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Abstract This paper focuses on studying Noether’s theorems for dynamical systems with two kinds of non-
standard Hamiltonians, respectively, namely exponential Hamiltonian and power-law Hamiltonian. Firstly, the
differential equations of motion for dynamical systems with exponential Hamiltonian and power-law Hamilto-
nian are established. Secondly, according to the invariance of the action under the infinitesimal transformations,
the definitions and criteria of Noether symmetric transformations and Noether quasi-symmetric transforma-
tions are given. Then, Noether’s theorems for dynamical systems with exponential Hamiltonian and power-law
Hamiltonian are obtained, respectively. Finally, two examples are given to illustrate the applications of the
results.

1 Introduction

The method of symmetry or invariance is an important branch of analytical dynamics. In 1918, Emmy Noether
[1] proved a general theorem of the calculus of variations that reveals the interrelation between a variational
symmetry and a conserved quantity. The symmetry is described by infinitesimal transformations of the sys-
tem, which results in the same object after the transformation is carried out. Noether’s theorem explains all
conservation laws of classical mechanics; for example, the conservation of energy comes from the invariance
of the system under time translations, the conservation of momentum comes from the invariance of the system
under spatial translations, and the conservation of the moment of momentum comes from the invariance of the
system under spatial rotations. Nowadays, the celebratedNoether’s theorem is awell-known tool in constrained
mechanical systems, such as holonomic systems [2–5], non-holonomic systems [2,6–9], Birkhoffian systems
[10–13], dynamical systems with time delay [14–17], fractional calculus of variations [18–22], and variational
problems of Herglotz type [23,24]. However, non-standard Lagrangians and non-standard Hamiltonians may
make the description easier in some cases, for example, when dealing with nonlinear dynamics.

Hence, there has been a successful formulation for nonlinear dynamical systems, known as non-standard
Lagrangians that are characterized by a deformed Lagrangian or deformed kinetic and potential energy terms.
It, entitled “non-natural Lagrangian” by Arnold in 1978 [25], has not motivated a large number of studies until
Alekseev [26] applied the non-standard Lagrangians to the Yang–Mills quantum field theory where they are
used to describe large-distance interactions in the region of applicability of classical theory. In the progress of
years, it is observed that non-standard Lagrangians play an important role in some dynamical problems such
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as nonlinear dynamics [27,28], dissipative systems [29–32], cosmology [33], and quantum field theory [34].
Non-standard Lagrangians have much more terms, compared with the standard ones, which can be considered
as a special case of non-standard Lagrangians. In the recent past, it is worth pointing out that some scholars
have studied their properties and applications. Zhang and Zhou [35,36] studied Noether’s theorem and its
inverse for dynamical system with non-standard Lagrangians, and extended the celebrated Routh method of
reduction to non-standard Lagrangians. Musielak [31,32] studied the method of obtaining the non-standard
Lagrangians for dissipative systems and its existence conditions. El-Nabulsi [27,29,33,34,37] studied the
action and differential equation of motion with non-standard Lagrangians in nonlinear dynamical systems, and
applied them to Friedmann–Robertson–Walker space-time, and discussed their implications in classical and
quantum theory by aid of the modified Hamilton–Jacobi equation and Schrödinger equation, and generalized
dynamical systemswith higher order derivatives. Carinena andNunez [38] studied the relationship of equations
of motion of a deformed Lagrangian.

Non-standard Hamiltonians may take, depending on the problem, exponential form exp (pkq̇k − H), log-
arithm form loga (pkq̇k − H) [27], power-law form (pkq̇k − H)1+γ , etc.; H is the standard Hamiltonian,
qk is the generalized coordinate with q̇k = dqk

dt , and pk is the generalized momentum corresponding to the
generalized coordinate qk . In 2017, Liu and his coworkers [39] studied exponential Hamiltonians. By using
the standard variational method, some dynamical equations with different exponential Hamiltonians and some
new dynamical properties that nonlinear dynamics hold were obtained. However, scholars have not studied
the relationship between Noether’s theorem and non-standard Hamiltonians yet. In this paper, we will get
Noether’s theorem for dynamical systems with two kinds of non-standard Hamiltonians, namely exponential
Hamiltonian and power-law Hamiltonian.

The organization of this paper is demonstrated as follows. In Sects. 2 and 3, the actions based on two kinds
of non-standard Hamiltonians are introduced, and differential equations of motion are derived, respectively.
According to the invariance of actions for non-standard Hamiltonians under the infinitesimal transformations,
Noether’s theorems are obtained. Two examples are given to illustrate the applications of the results.

2 Noether’s theorem for dynamical system with exponential Hamiltonian

2.1 Differential equations of motion

Suppose that the configuration of a dynamical system is determined by n generalized coordinates
qk (k = 1, 2, . . . , n), the action with exponential Hamiltonian is [27,39]

S =
∫ b

a
exp (pkq̇k − H) dt (1)

where H : R×Rn×Rn is of classC2 and H = H (t, qk, pk) = pkq̇k−L (t, qk, q̇k) is the standardHamiltonian,
q̇k is the generalized velocity with q̇k = dqk

dt , and pk is the generalized momentum corresponding to the
generalized coordinate qk . Here, we comply with Einstein’s summation convention.

The variational principle with exponential Hamiltonian is

δS = 0 (2)

which satisfies the commutation relations

dδqk = δdqk (k = 1, 2, . . . , n) (3)

and the given terminal conditions

δqk |t=a = δqk |t=b = 0 (k = 1, 2, . . . , n). (4)

By Eqs. (1)–(4), it is easy to get

q̇k − ∂H

∂pk
= 0,− ṗk − pk ṗi

∂H

∂pi
− pk pi

d

dt

(
∂H

∂pi

)
+ pk

dH

dt
− ∂H

∂qk
= 0, (k = 1, 2, . . . , n). (5)
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Making use of the total differential of H (t, qk, pk),

dH

dt
= ∂H

∂t
+ ∂H

∂qk
q̇k + ∂H

∂pk
ṗk, (6)

Eq. (5) can be expressed as

q̇k − ∂H

∂pk
= 0,− ṗk − pk pi

d

dt

(
∂H

∂pi

)
+ pk

∂H

∂t
+ pk

∂H

∂qi

∂H

∂pi
− ∂H

∂qk
= 0, (k = 1, 2, . . . , n). (7)

Equations (5) or (7) are the differential equations of motion for dynamical systems with exponential Hamilto-
nian.

2.2 Noether symmetry

Let us introduce the infinitesimal transformations with respect to time t , generalized coordinates qk , and
generalized momentum pk , i.e.,

t̄ = t + �t, q̄k
(
t̄
) = qk (t) + �qk, p̄k

(
t̄
) = pk (t) + �pk, (k = 1, 2, . . . , n) (8)

and their expansion formulae

t̄ = t + εαξα
0 (t, qs, ps) , q̄k

(
t̄
) = qk (t) + εαξα

k (t, qs, ps) ,

p̄k
(
t̄
) = pk (t) + εαηα

k (t, qs, ps) , (α = 1, 2, . . . , r; s, k = 1, 2, . . . , n) (9)

where εα (α = 1, 2, . . . , r) is the infinitesimal parameter, and ξα
0 , ξα

k , ηα
k are the generators of the infinitesimal

transformations. Under the infinitesimal transformations (8), the action (1) is transformed to

�S = δS + Ṡ�t

=
∫ b

a

[
exp (psq̇s − H)

(
pkδq̇k + q̇kδpk − ∂H

∂qk
δqk − ∂H

∂pk
δpk

)]
dt + exp (psq̇s − H)�t

=
∫ b

a

{
exp (psq̇s − H)

(
q̇k − ∂H

∂pk

)
δpk + exp (psq̇s − H)

[
−∂H

∂qk
+ pk

∂H

∂qi

∂H

∂pi
+ pk

∂H

∂t

−pk pi
d

dt

(
∂H

∂pi

)
− ṗk

]
δqk + d

dt

[
exp (psq̇s − H) (pkδqk + �t)

]}
dt (10)

and

�S =
∫ b

a

[
� exp (psq̇s − H) + exp (psq̇s − H)

d

dt
(�t)

]
dt

=
∫ b

a
exp (psq̇s − H)

[
pk�q̇k + q̇k�pk − ∂H

∂t
�t − ∂H

∂qk
�qk − ∂H

∂pk
�pk + d

dt
(�t)

]
dt . (11)

Considering

�t = εαξα
0 , δqk = �qk − q̇k�t = εα

(
ξα
k − q̇kξ

α
0

)
, δpk = �pk − ṗk�t = εα

(
ηα
k − ṗkξ

α
0

)
(12)

and from Eq. (10), we obtain

�S =
∫ b

a
εα

{
exp (psq̇s − H)

(
q̇k − ∂H

∂pk

)
η̄α
k + exp (psq̇s − H)

[
−∂H

∂qk
+ pk

∂H

∂qi

∂H

∂pi
+ pk

∂H

∂t

−pk pi
d

dt

(
∂H

∂pi

)
− ṗk

]
ξ̄ α
k + d

dt

[
exp (psq̇s − H)

(
pk ξ̄

α
k + ξα

0

)]}
dt (13)

where
ξ̄ α
k = ξα

k − q̇kξ
α
0 , η̄α

k = ηα
k − ṗkξ

α
0 . (14)

Equations (11) and (13) are the basic formulae for the variation in the action (1).
Now, we give the definitions and criteria of Noether symmetry for dynamical systems with exponential

Hamiltonian.
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Definition 1 For a dynamical system with exponential Hamiltonian (5), the transformations (8) are called the
Noether symmetric transformations if and only if

�S = 0 (15)

for each of the infinitesimal transformations.

Criterion 1 For the infinitesimal transformations (8), if the condition

exp (psq̇s − H)

[
pk�q̇k + q̇k�pk − ∂H

∂t
�t − ∂H

∂qk
�qk − ∂H

∂pk
�pk + d

dt
(�t)

]
= 0 (16)

is satisfied, then the transformations (8) are the Noether symmetric transformations for dynamical systems
with exponential Hamiltonian.

Criterion 2 For the infinitesimal transformations (9), if the condition

exp (psq̇s − H)

(
q̇k − ∂H

∂pk

)
η̄α
k + exp (psq̇s − H)

[
−∂H

∂qk
+ pk

∂H

∂qi

∂H

∂pi
+ pk

∂H

∂t

−pk pi
d

dt

(
∂H

∂pi

)
− ṗk

]
ξ̄ α
k + d

dt

[
exp (psq̇s − H)

(
pk ξ̄

α
k + ξα

0

)] = 0, (α = 1, 2, . . . , r) (17)

is satisfied, then the transformations (9) are the Noether symmetric transformations for dynamical systems
with exponential Hamiltonian.

Considering
�q̇k = εα

(
ξ̇ α
k − q̇k ξ̇

α
0

)
(18)

and the former of Eq. (7), condition (16) can be expressed as

exp (psq̇s − H)

[
pk ξ̇

α
k − ∂H

∂t
ξα
0 − ∂H

∂qk
ξα
k +

(
1 − pk

∂H

∂pk

)
ξ̇ α
0

]
= 0. (19)

Equation (19) is also the criterion of the Noether symmetric transformations for dynamical systems with
exponential Hamiltonian. When α = 1, Eq. (19) is transformed to

exp (psq̇s − H)

[
pk ξ̇k − ∂H

∂t
ξ0 − ∂H

∂qk
ξk +

(
1 − pk

∂H

∂pk

)
ξ̇0

]
= 0. (20)

Equation (20) is called the Noether identity for dynamical systems with exponential Hamiltonian.

Using Criteria 1 and 2, one can find the Noether symmetry for a dynamical system with power-law
Hamiltonian

Definition 2 For a dynamical system with exponential Hamiltonian (5), the transformations (8) are called the
Noether quasi-symmetric transformations if and only if

�S = −
∫ b

a

d

dt
(�G) dt (21)

where G = G (t, qk, pk), for each of the infinitesimal transformations.

Criterion 3 For the infinitesimal transformations (8), if the condition

exp (psq̇s − H)

[
pk�q̇k + q̇k�pk − ∂H

∂t
�t − ∂H

∂qk
�qk − ∂H

∂pk
�pk + d

dt
(�t)

]
= − d

dt
(�G) (22)

is satisfied, then the transformations (8) are theNoether quasi-symmetric transformations for dynamical systems
with exponential Hamiltonian.
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Criterion 4 For the infinitesimal transformations (9), if the condition

exp (psq̇s − H)

(
q̇k − ∂H

∂pk

)
η̄α
k + exp (psq̇s − H)

[
−∂H

∂qk
+ pk

∂H

∂qi

∂H

∂pi
+ pk

∂H

∂t

−pk pi
d

dt

(
∂H

∂pi

)
− ṗk

]
ξ̄ α
k + d

dt

[
exp (psq̇s − H)

(
pk ξ̄

α
k + ξα

0

)] = − d

dt
Gα, (α = 1, 2, . . . , r) (23)

is satisfied, where�G = εαGα , then the transformations (9) are the Noether quasi-symmetric transformations
for dynamical systems with exponential Hamiltonian.

Considering Eqs. (12) and (18), and the former of Eq. (7), condition (22) can be expressed as

exp (psq̇s − H)

[
pk ξ̇

α
k − ∂H

∂t
ξα
0 − ∂H

∂qk
ξα
k +

(
1 − pk

∂H

∂pk

)
ξ̇ α
0

]
= −Ġα (24)

whereGα = Gα (t, qk, pk). Equation (24) is also the criterion of the Noether quasi-symmetric transformations
for dynamical systems with exponential Hamiltonian. When α = 1, Eq. (24) gives the Noether identity for
dynamical systems with exponential Hamiltonian,

exp (psq̇s − H)

[
pk ξ̇k − ∂H

∂t
ξ0 − ∂H

∂qk
ξk +

(
1 − pk

∂H

∂pk

)
ξ̇0

]
= −Ġ. (25)

Using Criteria 3 and 4, one can find the Noether quasi-symmetry for dynamical systems with exponential
Hamiltonian.

2.3 Noether’s theorem

Under the infinitesimal transformations (9), from Eqs. (13) and (15), we have

exp (psq̇s − H)

(
q̇k − ∂H

∂pk

)
η̄α
k + exp (psq̇s − H)

[
−∂H

∂qk
+ pk

∂H

∂qi

∂H

∂pi
+ pk

∂H

∂t

−pk pi
d

dt

(
∂H

∂pi

)
− ṗk

]
ξ̄ α
k + d

dt

[
exp (psq̇s − H)

(
pk ξ̄

α
k + ξα

0

)] = 0, (α = 1, 2, . . . , r). (26)

Substituting Eq. (7) into Eq. (26), we obtain

d

dt

[
exp (psq̇s − H)

(
pk ξ̄

α
k + ξα

0

)] = 0. (27)

Integrating Eq. (27), we get the Noether conserved quantity

I α = exp (psq̇s − H)
(
pk ξ̄

α
k + ξα

0

) = const., (α = 1, 2, . . . , r). (28)

Therefore, we have

Theorem 1 For the dynamical system with exponential Hamiltonian (5), if the infinitesimal transformations
(9) are the Noether symmetric transformations in the sense of Definition 1, then the system admits r linearly
independent Noether conserved quantities (28).

Under the infinitesimal transformations (9), from Eqs. (13) and (21), we have

exp (psq̇s − H)

(
q̇k − ∂H

∂pk

)
η̄α
k + exp (psq̇s − H)

[
−∂H

∂qk
+ pk

∂H

∂qi

∂H

∂pi
+ pk

∂H

∂t

−pk pi
d

dt

(
∂H

∂pi

)
− ṗk

]
ξ̄ α
k + d

dt

[
exp (psq̇s − H)

(
pk ξ̄

α
k + ξα

0

) + Gα
] = 0, (α = 1, 2, . . . , r).

(29)

Substituting Eq. (7) into Eq. (29), we obtain

d

dt

[
exp (psq̇s − H)

(
pk ξ̄

α
k + ξα

0

) + Gα
] = 0. (30)
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Integrating Eq. (30), we get the Noether conserved quantity

I α = exp (psq̇s − H)
(
pk ξ̄

α
k + ξα

0

) + Gα = const., (α = 1, 2, . . . , r). (31)

Therefore, we have

Theorem 2 For the dynamical system with exponential Hamiltonian (5), if the infinitesimal transformations
(9) are the Noether quasi-symmetric transformations in the sense of Definition 2, then the system admits r
linearly independent Noether conserved quantities (31).

Theorems 1 and 2 are called Noether’s theorem for dynamical systems with exponential Hamiltonian (5).
The theorem shows that one can obtain a conserved quantity of the system if one can find a Noether symmetry
transformation or a Noether quasi-symmetry transformation.

If the Hamiltonian H of the dynamical system is not dependent on time t, i.e., H = H (qk, pk), and letting

ξ0 = 1, ξk = 0, (k = 1, 2, . . . , n), (32)

by Theorem 1, we obtain

I = exp (psq̇s − H)

(
1 − pk

∂H

∂pk

)
= const. (33)

Equation (33) is called the generalized energy integral for the dynamical system with exponential Hamiltonian
(5).

2.4 Example

Consider the dynamical system with exponential Hamiltonian whose action is defined by

S =
∫ b

a
exp (pq̇ − H)dt (34)

where H = tqp [39] is the standard Hamiltonian. By Eq. (7), we have

q̇ − qt = 0, ṗ + pt = 0. (35)

Let us study the Noether symmetry and conserved quantity. The generalized Noether identity (25) gives

pξ̇ − qpξ0 − tpξ + (1 − tqp) ξ̇0 = −Ġ. (36)

Equation (36) has the following solutions:

ξ10 = 0, ξ1 = q,G1 = 0, (37)

ξ20 = 1

t
, ξ2 = q,G2 = −1

t
. (38)

The generator (37) corresponds to the Noether symmetry for the dynamical system, and the generator (38)
corresponds to the Noether quasi-symmetry for the dynamical system. By Noether’s theoremwe have obtained
that the system has the following conserved quantities:

I 1 = qp, (39)

I 2 = 0. (40)

It is obvious that the conserved quantity (40) is trivial.
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3 Noether’s theorem for a dynamical system with power-law Hamiltonian

3.1 Differential equations of motion

The action with power-law Hamiltonian is [27]

A =
∫ b

a
(pkq̇k − H)1+γ dt . (41)

The variational principle with power-law Hamiltonian is

δA = 0. (42)

By Eqs. (42), considering conditions (3) and (4), when γ �= −1, we obtain

q̇k − ∂H

∂pk
= 0,− ṗk − γ

(
pl

∂H

∂pl
− H

)−1

pk ṗi
∂H

∂pi
− ∂H

∂qk

− γ

(
pl

∂H

∂pl
− H

)−1

pk pi
d

dt

(
∂H

∂pi

)
+ γ

(
pl

∂H

∂pl
− H

)−1

pk
dH

dt
= 0, (k = 1, 2, . . . , n).

(43)

Making use of the total differential (6) of H (t, qk, pk), Eq. (43) can be expressed as

q̇k − ∂H

∂pk
= 0,− ṗk − γ

(
pl

∂H

∂pl
− H

)−1

pk pi
d

dt

(
∂H

∂pi

)
− ∂H

∂qk

+ γ

(
pl

∂H

∂pl
− H

)−1

pk
∂H

∂t
+ γ

(
pl

∂H

∂pl
− H

)−1

pk
∂H

∂qi

∂H

∂pi
= 0, (k = 1, 2, . . . , n). (44)

Equations (43) or (44) are the differential equations of motion for dynamical systems with power-law Hamil-
tonian.

When γ = 0, Eq. (44) reduces to the classical Hamilton canonical equation [2]

q̇k − ∂H

∂pk
= 0, ṗk + ∂H

∂qk
= 0, (k = 1, 2, . . . , n). (45)

3.2 Noether symmetry

Under the infinitesimal transformations of (8), the action (41) is transformed to

�A = δA + Ȧ�t

=
∫ b

a

[
(1 + γ ) (psq̇s − H)γ

(
pkδq̇k + q̇kδpk − ∂H

∂qk
δqk − ∂H

∂pk
δpk

)]
dt + (psq̇s − H)1+γ �t

=
∫ b

a

{
(1 + γ ) (psq̇s − H)γ

(
q̇k − ∂H

∂pk

)
δpk + (1 + γ ) (psq̇s − H)γ

[
−∂H

∂qk
+ γ

(
pl

∂H

∂pl
− H

)−1

·pk ∂H

∂t
−γ

(
pl

∂H

∂pl
− H

)−1

pk pi
d

dt

(
∂H

∂pi

)
+ γ

(
pl

∂H

∂pl
− H

)−1

pk
∂H

∂qi

∂H

∂pi
− ṗk

]
δqk

+ d

dt

[
(1 + γ ) (psq̇s − H)γ

(
pkδqk + (1 + γ )−1

(
pl

∂H

∂Pl
− H

)
�t

)]}
dt (46)

and

�A =
∫ b

a

[
� (psq̇s − H)1+γ + (psq̇s − H)1+γ d

dt
(�t)

]
dt
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=
∫ b

a
(1 + γ ) (psq̇s − H)γ

[
pk�q̇k + q̇k�pk − ∂H

∂t
�t − ∂H

∂qk
�qk

− ∂H

∂pk
�pk + (1 + γ )−1

(
pl

∂H

∂Pl
− H

)
d

dt
(�t)

]
dt. (47)

Considering Eq. (12), and from Eq. (46), we obtain

�A =
∫ b

a

{
(1 + γ ) (psq̇s − H)γ

(
q̇k − ∂H

∂pk

)
η̄α
k + (1 + γ ) (psq̇s − H)γ

[
−∂H

∂qk
+ γ

(
pl

∂H

∂pl
− H

)−1

·pk ∂H

∂t
−γ

(
pl

∂H

∂pl
− H

)−1

pk pi
d

dt

(
∂H

∂pi

)
+ γ

(
pl

∂H

∂pl
− H

)−1

pk
∂H

∂qi

∂H

∂pi
− ṗk

]
ξ̄ α
k

+ d

dt

[
(1 + γ ) (psq̇s − H)γ

(
pk ξ̄

α
k + (1 + γ )−1

(
pl

∂H

∂Pl
− H

)
ξα
0

)]}
dt. (48)

Equations (47) and (48) are the basic formulae for the variation in the action (41).
Now, we give the definitions and criteria of Noether symmetry for dynamical systems with power-law

Hamiltonian.

Definition 3 For a dynamical system with power-law Hamiltonian (43), the transformations (8) are called the
Noether symmetric transformations if and only if

�A = 0 (49)

for each of the infinitesimal transformations.

Criterion 5 For the infinitesimal transformations (8), if the condition

(1 + γ ) (psq̇s − H)γ
[
pk�q̇k + q̇k�pk − ∂H

∂t
�t − ∂H

∂qk
�qk

− ∂H

∂pk
�pk + (1 + γ )−1

(
pl

∂H

∂Pl
− H

)
d

dt
(�t)

]
= 0 (50)

is satisfied, then the transformations (8) are the Noether symmetric transformations for dynamical systems
with power-law Hamiltonian.

Criterion 6 For the infinitesimal transformations (9), if the condition

(1 + γ ) (psq̇s − H)γ
(
q̇k − ∂H

∂pk

)
η̄α
k + (1 + γ ) (psq̇s − H)γ

[
−∂H

∂qk
+ γ

(
pl

∂H

∂pl
− H

)−1

·pk ∂H

∂t
−γ

(
pl

∂H

∂pl
− H

)−1

pk pi
d

dt

(
∂H

∂pi

)
+ γ

(
pl

∂H

∂pl
− H

)−1

pk
∂H

∂qi

∂H

∂pi
− ṗk

]
ξ̄ α
k

+ d

dt

[
(1 + γ ) (psq̇s − H)γ

(
pk ξ̄

α
k + (1 + γ )−1

(
pl

∂H

∂Pl
− H

)
ξα
0

)]
= 0, (α = 1, 2, . . . , r) (51)

is satisfied, then the transformations (9) are the Noether symmetric transformations for dynamical systems
with power-law Hamiltonian.

Considering Eq. (18) and the former of Eq. (44), condition (50) can be expressed as

(1 + γ ) (psq̇s − H)γ
[
pk ξ̇

α
k − ∂H

∂t
ξα
0 − ∂H

∂qk
ξα
k +

(
(1 + γ )−1

(
pl

∂H

∂Pl
− H

)
− pk

∂H

∂Pk

)
ξ̇ α
0

]
= 0. (52)

Equation (52) is also the criterion of the Noether symmetric transformations for dynamical systems with
power-law Hamiltonian. When α = 1, Eq. (52) is transformed to

(1 + γ ) (psq̇s − H)γ
[
pk ξ̇k − ∂H

∂t
ξ0 − ∂H

∂qk
ξk +

(
(1 + γ )−1

(
pl

∂H

∂Pl
− H

)
− pk

∂H

∂pk

)
ξ̇0

]
= 0. (53)

Using Criteria 5 and 6, one can find theNoether symmetry for dynamical systemswith power-lawHamiltonian.
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Definition 4 For a dynamical system with power-law Hamiltonian (43), the transformations (8) are called the
Noether quasi-symmetric transformations if and only if

�A = −
∫ b

a

d

dt
(�G) dt (54)

for each of the infinitesimal transformations.

Criterion 7 For the infinitesimal transformations (8), if the condition

(1 + γ ) (psq̇s − H)γ
[
pk�q̇k + q̇k�pk − ∂H

∂t
�t − ∂H

∂qk
�qk

− ∂H

∂pk
�pk + (1 + γ )−1

(
pl

∂H

∂Pl
− H

)
d

dt
(�t)

]
= − d

dt
(�G) (55)

is satisfied, then the transformations (8) are theNoether quasi-symmetric transformations for dynamical systems
with power-law Hamiltonian.

Criterion 8 For the infinitesimal transformations (9), if the condition

(1 + γ ) (psq̇s − H)γ
(
q̇k − ∂H

∂pk

)
η̄α
k + (1 + γ ) (psq̇s − H)γ

[
−∂H

∂qk
+ γ

(
pl

∂H

∂pl
− H

)−1

·pk ∂H

∂t
−γ

(
pl

∂H

∂pl
− H

)−1

pk pi
d

dt

(
∂H

∂pi

)
+ γ

(
pl

∂H

∂pl
− H

)−1

pk
∂H

∂qi

∂H

∂pi
− ṗk

]
ξ̄ α
k

+ d

dt

[
(1 + γ ) (psq̇s − H)γ

(
pk ξ̄

α
k + (1 + γ )−1

(
pl

∂H

∂Pl
− H

)
ξα
0

)]
= − d

dt
Gα, (α = 1, 2, . . . , r)

(56)

is satisfied, then the transformations (9) are theNoether quasi-symmetric transformations for dynamical systems
with power-law Hamiltonian.

Considering Eqs. (12) and (18), and the former of Eq. (44), condition (55) can be expressed as

(1 + γ ) (psq̇s − H)γ
[
pk ξ̇

α
k − ∂H

∂t
ξα
0 − ∂H

∂qk
ξα
k +

(
(1 + γ )−1

(
pl

∂H

∂Pl
− H

)
− pk

∂H

∂Pk

)
ξ̇ α
0

]
= −Ġα.

(57)
Equation (57) is also the criterion of the Noether quasi-symmetric transformations for dynamical systems
with power-law Hamiltonian. When α = 1, Eq. (57) gives the Noether identity for dynamical systems with
power-law Hamiltonian,

(1 + γ ) (psq̇s − H)γ
[
pk ξ̇k − ∂H

∂t
ξ0 − ∂H

∂qk
ξk +

(
(1 + γ )−1

(
pl

∂H

∂Pl
− H

)
− pk

∂H

∂pk

)
ξ̇0

]
= −Ġ. (58)

Using Criteria 7 and 8, one can find the Noether quasi-symmetry for dynamical systems with power-law
Hamiltonian.

3.3 Noether’s theorem

Under the infinitesimal transformations (9), from Eqs. (48) and (49), we have

(1 + γ ) (psq̇s − H)γ
(
q̇k − ∂H

∂pk

)
η̄α
k + (1 + γ ) (psq̇s − H)γ

[
−∂H

∂qk
+ γ

(
pl

∂H

∂pl
− H

)−1

·pk ∂H

∂t
−γ

(
pl

∂H

∂pl
− H

)−1

pk pi
d

dt

(
∂H

∂pi

)
+ γ

(
pl

∂H

∂pl
− H

)−1

pk
∂H

∂qi

∂H

∂pi
− ṗk

]
ξ̄ α
k
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+ d

dt

[
(1 + γ ) (psq̇s − H)γ

(
pk ξ̄

α
k + (1 + γ )−1

(
pl

∂H

∂Pl
− H

)
ξα
0

)]
= 0, (α = 1, 2, . . . , r). (59)

Substituting Eq. (44) into Eq. (59), we obtain

d

dt

[
(1 + γ ) (psq̇s − H)γ

(
pk ξ̄

α
k + (1 + γ )−1

(
pl

∂H

∂Pl
− H

)
ξα
0

)]
= 0. (60)

Integrating Eq. (60), we get the Noether conserved quantity

I α = (1 + γ ) (psq̇s − H)γ
(
pk ξ̄

α
k + (1 + γ )−1

(
pl

∂H

∂Pl
− H

)
ξα
0

)
= const., (α = 1, 2, . . . , r). (61)

Therefore, we have

Theorem 3 For the dynamical system with power-law Hamiltonian (43), if the infinitesimal transformations
(9) are the Noether symmetric transformations in the sense of Definition 3, then the system admits r linearly
independent Noether conserved quantities (61).

Under the infinitesimal transformations (9), from Eqs. (48) and (54), we have

(1 + γ ) (psq̇s − H)γ
(
q̇k − ∂H

∂pk

)
η̄α
k + (1 + γ ) (psq̇s − H)γ

[
−∂H

∂qk
+ γ

(
pl

∂H

∂pl
− H

)−1

·pk ∂H

∂t
−γ

(
pl

∂H

∂pl
− H

)−1

pk pi
d

dt

(
∂H

∂pi

)
+ γ

(
pl

∂H

∂pl
− H

)−1

pk
∂H

∂qi

∂H

∂pi
− ṗk

]
ξ̄ α
k

+ d

dt

[
(1 + γ ) (psq̇s − H)γ

(
pk ξ̄

α
k + (1 + γ )−1

(
pl

∂H

∂Pl
− H

)
ξα
0

)
+ Gα

]
= 0, (α = 1, 2, . . . , r).

(62)

Substituting Eq. (44) into Eq. (62), we obtain

d

dt

[
(1 + γ ) (psq̇s − H)γ

(
pk ξ̄

α
k + (1 + γ )−1

(
pl

∂H

∂Pl
− H

)
ξα
0

)
+ Gα

]
= 0. (63)

Integrating Eq. (63), we get the Noether conserved quantity

I α = (1 + γ ) (psq̇s − H)γ
(
pk ξ̄

α
k + (1 + γ )−1

(
pl

∂H

∂Pl
− H

)
ξα
0

)
+ Gα = const., (α = 1, 2, . . . , r).

(64)

Therefore, we have

Theorem 4 For the dynamical system with power-law Hamiltonian (43), if the infinitesimal transformations
(9) are the Noether quasi-symmetric transformations in the sense of Definition 4, then the system admits r
linearly independent Noether conserved quantities (64).

Theorems 3 and 4 are called Noether’s theorem for dynamical systems with power-law Hamiltonian (43).
The theorem shows that one can obtain a conserved quantity of the system if one can find a Noether symmetry
transformation or a Noether quasi-symmetry transformation.

If the Hamiltonian H of the dynamical system is not dependent on time t, i.e., H = H (qk, pk), and letting

ξ0 = 1, ξk = 0, (k = 1, 2, . . . , n), (65)

by Theorem 3, we obtain

I = (1 + γ ) (psq̇s − H)γ
(

(1 + γ )−1
(
pl

∂H

∂pl
− H

)
− pk

∂H

∂pk

)
= const. (66)

Equation (66) is called the generalized energy integral for the dynamical system with power-law Hamiltonian
(43).
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3.4 Example

Consider the dynamical system with power-law Hamiltonian whose action is defined by [27]

A =
∫ b

a
(pq̇ − H)1+γ dt (67)

where H = 1
2 p

2 + 1
6q

6 is the standard Hamiltonian. By Eq. (45), we have

q̇ − p = 0, ṗ + q5 − 2γ p2
(
1

2
p2 − 1

6
q6 − γ p2

)−1

= 0. (68)

When γ = 0, the problem is transformed to the well-known Emden equation [2]. And Eq. (68) reduces to the
standard Hamilton canonical equation

q̇ − p = 0, ṗ + q5 = 0. (69)

Let us study the Noether symmetry and conserved quantity. The generalized Noether identity (59) gives

(1 + γ )

(
1

2
p2 − 1

6
q6

)γ [
pξ̇ − q5ξ +

((
1

2
p2 − 1

6
q6

)
(1 + γ )−1 − p2

)
ξ̇0

]
= −Ġ. (70)

Equation (70) has the following solutions:

ξ0 = −1, ξ = 0, G = 0. (71)

The generator (71) corresponds to the Noether symmetry for the dynamical system. By the Noether theorem
we have obtained, the system has the following conserved quantity:

I = (1 + γ )

(
1

2
p2 − 1

6
q6

)γ

p2 −
(
1

2
p2 − 1

6
q6

)1+γ

= const. (72)

4 Conclusions

The non-standard Hamiltonians, possessing some properties that standard Hamiltonians do not have, can be
used to describe the nonlinear dynamics, etc. Based on Refs. [27,39], Noether’s theorem for dynamical systems
with exponentialHamiltonian is studied.An action for dynamical systemswith power-lawHamiltonian is given,
and its differential equation of motion is derived, and its Noether’s theorem is given. From Noether’s theorem,
we can find the generalized energy integrals for the dynamical systems with non-standard Hamiltonians. It
is worth mentioning that when γ = 0, the power-law Hamiltonian reduces to the standard Hamiltonian.
Therefore, the standard Hamiltonian can be viewed as a special example of the power-law Hamiltonian.

However, there are much more kinds of non-standard Lagrangians or non-standard Hamiltonians such
as logarithm form. It is of great interest to explore their roles in the nonlinear dynamics, etc. and to apply
Noether’s theorem to non-standard Lagrangians, with which much more work is under progress. It is worth
pointing out that the exponential Hamiltonian and the power-law Hamiltonian in this paper can be considered
as an uncomplicated, simple form in a more generalized exponential Lagrangian or Hamiltonian α exp (L)
and power-law ones L + ηL1+γ [27], which we can make a further research on. However, we leave this for a
future work. In different dimensional spaces, we can set different parameters that guarantee the correct physical
dimensionalities for all terms, but we let the parameter equal to one for simplicity in this paper. Here, we have
revealed an intrinsic relationship between symmetry and conserved quantity. The method here is of universal
significance and can be further used to study Lie symmetry and Mei symmetry for dynamical systems with
non-standard Hamiltonians.
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