. Therefore, one can obtain anisotropic constitutive models by appropriately extending isotropic ones.
This extension can be achieved by a method based on linear transformation on stress or strain tensors.

Linear transformations on stress tensors were first introduced by Sobodka [26], Boehler and Sawczuck [27],
and Betten [28]. Barlat et al. [29] applied this method to a full stress state. Karafillis and Boyce [30] considered
a linear transformation of the actual stress tensor acting on the anisotropic material. This linear transformation
weights the different components of the stress tensor of the anisotropic material in order to account for the
anisotropy of the material. Additionally, in the works of Oller et al. [31,32], linear transformations on both
stress and strain tensors were defined, although the underlying mathematical concept is still almost equivalent
to that in previous studies. This approach was adopted by Pelà et al. [33,34] to the masonry material under the
framework of elastic damage mechanics.

It is worth noting that the linear transformation method discussed in the studies mentioned above mainly
deals with initial anisotropy rather than evolutionary anisotropy, which means different hardening or softening
behaviours along different material directions cannot be fully described. Constitutive models thus developed
perform well on conditions where evolutionary anisotropy can be neglected. Thus, there is a need for a
development of anisotropic models that can account for both initial and evolutionary anisotropy.
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In the present study, an approach named evolutionary linear transformation is proposed, which is based
on the existing linear transformation approach. By introducing an evolutionary transformation tensor with
changing values of its components according to the levels of material plasticity and damage evolution, a new
methodology for extending an isotropic plastic and/or damage constitutive model to an anisotropic one with
evolutionary anisotropy is presented and applied to masonry structures.

First, the concept of evolutionary linear transformation is defined, and a kind of evolutionary transformation
tensor is proposed. Since these tensors are functions of internal variables, the values of their components can
change according to the levels of plasticity and damage evolutions, and therefore enable the constitutive
models to describe different mechanical characteristics along different material directions. A general approach
of establishing anisotropic constitutive models based on the proposed evolutionary transformation tensor is
provided.

Second, the main failure modes of masonry are introduced, and it is pointed out that in macro-models,
which make no distinction between units and mortars, it is impossible to describe the Mode II slip failure of
bed joints using only the tensile and compressive damage variables. For this reason, the present study proposes
an additional damage variable describing the Mode II failure.

Finally, the constitutive model proposed in the paper is used in conjunction with the finite element method
to simulate experiments. It is shown that the proposed model is able to successfully reproduce masonry
mechanical behaviour under static and cyclic loading.

2 Definition of the evolutionary linear transformation approach

Consider the stress tensor σ defined in the real space for an anisotropic inelastic material model and the
transformed stress tensor defined in the transformed space for the corresponding isotropic inelastic material
model and obtained by the linear transformation

σ ∗ = A : σ (1)

where A denotes the fourth-order transformation tensor which includes the anisotropy effects and weights
the different components of the stress tensor σ in accordance with the anisotropy of the material. Thus, an
anisotropic constitutive model can be simply obtained on the basis of the known constitutive equation of its
corresponding isotropic model and the transformation tensor [27,29–31,35,36].

In all previous studies, tensor Awas assumed to remain constant during the loading process of the material,
which implies that transformation laws for the material under different plastic or damage evolution levels are
the same. Anisotropic constitutive models thus developed cannot predict totally independent hardening or
softening behaviours along different material directions. In other words, only initial anisotropic behaviours of
the material can be considered. In order to develop constitutive models that can also account for evolutionary
anisotropy, a new linear transformation approach, named “evolutionary linear transformation,” is developed
in the present paper. In this approach, the transformation tensor A is no longer fixed. On the contrary, it is a
function of k internal variables Vk of the inelastic constitutive law of the material, i.e.

A = A (Vk). (2)

This means that the transformation law is defined according to the current plastic and damage levels and
allows the constitutive model to describe totally different hardening and softening behaviours of the material
along different directions. There are many possible forms that transformation tensor A can take [27,29–
31,35,36]. In this Section, no particular form of A is adopted because the goal here is to give a general
procedure for the establishment of anisotropic plastic and/or damage constitutive models. However, in Sect. 3,
a specific diagonal form of A is adopted for masonry material.

In the following part of this Section, methods for establishing anisotropic constitutive models under elasto-
plastic mechanics or damage mechanics are discussed separately. However, these procedures can also be used
together to formulate a plastic–damage constitutive model, as illustrated in Sect. 3.

2.1 Formulation of an elastoplastic constitutive model using evolutionary linear transformation

Consider the anisotropic yielding and plastic potential functions F and F p, respectively, of the form

F (σ , κ) = 0,

F p (σ , κ) = 0
(3)
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where κ is the internal variable that describes the extent of plastic evolution. Since this Subsection currently
deals with elastoplastic constitutive models, Eq. (1) becomes

σ ∗ = Aσ,p : σ (4)

where Aσ,p is the fourth-order evolutionary transformation tensor. The upper script σ, p indicates that the
transformation tensor is used for the transformation of the stress tensor in a plastic constitutive model. The
following developments are based on the classical work hardening non-associated theory of plasticity [37].
Functions F∗ and F p∗ are known isotropic yielding and plastic potential functions, respectively, of the form

F∗ (
σ ∗, κ

) = 0,

F p∗ (
σ ∗, κ

) = 0.
(5)

It is assumed that the transformation tensor Aσ,p contains all the information concerning the real anisotropic
material. Using Eq. (4) in Eq. (5) one can obtain

F∗ (
σ ∗, κ

) = F∗ (
Aσ,p : σ , κ

) = F (σ , κ) ,

F p∗ (
σ ∗, κ

) = F∗ (
Aσ,p : σ , κ

) = F p (σ , κ) .
(6)

Differentiating Eq. (6) with respect to σ and invoking the chain rule, one has that

∂F

∂σ
= ∂F∗

∂σ ∗ : ∂σ ∗

∂σ
= ∂F∗

∂σ ∗ : Aσ,p, (7)

∂F p

∂σ
= ∂F p∗

∂σ ∗ : ∂σ ∗

∂σ
= ∂F p∗

∂σ ∗ : Aσ,p. (8)

According to Eq. (8), the flow rule can be expressed as

ε̇ p = λ̇
∂F p

∂σ
= λ̇

∂F p∗

∂σ ∗ : ∂σ ∗

∂σ
= λ̇

∂F p∗

∂σ ∗ : Aσ,p (9)

where ε̇ p is the plastic strain rate tensor and λ̇ is the plastic multiplier rate. Furthermore, one has that

∂F

∂κ
= ∂F∗

∂κ
+ ∂F∗

∂σ ∗ : ∂σ ∗

∂κ

= ∂F∗

∂κ
+ ∂F∗

∂σ ∗ : ∂ (Aσ,p : σ )

∂κ

= ∂F∗

∂κ
+ ∂F∗

∂σ ∗ : ∂ (Aσ,p)

∂κ
: σ .

(10)

The consistency condition can be expressed as

∂F

∂σ
: σ̇ + ∂F

∂κ
κ̇ = 0. (11)

The stress–strain equation in rate form on account of Eq. (9) takes the form

σ̇ = C0 : (
ε̇ − ε̇ p) = C0 :

(
ε̇ − λ̇

∂F p

∂σ

)
(12)

where C0 is the initial elastic stiffness tensor and use has been made of the relation ε̇ = ε̇e + ε̇ p with ε and
εe being the total and elastic strain tensors, respectively. Substituting Eq. (12) into (11) yields

λ̇ =
∂F
∂σ

: C0 : ε̇

∂F
∂σ

: C0 : ∂F p

∂σ
− ∂F

∂κ
dκ
dλ

. (13)

By substituting Eqs. (7), (8), and (10) into (13), one can obtain

λ̇ =
∂F∗
∂σ ∗ : Aσ,p : C0 : ε̇

∂F∗
∂σ ∗ : Aσ,p : C0 : ∂F p∗

∂σ ∗ : Aσ,p −
(

∂F∗
∂κ

+ ∂F∗
∂σ ∗ : ∂(Aσ,p)

∂κ
: σ

)
dκ
dλ

. (14)
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Moreover, substituting Eqs. (9) and (14) into (12), the latter equation becomes

σ̇ = Cep : ε̇ (15)

where Cep is the elastoplastic tangent stiffness tensor, which can be expressed as

Cep = C0 − 1

H∗

[
C0 :

(
∂F p∗

∂σ ∗ : Aσ,p
)]

⊗
[
C0 :

(
∂F∗

∂σ ∗ : Aσ,p
)]

(16)

with

H∗ = ∂F∗

∂σ ∗ : Aσ,p : C0 : ∂F p∗

∂σ ∗ : Aσ,p −
(

∂F∗

∂κ
+ ∂F∗

∂σ ∗ : ∂ (Aσ,p)

∂κ
: σ

)
dκ

dλ̇
. (17)

Equations (14)–(17) clearly indicate that one can obtain the constitutive equation of the anisotropic elastoplastic
model in terms of the constitutive parameters of the corresponding isotropic elastoplastic model and the
transformation tensor A. The evolutionary character of A ismanifested in its dependence on κ (∂Aσ,p/∂κ �= 0).
From Eqs. (7), (8), and (9), it can be seen that the linear transformation does not change the normality condition
of the isotropic constitutive model, which suggests that if one wants to obtain an anisotropic constitutive model
with a flow rule that satisfies the normality condition, all that needed is to guarantee F∗ = F p∗.

2.2 Formulation of a damage constitutive model using evolutionary linear transformation

From the many different forms of damage criteria functions proposed in the literature, in this Section, the
damage criterion is expressed as a general function of effective stress tensors that takes no specific form,
in order to demonstrate the general procedure of establishing an anisotropic damage constitutive model. This
includes the case of a damage energy release rate-based damage criterion, which enjoys a solid thermodynamic
foundation, as a special case. Additionally, extension of the proposed method to the case of damage criteria
defined by functions of Cauchy stress tensors or strain tensors is also quite straightforward.

According to the definition of linear transformation, one has

σ̄ ∗ = Aσ̄ ,d : σ̄ (18)

where Aσ̄ ,d is the fourth-order transformation tensor for the damage constitutive model, and overbars denote
effective stresses. The effective stress σ̄ is associated with the undamaged part of the body and is related with
the total stress σ by [38]

σ = (1 − d)σ̄ (19)

where the scalar 0 ≤ d ≤ 1 is the damage index or variable that becomes 0 when there is no damage and
1 when there is complete failure. Physically, damage is defined as the surface density of micro-cracks and
intersections of micro-voids [38].

It is assumed that g (τ, r) and τ (σ̄ ) are the anisotropic damage criterion and corresponding equivalent
stress that need to be formulated, respectively, while τ ∗ (σ̄ ∗) is the known equivalent stress calculated from
the transformed effective stress tensor σ̄ ∗. Then the anisotropic damage criterion can be expressed as

g (τ, r) = τ (σ̄ ) − r = τ ∗ (
Aσ̄ ,d : σ̄

)
− r ≤ 0 (20)

where variable r is the current damage threshold value which controls the size of the expanding damage surface
[39].

Since an anisotropic material may have different hardening and/or softening behaviours, the shape of the
damage threshold surface should be able to change along with the evolution of damage as shown in Fig. 1.

Therefore, the evolutionary transformation tensor Aσ̄ ,d should be a function of the damage variable d or
the damage threshold value r . Here, for convenience Aσ̄ ,d is defined as

Aσ̄ ,d = Aσ̄ ,d (r) . (21)
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Fig. 1 Shapes of the damage threshold surface at different damage evolution levels. The small surface is the initial damage
surface, and the large surface is a subsequent damage surface

According to the consistency condition, during a loading process, one has from Eq. (20) written in rate
form

τ̇ − ṙ = 0 , or , d τ − d r = 0, (22)

dτ

dσ̄ ∗

(
∂

(
Aσ̄ ,d : σ̄

)

∂r
dr + ∂σ̄ ∗

∂σ̄
: dσ̄

)

− dr = 0. (23)

Equation (23) is solved for dr and yields

dr = 1

H∗∗
dτ ∗

dσ̄ ∗ : Aσ̄ ,d : dσ̄ (24)

where

H∗∗ = 1 − dτ ∗

dσ̄ ∗ : dA
σ̄ ,d

dr
: σ̄ . (25)

The damage variable d can be expressed as
d = G (r) (26)

where G (r) is a monotonic function describing the relationship between damage variable d and damage
threshold r , which is usually defined according to experimental results. Thus, the rate expression of the stress
tensor σ̇ is of the form

σ̇ (ε, d) = (1 − d)C0 : ε̇ − ḋσ̄ = (1 − d)C0 : ε̇ − ∂G (r)

∂r
ṙ σ̄ (27)

where ε is the strain tensor and C0 the initial elastic stiffness tensor. By substituting Eq. (24) into Eq. (27),
one can obtain the constitutive equation of the anisotropic damage material model in the form

σ̇ = Cd : ε̇ (28)

where the damage tangent stiffness tensor Cd is expressed as

Cd = (1 − d)C0 − 1

H∗∗
dG

dr
σ̄ ⊗ dτ ∗

dσ̄ ∗ : Aσ̄ ,d : C0. (29)

The evolutionary character of the transformation tensor A is manifested by its dependence on r (or equivalently
on d) as indicated in Eq. (21).
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(a) (b) (c)

(d) (e)

Fig. 2 Masonry failure mechanisms [4]: a joint tensile cracking; b joint slipping; c unit direct tensile cracking; d unit diagonal
tensile cracking; e masonry crushing

3 Formulation of an orthotropic plastic–damage model for masonry

3.1 Failure modes of masonry material and corresponding damage variables

A reliablemodel formasonry should include all the basic types of failuremechanisms that characterizemasonry,
namely (a) cracking of the joints, (b) sliding along the bed or head joints at low values of normal stress, (c)
cracking of the units in direct tension, (d) diagonal tensile cracking of the units at values of normal stress
sufficient to develop friction in the joints, and (e) ”masonry crushing”, commonly identified with splitting of
units in tension as a result of mortar dilatancy at high values of normal stress, as shown in Fig. 2 [4].

In marco-modelling analyses of masonry structures, irreversible processes such as slipping, cracking,
and crushing cannot be described on element scale since units and joints are not individually modelled in
a continuous framework. In such a framework, internal variables, such as plastic strain tensor and damage
variables, are adopted in a form that they can describe the major failure mechanisms of the masonry material.

Currently, damage variables of high-rank tensors are not widely used due to high computational cost.
The most common damage constitutive models for quasi-brittle materials are still isotropic damage models
using two scalar damage variables, d+ and d−, to describe tensile and compressive damage, respectively
[11,12,40,41]. This work also adopts two scalar damage variables d+ and d−, and by using the evolutionary
linear transformation method, strengths in directions perpendicular and parallel to a joint are assigned with
different values, even if the damage constitutive model is isotropic. Therefore, in view of Fig. 2, the following
conclusions can be made:

(i) Failure modes (a) and (c) can be described by the tensile damage variable d+.
(ii) Failure mode (e) can be described by the compressive damage variable d−.
(iii) Failure mode (d) can be described by the compressive damage variable d−, by coupling shear stress and

normal stress.

However, failure mode (b), which is often referred to as “Mode II failure”, cannot be described with just
tensile and compressive variables d+ and d− since its slipping mechanism is totally different from cracking
or crushing mechanisms. According to the theory of internal variables, irreversible processes of different
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failure mechanisms should be described with different internal variables. Additionally, compared to bed joints,
slipping failure mode along the bed joints is an essential one. Therefore, a third damage variable dII is proposed
in the present study to describe the Mode II failure of bed joints.

Inspired by the work of Lee and Fenves [41], the following expression is proposed here for the stiffness
degradation:

σ = (1 − d)C0 : (
ε − εe

) = (1 − d) σ̄ (30)

where the damage variable d consists of d+ and d− as in [38] as well as of dII and is expressed in the form

d = 1 − (
1 − dII

) (
1 − sd+) (

1 − d−)
(31)

with

s = s0 + (
1 − s0

)
r (σ̄ ) , (32)

r (σ̄ ) =

⎧
⎪⎨

⎪⎩

0, if
�

σ̄ = 0
∑3

i=1

〈 ˆ̄σ i

〉

∑3
i=1

∣
∣
∣ ˆ̄σ i

∣
∣
∣
, otherwise.

(33)

In the above, ˆ̄σ i is the i th principal stress of the effective stress tensor σ̄ , and the ramp function indicated
by the Macaulay brackets 〈〉 returns the value of the enclosed expression if positive, but sets a zero value if
negative.

3.2 Thermodynamic considerations

In this Subsection the proposed damage model defined by Eq. (31) is shown to have a sound thermodynamic
basis. The procedure is analogous to that in [41]. Assume the internal energy e to be composed of an explicit
part ee and an implicit part ei , i.e. e = ee + ei and hence

ė = ėe + ėi . (34)

The implicit part ei is introduced to explain the stiffness recovery in the thermodynamic sense, while the
explicit part ee is the internal energy in the classical approach. The Helmholtz free energy ψ is therefore
defined on the basis of ee and has the form

ψ = ee − sT (35)

where s is the entropy per unit volume and T is the absolute temperature. The implicit internal energy rate
balances a portion of the stress power,

ėi = ωσ : ε̇, (36)

where ω is a parameter such that 0 ≤ ω ≤ 1. Differentiating Eq. (35) with respect to time gives

ψ̇ = ė − ėi − Ṫ s − T ṡ. (37)

The Helmholtz free energy for the damaged material is written as

ψ = (
1 − d̄

)
ψ0 (38)

whereψ0 is the Helmholtz free energy for the undamagedmaterial, and d̄ represents the unrecoverable damage
in the elastic stiffness, which is defined as

d̄ = 1 − (
1 − dII

) (
1 − d+) (

1 − d−)
. (39)

Since only elastic Helmholtz free energy is considered in the present paper, ψ0 is expressed as

ψ0 = ψe,0 = 1

2
εe : C0 : εe. (40)
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The Clausius–Duhem inequality is expressed as

D = σ : ε̇ − ψ̇ − sṪ − q · grad(T )

T
≥ 0 (41)

where q is the heat flow-vector. Substituting Eqs. (34), (35), and (36) into (41) yields

D = −ψ̇ − Ṫ s + (1 − ω) σ : ε̇ − q
grad (T )

T
≥ 0 (42)

which with the aid of Eqs. (39) and (40) takes the form

D =
[
(1 − ω) σ − (

1 − d̄
) ∂ψ0

∂εe

]
: εe + (1 − ω) σ : ε p + ˙̄dψ0 ≥ 0. (43)

In Eq. (43), (1 − ω) σ : ε p ≥ 0 because of the convexity of the plastic potential function and ˙̄dψ0 ≥ 0 since
˙̄d and ψ0 are positive. Therefore, in order for Eq. (43) to be satisfied, relation

σ =
(
1 − d̄

1 − ω

)
∂ψ0

∂εe
(44)

is required to hold true as a sufficient condition. Assuming the value of ω to be

ω = 1 − sd+

1 − d+ (45)

and by substituting Eq. (45) into (44) one finally obtains

σ = (1 − d)C0 : (
ε − εe

) = (
1 − dII

) (
1 − sd+) (

1 − d−)
σ̄ (46)

which coincides with Eqs. (30)–(33). Thus, it has been proven that the adopted expression of Eqs. (30)–(33)
has a sound thermodynamic basis.

3.3 Plastic evolution

In this model, a Rankine yield criterion for tension and a Drucker–Prager yield criterion for compression are
adopted as the known isotropic yield criteria. By using the evolutionary linear transformation methodology
discussed above, these isotropic yield criteria are extended to anisotropic oneswith both initial and evolutionary
anisotropy. A plastic model is thus obtained, which is almost the same as the one in Lourenço’s work [4], but
without directly rewriting the isotropic Rankine and Drucker–Prager yield functions as Lourenço did.

(i) Plastic yield criterion for tension
The Rankine yield criterion for tension is expressed as

Ft∗ (
σ̄ ∗, κ t) =

〈 ˆ̄σ 1
∗〉 − f̄ t∗ (47)

where κ t is the hardening variable in tension and f̄ t∗ is the isotropic uniaxial tensile yielding threshold for
effective stress. Following a procedure similar to that in [4], Eq. (47) is also written in the form

Ft∗ (
σ̄ ∗, κ t) =

(
1

2
σ̄ ∗ : M pt∗ : σ̄ ∗

) 1
2 + 1

2
π∗ : σ̄ ∗ − f̄ t∗ (48)

where the rank-four tensor M pt∗ has the following components in plane stress,

Mpt∗
1111 = 0.5, Mpt∗

2222 = 0.5, Mpt∗
1212 = 1, Mpt∗

2121 = 1,

Mpt∗
1122 = −0.5, Mpt∗

2211 = −0.5, Mpt∗
else = 0, (49)

and the rank-two tensor π∗ is expressed as

π∗
11 = 1, π∗

12 = 0, π∗
21 = 0, π∗

22 = 1. (50)
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Since the softening behaviour of the material will be considered in the damage correction part of the
constitutive model in Sect. 3.4, in the plastic correction part considered here one only deals with the hardening
behaviour. Therefore, f̄ t∗ is assumed to be a linear function of κ t of the form

f̄ t∗
(
κ t) = f̄ 0t∗ + E pt∗κ t (51)

where f̄ 0t∗ is the initial value of f̄ t∗, and E pt∗ is the isotropic tensile hardening modulus defined as

E pt∗ = d f̄ t∗

dκ t
(52)

An associated flow rule is adopted for the tensile condition meaning that

F pt∗ (
σ̄ ∗, κ t) = Ft∗ (

σ̄ ∗, κ t) =
(
1

2
σ̄ ∗ : M pt∗ : σ̄ ∗

) 1
2 + 1

2
π∗ : σ̄ ∗. (53)

Next, the rank-four transformation tensor Aσ̄ ,pt is introduced, which includes information for the orthotropic
tensile behaviour of the masonry material. In this Section, the expression of the transformation tensor is given
for a plane stress condition, but its extension towards a three-dimensional condition is quite straightforward.
Thus, in a material coordinate system denoted by axes 1 and 2, the components of Aσ̄ ,pt are of the form [33]

Aσ̄ ,pt
1111 = f̄ t∗/ f̄ t11, Aσ̄ ,pt

2222 = f̄ t∗/ f̄ t22, Aσ̄ ,pt
1212 = f̄ t∗/2 f̄ t12, Aσ̄ ,pt

2121 = f̄ t∗/2 f̄ t12,
Aσ̄ ,pt
2112 = f̄ t∗/2 f̄ t12, Aσ̄ ,pt

1221 = f̄ t∗/2 f̄ t12, Aσ̄ ,pt
else = 0, (54)

where f̄ t11, f̄
t
22, and f̄ t12 are the orthotropic tensile yielding threshold values for the effective stress, which are

constant in [33] but depend on plastic evolution in this work and read

f̄ ti j
(
κ t) = f̄ 0ti j + E pt

i j κ t (55)

with f̄ 0ti j being the initial value of f̄ ti j , and E pt
i j the corresponding hardening modulus expressed as

E pt
i j = d f̄ ti j

dκ t
(56)

and obtained by material tests . From Eqs. (54)–(56) one can see how all the material information is included
in the transformation tensor Aσ̄ ,pt . Therefore, the isotropic parameters f̄ 0t∗ and E pt∗ are actually fictitious
parameters that can be assigned with any nonzero values.

The tensile plastic multiplier λ̇pt can be calculated from Eq. (14) as

λ̇pt =
∂Ft∗
∂ σ̄ ∗ : Aσ̄ ,pt : C0 : ε̇

Ht∗ (57)

where explicit expressions for all the above quantities are found in “Appendix A”.
(ii) Plastic yield criterion for compression
The Drucker–Prager yield criterion for compression is expressed as [42]

Fc∗ (
σ̄ ∗, κc) = α Ī ∗

1 +
√
3 J̄ ∗

2 − (1 − α) f̄ c∗ (58)

where α is a material parameter that controls the biaxial compressive strength, f̄ c∗ is the isotropic uniaxial
compressive yielding threshold for effective stress, Ī ∗

1 is the first invariant of σ̄ ∗, and J̄2 is the second invariant
of the deviatoric tensorial components of σ̄ ∗. Again, since the softening behaviour of the material will be
considered in the damage correction part of the constitutive model in Sect. 3.4, in the plastic correction part
considered here, one only deals with the hardening behaviour. Therefore, f̄ c∗ is assumed to be a linear function
of the hardening variable κc of the form

f̄ c∗
(
κc) = f̄ 0c∗ + E pc∗κc (59)
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where f̄ 0c∗ is the initial value of f̄ c∗, and E pc∗ is the isotropic compressive hardening modulus

E pc∗ = d f̄ c∗

dκc
. (60)

A non-associated flow rule is adopted for the compressive condition, and thus a plastic potential function F pc∗
is introduced of the form

F pc∗ (
σ̄ ∗, κc) = α p Ī ∗

1 +
√
2 J̄ ∗

2 (61)

where α p is a material parameter that controls the dilatancy angle. Next, the rank-four transformation tensor
Aσ,pc is introduced, which includes information for the orthotropic compressive behaviour of the masonry
material. The components of Aσ,pc are of the form [33]

Aσ̄ ,pc
1111 = f̄ c∗/ f̄ c11, Aσ̄ ,pc

2222 = f̄ c∗/ f̄ c2 , Aσ̄ ,pc
1212 = [

(1 − α) f̄ c∗
]
/
(
2
√
3 f̄ c12

)
,

Aσ̄ ,pc
2121 = [

(1 − α) f̄ c∗
]
/
(
2
√
3 f̄ c12

)
, Aσ̄ ,pc

2112 = [
(1 − α) f̄ c∗

]
/
(
2
√
3 f̄ c12

)
,

Aσ̄ ,pc
1221 = [

(1 − α) f̄ c∗
]
/
(
2
√
3 f̄ c12

)
, Aσ̄ ,pc

else = 0 (62)

where f̄ c11, f̄
c
22, and f̄ c12 are the orthotropic compressive yielding threshold values for effective stress, which

are constant in [33] but depend on plastic evolution in this work and read

f̄ ci j
(
κc) = f̄ 0ci j + E pc

i j κc (63)

with f̄ 0ci j being the initial value of f̄ ci j , and E pc∗ the corresponding compressive hardening modulus defined as

E pc
i j = d f̄ ci j

dκc
(64)

and obtained by material tests. Similar to the case of the tensile plastic criterion, here f̄ 0c∗ and E pc∗ are also
actually fictitious parameters that can be assigned with any nonzero values. The compressive plastic multiplier
λ̇pc can be calculated from Eq. (14) as

λ̇pc =
∂Fc∗
∂ σ̄ ∗ : Aσ̄ ,pc : C0 : ε̇

Hc∗ (65)

where explicit expressions for all the above quantities are found in “Appendix B”.
One can introduce the material parameters k̄c11 and k̄c22 of the form

k̄c11 = f̄ bc (κc)

f̄ c11 (κc)
, k̄c22 = f̄ bc (κc)

f̄ c22 (κc)
(66)

representing the ratios of the biaxial compressive strength over the uniaxial compressive strengths under the
same plastic evolution level described by κc. Even though the values of k̄c11 and k̄c22 may change with the
process of plastic evolution as shown in Eq. (66), the simplifying assumption is made here that k̄c11 and k̄

c
22 are

constant and equal to the initial yielding strength ratios,

k̄c11 = f̄ 0bc

f̄ 0c11
, k̄c22 = f̄ 0bc

f̄ 0c22
. (67)

Then, the material parameter α in Eq. (58) can be expressed as

α =
√(

k̄c11
)2 + (

k̄c22
)2 − k̄c11k̄

c
22 − 1

k̄c11 + k̄c22 − 1
. (68)

(iii) A composite yield criterion
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Fig. 3 Composite yield surfaces for plane stress conditions in stress space: a isotropic yield surface; b orthotropic yield surface

Combining the tensile and compressive yield criteria previously defined, one can construct a composite
yield criterion as shown in Fig. 3, where the known isotropic yield surface (a) and the orthotropic yield surface
(b) obtained by using the transformation method are compared. As it can be seen, the values of yield strengths
in different material directions can be totally different for the orthotropic yield surface (b), although they are
the same for the isotropic yield surface (a).

At the intersection of two surfaces of a composite yield surface, like those indicated by points A, B, C in
Fig. 3, the plastic strain rate ε̇ p is obtained from a linear combination of the plastic strain rates of the two yield
surfaces, reading

ε̇ p = ε̇ pt + ε̇ pc = λ̇pt ∂F
pt

∂σ̄
+ λ̇pc ∂F pc

∂σ̄
. (69)

The consistency condition can be written as

λ̇pα =
∑

β∈{t,c}
hαβ

(
∂Fβ

∂σ̄
: C0 : ε̇

)
, α ∈ {t, c} , (70)

and the plastic tangent stiffness tensor can be expressed as

Cep = C0 −
∑

α,β∈{t,c}
hαβ

(
C : ∂F pα

∂σ̄

)
⊗

(
C : ∂Fβ

∂σ̄

)
(71)

where

hαβ = ∂Fα

∂σ̄
: C0 : ∂F pβ

∂σ̄
− ∂Fα

∂κ
· ∂κ

∂λ̇pβ
, (72)

∑

β∈{t,c}
hαβhβγ = δα

γ . (73)

Readers may refer to the work of Simo and Hughes [37] for more information about composite yield surface
plasticity.
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3.4 Damage evolution

In this Section, the damage evolution part of the constitutive model for masonry is proposed. Since plastic
strain has been dealt with in the plastic evolution part previously discussed, only effective stress, Cauchy stress,
and elastic strain are left to be studied in this Section. Therefore, the upper script e of the elastic strain tensor
εe will be omitted in this Section.

In the present damage model, the effective stress tensors obtained from the plastic correcting procedure
defined in the previous Section are split into a positive part and a negative part, in order to describe the different
behaviours under tension and compression. This is a strategy first proposed in the field of concrete damage
models by Mazars [43] andMazars and Pijaudier-Cabot [44] in the Cauchy stress space and by Faria et al. [12]
in the effective stress space. Thus, one has

σ̄+ =
∑

i

〈 ˆ̄σ i

〉
pi ⊗ pi ,

σ̄− = σ̄ − σ̄+
(74)

where ˆ̄σ i is the i-th principal stress value of the effective stress tensor σ̄ , while pi represents the unit vector
associated with the i-th principal direction. Equation (74) can also be expressed as

σ̄+ = P+ : σ̄ ,

σ̄− = (
I − P+) : σ̄

(75)

where I is the rank-four identity tensor and P+ is a projection tensor of the form

P+ =
∑

i

H
( ˆ̄σ i

)
pi ⊗ pi ⊗ pi ⊗ pi (76)

with H () denoting the Heaviside function.
(i) Damage criterion for tension
The tensile damage criterion is assumed to have the form [12,39]

g+ (
τ+, r+) = g+∗ (

τ+∗, r+∗) = τ+∗ − r+∗ (77)

whereτ+∗ =
〈 ˆ̄σ 1

+∗〉
is the tensile equivalent stress. Equation (77) is then expressed as

g+ (
τ+, r+) =

(
1

2
σ̄+∗ : Mdt∗ : σ̄+∗

) 1
2 + 1

2
π∗ : σ̄+∗ − r+∗ (78)

where the rank-four tensor Mdt∗ has the following components in plane stress:

Mdt∗
1111 = 0.5, Mdt∗

2222 = 0.5, Mdt∗
1212 = 1, Mdt∗

2121 = 1,

Mdt∗
1122 = −0.5, Mdt∗

2211 = −0.5, Mdt∗
else = 0. (79)

The rank-two tensor π∗ is expressed as

π∗
11 = 1, π∗

12 = 0, π∗
21 = 0, π∗

22 = 1, (80)

and r+∗is the isotropic damage threshold for tension of the form [12,39]

r+∗ = max
{
r0+∗,max

(
τ+∗)} (81)

with r0+∗ = r+∗ (
f 0+∗) being the initial isotropic damage threshold, and f 0+∗ the initial uniaxial strength

for isotropic damage threshold. For this Rankine-type threshold, one has

r0+∗ = f 0+∗. (82)
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The tensile damage variable d+ is defined as an exponential softening function of r0+∗ of the form [45]

d+ = G+∗ (
r+∗) =

{
0, r+∗ = r0+∗

1 − r0+∗
r+∗ e

A+(1− r+∗
r0+∗ )

, r+∗ > r0+∗,
(83)

A+ =
(

G+∗
f E+∗

lch( f 0+∗)2
− 1

2

)−1

≥ 0 (84)

where E+∗ is the elastic modulus for the isotropic damage constitutive model, lch is the characteristic length
of the finite element, and G+∗

f is the tensile elastic fracture energy per unit area of the form

G+∗
f =

∞∫

ε0+∗

σ+∗dε (85)

with ε0+∗ being the elastic strain corresponding to the initial damage evolution.
Similar to the case of the plastic correcting procedure, the material information here will be included

in the transformation tensor. Therefore, isotropic parameters such as f 0+∗, E+∗and G+∗
f are also fictitious

parameters that can be assigned with any nonzero values.
Next, the rank-four transformation tensor Aσ̄ ,d+ for tensile damage is introduced. For each material direc-

tion, the relationship between the damage variable and the equivalent stress is assumed to have the same
exponential softening function form as Eq. (83), i.e.

d+
i j = G+

i j

(
r+) =

⎧
⎪⎨

⎪⎩

0, r+
i j = r0+i j

1 − r0+i j
r+
i j
e
A+
i j (1−

r+i j
r0+i j

)

, r+
i j > r0+i j

(86)

where r+ = σ̄+
i j , and material parameters A+

i j have the same meaning as in Eq. (84) and can be obtained by

uniaxial tensile tests along each material direction. The components of A+
i j can be expressed as

Aσ̄ ,d+
1111

(
r+∗) = r+∗/

(
G+

11

)−1 [
G+∗ (

r+∗)] , Aσ̄ ,d+
2222 = r+∗/

(
G+

22

)−1 [
G+∗ (

r+∗)] ,

Aσ̄ ,d+
1212 = r+∗/

{
2
(
G+

12

)−1 [
G+∗ (

r+∗)]} , Aσ̄ ,d+
2121 = r+∗/

{
2
(
G+

12

)−1 [
G+∗ (

r+∗)]} ,

Aσ̄ ,d+
2112 = r+∗/

{
2
(
G+

12

)−1 [
G+∗ (

r+∗)]} , Aσ̄ ,d+
1221 = r+∗/

{
2
(
G+

12

)−1 [
G+∗ (

r+∗)]} ,

Aσ̄ ,d+
else = 0. (87)

(ii) Damage criterion for compression
The compressive isotropic equivalent stress is defined by a combination of octahedral normal stress ˆ̄σ ∗

oct

and octahedral shear stress ˆ̄τ ∗
oct of the form [12]

τ−∗ = √
3(K ˆ̄σ ∗

oct + ˆ̄τ ∗
oct ). (88)

One can introduce the material parameters k̄−
11 and k̄

−
22 of the form

k̄−
11 = f̄ b−

(
r−∗)

f̄ −
11

(
r−∗) , k̄−

22 = f̄ b−
(
r−∗)

f̄ −
22

(
r−∗) (89)

representing the ratios of the biaxial compressive strength over the uniaxial compressive strengths under the
same damage evolution level described by r−∗. Even though the values of k̄−

11 and k̄−
22 may change with the

process of damage evolution, the simplifying assumption is made here that k̄−
11 and k̄

−
22 are constant and equal

to the initial yielding strength ratios,

k̄−
11 = f̄ b−

(
r0−∗)

f̄ −
11

(
r0−∗) , k̄−

22 = f̄ b−
(
r0−∗)

f̄ −
22

(
r0−∗) . (90)
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Then, material parameter K in Eq. (88) can be expressed as

K = √
2

√(
k̄−
11

)2 + (
k̄−
22

)2 − k̄−
11k̄

−
22 − 1

k̄−
11 + k̄−

22 − 1
. (91)

The damage criterion is expressed as

g− (
τ−, r−) = g−∗ (

τ−∗, r−∗) = τ−∗ − r−∗ (92)

where r−∗ is the isotropic damage threshold for compression defined as [12,39]

r−∗ = max
{
r0−∗,max

(
τ−∗)} (93)

with r0−∗ = r−∗ (
f 0−∗) being the initial isotropic damage threshold. By considering a one-dimensional

loading condition and bearing Eq. (88) in mind, one has

r0−∗ =
√
3

3

(
K − √

2
)
f 0−∗. (94)

The compressive damage variable d− is defined here as

d− = G−∗ (
r−∗) =

⎧
⎪⎪⎨

⎪⎪⎩

0, r−∗ < r0−∗

a− re
r

(
r−∗−r0−∗
r p−∗−r0−∗

)2
, r0−∗ ≤ r−∗ ≤ r p−∗,

1 − re−∗
r−∗ sech2

(
b−( r−∗

r p−∗ − 1)
)

, r−∗ ≥ r p−∗
(95)

a− = r p− − re−

re−
, b− = 3re−∗r p−∗

(
√
2 − K )

2
g′−∗E−∗

, (96)

g′−∗ = G ′−∗
f

lch
, (97)

re−∗ = r−∗( f e−∗), r p−∗ = r−∗( f p−∗) (98)

with f e−∗ being the compressive peak strength, ε p−∗ the elastic strain under uniaxial compressive stress f e−∗,
f p−∗ the value of uniaxial effective stress corresponding to elastic strain ε p−∗ of the form f p−∗ = E−∗ε p−∗,
and with isotropic damage threshold values re−∗ and r p−∗ corresponding to f e−∗ and f p−∗, respectively.
Figure 4 shows the physical definition of material parameters f 0−∗, f e−∗, f p−∗, and G ′−∗

f . It is worth noting

that G ′−∗
f is a redefined elastic facture energy that corresponds to the local contribution of the stress–strain

curve, i.e.

G−∗
f =

∞∫

ε p−∗
σ−∗dε. (99)

However, there is still no definite conclusion about whether compressive failure is a local mechanism. If
not, the value of lch in Eq. (97) should no longer be decided according to the size of the finite elements, but
according to the size of the actual damage zone, as in Sect. 5.1.

Finally, the rank-four transformation tensor Aσ̄ ,d− for compressive damage is introduced. The components
of Aσ̄ ,d− can be calculated from Eq. (87) by simply replacing the plus sign (+) by the minus sign (−)
everywhere.

(iii) Damage criterion for Mode II failure of bed joints
The damage criterion for Mode II failure of bed joints is assumed to have the Coulomb friction form used

in micro-models [4], i.e.

gII(τ II, r II) = τ II − r II ≤ 0, (100)

r II = max
[
r0,II,max(τ II)

]
(101)
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Fig. 4 Material parameters in compressive isotropic damage model

Fig. 5 Damage threshold surfaces without (a) and with (b) considering the Mode II failure of bed joints

where r0,II is the initial equivalent stress threshold determined by shearing tests and the equivalent stress τ II is
given in terms of the shear stress σ̄12 along the bed joint, the normal stress σ̄22 perpendicular to the bed joint
and the corresponding friction angle φII as

τ II = |σ̄12| + σ̄22 tan φII. (102)

The softening stress–strain relationship in the Mode II failure of the bed joint can be defined as an expo-
nential function [4]. Thus, the Mode II damage variable dII is assumed to be of the form

dII = GII(r II) = 1 − r0,II

r II
e
BII(1− r II

r0,II
)
, r II ≥ r0,II, (103)

BII =
(

GII
f G12

lch
(
f II12

)2 − 1

2

)−1

≥ 0 (104)

where GII
f is the fracture energy per unit area for Mode II failure and G12 is the shearing modulus. Damage

threshold surfaces with and without considering the Mode II failure of bed joints are shown in Fig. 5.

4 Finite element implementation

4.1 Programming interface with commercial FEM software

The proposed inelastic anisotropic material model, which is capable of simulating the material behaviour
under any kind of monotonic or cyclic loading, has been implemented into the commercial finite element code
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ANSYS [46] with the aid of the UserMat subroutine that defines the material stress–strain relationship. Thus
one can use ANSYS to analyse any structure exhibiting this material behaviour to any kind of loading.

During the solution phase, the subroutine is called at every material integration point of the elements.
ANSYS passes in stresses, strains, and state variable values at the beginning of the time increment and strain
increment at the current increment, then updates the stresses and state variables to the appropriate values at
the end of the time increment. Additionally, UserMat must also provide the material Jacobian matrix, which is
the matrix representation of the tangent stiffness tensor needed to describe the inelastic constitutive equation.
Details about the computation of this tensor are given in the next Subsection.

In the present study, the UserMat subroutine is programmed for the plane stress condition, and masonry
panels and walls are simulated by using shell elements. Of course, we could have used plane stress elements,
which are simpler, instead of shell elements, which are more complicated as considering both plane stress
and plate bending. Shell elements were adopted here for the convenience of future extensions/applications
involving three-dimensional deformation patterns.

4.2 Tangent stiffness tensor computation

In numerical nonlinear analyses of materials with softening behaviour, a Newton–Raphson algorithm is usually
employed. Therefore, the formulation of the tangent stiffness tensor is of great importance. Taking a temporal
derivative of Eq. (30), one obtains

σ̇ = (1 − d) ˙̄σ − ḋσ̄ = [(1 − d) I − R] : ˙̄σ (105)

where R is a rank-four tensor such that
ḋσ̄ = R : ˙̄σ , (106)

and ḋ is obtained from Eq. (31) and has the form

ḋ = ḋ ′ (1 − dII
) + ḋII

(
1 − d ′) (107)

with
ḋ ′ = (

1 − d−) (
sḋ+ + ṡd+) + (

1 − sd+)
ḋ−. (108)

Quantities ḋ+, ḋ−, ṡ, and dII of Eqs. (107) and (108) are treated separately, and their computation is found in
“Appendix C”.

Substituting Eqs. (121)–(130) into Eq. (107) enables one to determine R from Eq. (106). Thus, the tangent
stiffness tensor C tan is expressed as

C tan = dσ

dε
= dσ

dσ̄
: dσ̄
dε

= [(1 − d) I − R] : Cep (109)

where Cep is the plastic tangent stiffness tensor defined in Eq. (71).

5 Validation of the proposed damage model

5.1 Masonry panel under cyclic compressive load

In this Subsection, the capability of the proposed model to reproduce the behaviour of masonry under cyclic
load is demonstrated by a comparison of simulation results with experimental ones obtained by Nazar and
Sinha [47,48] onmasonry panels subjected to in-plane loading conditions.Nazar andSinha [47,48] investigated
experimentally the behaviour of brick masonry panels under uniaxial cyclic compressive loading with different
bed joint orientationutilizing45 specimens. Figure 6 shows such amasonrypanelwith dimensions 0.5m×0.5m
under compression with different bedding angles θ .

The panel is modelled by one and four shell finite elements with the samematerial parameters, whichmeans
that the value of lch in Eq. (97) is assumed to be equal to 0.5 m for both discretizations. The results are found to
be almost identical due to the uniform load distribution pattern. The analysis is completed by using 1000 equal
load steps, and a Newton–Raphson method to solve the nonlinear system of equations. Convergence is attained
when the ratio between the norm of the iterative residual forces and the norm of the total external forces is
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Fig. 6 A masonry panel under compression with bedding angle θ

Table 1 Material parameters for cyclic compressive test

Material parameters

E1 = E∗ = E ′ 9700 MPa ε
p−
11 3 × 10−3

E2 12,000 MPa ε
p−
12 3 × 10−3

υ12 = υ∗ 0.15 ε
p−
22 2.75 × 10−3

υ21 0.12 E p
11 7401 MPa

G12 6000 MPa E p
12 5400 MPa

f e−11 = f e−∗ 12.11 MPa E p
22 8400 MPa

f e−22 13.92 MPa G ′−
f,1 = G ′−∗

f 3500 J/m2

f e−12 4.80 MPa G ′−
f,2 4000 J/m2

ε0−11 6.3 × 10−4 G ′−
f,12 3200 J/m2

ε0−12 1.32 × 10−4 r0,II 0.75 Mpa
ε0−22 7.2 × 10−4 tan φ 0.6

lower than 1%. Material parameters are listed in Table 1. Some of them were explicitly given in [47,48], while
the rest were obtained indirectly from the experimental curves.

Figure 7 shows a very good agreement between the numerical and the experimental stress–strain curves
for the cases of loading direction at θ = 0◦, 22.5◦, 45◦, 67.5◦, and 90◦ with the bed joint direction. It is
remarkable how successfully completely different linear, hardening, and softening behaviours of the material
along different directions can be simulated by using the different transformation tensors for different domains
of stress and strain spaces. It is worth noting that at θ = 22.5◦ the strength of the material is very low, which
is due to the Mode II failure along the bed joint, thereby demonstrating the importance of this failure mode,
which is considered and successfully simulated in this work.

5.2 Masonry shear wall tests

In order to further validate the proposed constitutive model, a shear wall test conducted by Raijmakers and
Vermeltfoort [49] is simulated. Two brick walls with a central opening denoted J2G and J3G, as shown in
Fig. 8, are considered here. These walls have dimensions 990 × 1000 mm2, and are subjected to an initial
uniform vertical load p = 0.3 N/mm2 followed by a horizontal concentrated monotonically increasing load
P in a way precluding any vertical displacement. The material properties of the two walls are the same and
are listed in Table 2.

The failure patterns of the shear walls after loading are shown in Fig. 8. Diagonal cracks appear initially at
the two corners of the opening and propagate up to the top and bottom of the wall. Additionally, tensile cracks
appear at the vertical external sides of the wall involving the two piers next to the opening. Such cracks occur
at the top of the left pier and at the bottom of the right one.

In this work, the wall is modelled with 4-node shell elements with an average size of 0.01 m×0.01 m, and
a value of lch in Eq. (97) equal to 0.01 m is assumed. The analysis is completed by using 1000 equal load steps,
and a Newton–Raphson method to solve the nonlinear system of equations. Convergence is attained when the
ratio between the norm of the iterative residual forces and the norm of the total external forces is lower than
5%.

Figure 9 depicts the horizontal reaction R versus displacement U curves obtained from tests [49] and finite
element simulations including those in [9,34] and the present one. All simulations are closer to the J2G test



Inelastic anisotropic constitutive models 737

0 1 2 3 4 5 6 7
x 10−3

0

5

10

15

ε

σ 
M

Pa
Simulation
Experiment

θ=0°

(a)

0 1 2 3 4 5 6 7
x 10−3

0

5

10

15

ε

σ  
M

Pa

Simulation
Experiment

θ=22.5°

(b)

0 1 2 3 4 5 6 7
x 10−3

0

5

10

15

ε

σ 
M

Pa

Simulation
Experiment

θ=45°

(c)

0 1 2 3 4 5 6 7
x 10−3

0

5

10

15

ε

σ 
M

Pa

Simulation
Experiment

θ=67.5°

(d)

0 1 2 3 4 5 6 7
x 10−3

0

5

10

15

ε

σ  
M

Pa

Simulation
Experiment

θ=90°

(e)

Fig. 7 Comparison of stress–strain curves obtained by the tests of Nazar and Sinha [47,48] and the numerical analyses for various
angles of bed joint orientation in masonry panels under cyclic loading
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Fig. 8 Crack patterns of the walls tested by Raijmakers and Vermeltfoort [49]

Table 2 Material parameters for shear wall test

Material parameters

E1 = E∗ = E ′ 7520 MPa ε
p−
11 7.8 × 10−3

E2 3960 MPa ε
p−
12 4.5 × 10−3

υ12 = υ∗ 0.09 ε
p−
22 5.6 × 10−3

υ21 0.05 E p
11 3600 MPa

G12 1460 MPa E p
12 740 MPa

f e−11 = f e−∗ 6.30 MPa E p
22 1900 MPa

f e−22 4.50 MPa G ′−
f,1 = G ′−∗

f 20,000 J/m2

f e−12 3.00 MPa G ′−
f,2 19,400 J/m2

f 0−11 2.63 MPa G ′−
f,12 11,000 J/m2

f 0−12 3.00 MPa r0,II 0.9 Mpa
f 0−22 1.50 MPa tan φ 0.75
f 0+11 = f 0+∗ 0.35 MPa G ′+

f,1 = G ′+∗
f 50 J/m2

f 0+22 0.25 MPa G ′+
f,2 = G ′+

f,12 48 J/m2

f 0+12 0.30 MPa G ′II
f 120 J/m2

with the present plastic–damage simulation, and the micro-model plastic simulation of [9] is closer to that test
than the elastic damage simulation of [34]. The present simulation appears to be better than the one in [34]
due to the plastic evolutionary character of its transformation tensor A.

Figure 10 shows the damage distribution as obtained by the present simulation for values of P = 46.52 kN
and P = 31.54 kN. As can be seen by comparing Figs. 8 and 10, the orthotropic plastic–damage model
proposed in the present paper is able to effectively describe the mechanical behaviour of masonry material and
satisfactorily predict the failure pattern of masonry walls in plane stress.

6 Conclusions

On the basis of the preceding developments and discussion, the following conclusions can be stated:

(i) Themethodologyof linear stress tensor transformation for anisotropic inelasticmaterials has been improved
by introducing an evolutionary transformation tensor that can change the values of its components according
to the levels ofmaterial plasticity and damage evolutions. Thus, a newmethodology for developing plasticity
and damage constitutive models for anisotropic materials has been presented.
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Fig. 9 Reaction–displacement curves obtained by simulation and experiments

Fig. 10 Damage distribution of masonry shear wall obtained by the present simulation

(ii) On the basis of this evolutionary linear transformation method, an orthotropic plastic–damage constitutive
model for masonry materials has been developed, which is able to describe different hardening/softening
behaviour along different material directions.

(iii) The additional damage variable proposed for Mode II failure, which is able to describe the slip of bed
joint has been incorporated into the above described improved plastic–damage model, thereby effectively
extending the applicability of macro-models.

(iv) The proposed model has been implemented into the commercial finite element code ANSYS and used for
the analysis of simple masonry walls under static or cyclic loads. The numerical results were found to be
in very good agreement with tests and capable of successfully describing failure modes.

(v) The proposed model has been so far applied to simple wall masonry structures. It has to be applied to
masonry structures of complicated geometries, boundary conditions and loading in order to explore all of
its advantages and limitations. Furthermore, the model requires many material parameters as inputs, some
of which cannot easily be obtained by simple tests. Therefore, suggested values for most of the material
parameters of the present model should be provided in future studies.
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Appendix A: Explicit expressions for quantities in Eq. (57)

Ht∗ = ∂Ft∗

∂σ̄ ∗ : Aσ̄ ,pt : C0 : ∂Ft∗

∂σ ∗ : Aσ̄ ,pt

−
(

∂Ft∗

∂κ t
+ ∂Ft∗

∂σ̄ ∗ : ∂
(
Aσ̄ ,pt

)

∂κ t
: σ̄

)
dκ t

dλ
, (110)

[
∂Aσ̄ ,pt

∂κ t

]

1111
= E pt∗ f̄ t11 − E pt

11 f̄
t∗

(
f̄ t11

)2 ,

[
∂Aσ̄ ,pt

∂κ t

]

2222
= E pt∗ f̄ t2 − E pt

22 f̄
t∗

(
f̄ t22

)2 ,

[
∂Aσ̄ ,pt

∂κ t

]

1212
= E pt∗ f̄ t12 − E pt

12 f̄
t∗

2
(
f̄ t12

)2 ,

[
∂Aσ̄ ,pt

∂κ t

]

2121
= E pt∗ f̄ t12 − E pt

12 f̄
t∗

2
(
f̄ t12

)2 ,

[
∂Aσ̄ ,pt

∂κ t

]

1221
= E pt∗ f̄ t12 − E pt

12 f̄
t∗

2
(
f̄ t12

)2 ,

[
∂Aσ̄ ,pt

∂κ t

]

2112
= E pt∗ f̄ t12 − E pt

12 f̄
t∗

2
(
f̄ t12

)2 ,

[
∂Aσ̄ ,pt

∂κ t

]

else
= 0, (111)

∂Ft∗

∂σ̄ ∗ = M pt∗ : σ̄ ∗

2
( 1
2 σ̄

∗ : M pt∗ : σ̄ ∗) 1
2

+ 1

2
π∗, (112)

∂Ft

∂κ t
= ∂Ft∗

∂κ t
+ ∂Ft∗

∂σ̄ ∗ : ∂Aσ̄ ,pt

∂κ t
: σ̄ , (113)

∂Ft∗

∂κ t
= −E pt∗ ∂Ft∗

∂σ̄ ∗ : π∗, (114)

and the hardening variable κ t is defined as

κ̇ t = λ̇pt . (115)

Appendix B: Explicit expressions for quantities in Eq. (65)

Hc∗ = ∂Fc∗

∂σ̄ ∗ : Aσ̄ ,pc : C0 : ∂Fc∗

∂σ ∗ : Aσ̄ ,pc

−
(

∂Fc∗

∂κc
+ ∂Fc∗

∂σ̄ ∗ : ∂
(
Aσ̄ ,pc

)

∂κc
: σ̄

)
dκc

dλ
, (116)

∂Fc∗

∂σ̄ ∗ =
√
3

2

s̄∗

‖s̄∗‖ + α I, (117)

∂Fc

∂κc
= ∂Fc∗

∂κc
+ ∂Fc∗

∂σ̄ ∗ : ∂Aσ̄ ,pc

∂κc
: σ̄ , (118)

∂Ft∗

∂κ t
= − (1 − α) E pc∗, (119)

[
∂Aσ̄ ,pc

∂κc

]

1111
= E pc∗ f̄ c11 − E pc

11 f̄ c∗
(
f̄ c11

)2 ,

[
∂Aσ̄ ,pc

∂κc

]

2222
= E pc∗ f̄ c2 − E pc

22 f̄ c∗
(
f̄ c22

)2 ,

[
∂Aσ̄ ,pc

∂κc

]

1212
= (1 − α)

(
E pc∗ f̄ c12 − E pc

12 f̄ c∗
)

2
√
3
(
f̄ c12

)2 ,

[
∂Aσ̄ ,pc

∂κc

]

2121
= (1 − α)

(
E pc∗ f̄ c12 − E pc

12 f̄ c∗
)

2
√
3
(
f̄ c12

)2 ,
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[
∂Aσ̄ ,pc

∂κc

]

1221
= (1 − α)

(
E pc∗ f̄ c12 − E pc

12 f̄ c∗
)

2
√
3
(
f̄ c12

)2 ,

[
∂Aσ̄ ,pc

∂κc

]

2112
= (1 − α)

(
E pc∗ f̄ c12 − E pc

12 f̄ c∗
)

2
√
3
(
f̄ c12

)2 ,

[
∂Aσ̄ ,pc

∂κc

]

else
= 0. (120)

Appendix C: Computation of ḋ+, ḋ−, ṡ, and dII

(i) Computation of ḋ+:

ḋ+ = dG+∗

dτ+∗
dτ+∗

dσ̄+∗
dσ̄+∗

dσ̄+
dσ̄+

dσ̄
˙̄σ = hd+∗

(
M t∗ : σ̄+∗

2τ+∗ + 1

2
π

)
: Aσ̄ ,d+ : Q+ : ˙̄σ (121)

where

hd+∗ = A+r+∗ + r0+∗
(
r+∗)2 e

A+(1− r+∗
r0+∗ )

, (122)

Q+ =
∑

i

H
( ˆ̄σ i

)
Pi i ⊗ Pi i + 2

∑

i, j
j>i

〈 ˆ̄σ i

〉
−

〈 ˆ̄σ j

〉

ˆ̄σ i − ˆ̄σ j
Pi j ⊗ Pi j , (123)

Pi i = pi ⊗ pi , Pi j = 1

2

(
pi ⊗ p j + p j ⊗ pi

) ; (124)

(ii) Computation of ḋ−:

ḋ− = dG−∗

dτ−∗
dτ−∗

dσ̄ ∗
dσ̄

dσ̄
˙̄σ = hd−∗

(
K√
3
I + √

2s̄∗
)

: Aσ̄ ,d+ : ˙̄σ (125)

where s̄∗ is the deviatoric stress tensor of σ̄ ∗, and hd−∗ is expressed as

hd−∗ =

⎧
⎪⎨

⎪⎩

a−re−∗
(r p−∗−r0−∗)2

(
1 − 2r0−∗

(r−∗)2

)
, r0−∗ ≤ r−∗ ≤ r p−∗

re−∗
(r−∗)2

sech2
(
1 + 2r−∗ tanh b−

r p−∗
)

, r−∗ > r p−∗;
(126)

(iii) Computation of ṡ:

ṡ = 1

2

I
(∑

i

∣∣
∣ ˆ̄σ i

∣∣
∣
)

− Ī1
(∑

i Pi i
)

(∑
i

∣∣∣ ˆ̄σ i

∣∣∣
)2 : ˙̄σ ; (127)

(iv) Computation of ḋII:

ḋII = dGII

dτ II
dτ II

dσ̄
˙̄σ = hIIξ II : ˙̄σ (128)

where

hII = BIIr II + r0,II
(
r II

)2 e
BII(1− r II

r0,II
)
, (129)

ξ II =
[

0 1
2 sign (σ̄12)

1
2 sign (σ̄12) tan φII

]
. (130)
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