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Abstract In this paper, we present an analytical calculation of the rotational mobility functions of a particle
rotating on the centerline of an elastic cylindrical tubewhosemembrane exhibits resistance toward shearing and
bending.We find that the correction to the particle rotational mobility about the cylinder axis depends solely on
membrane shearing properties, while both shearing and bendingmanifest themselves for the rotationalmobility
about an axis perpendicular to the cylinder axis. In the quasi-steady limit of vanishing frequency, the particle
rotational mobility nearby a no-slip rigid cylinder is recovered only if the membrane possesses a non-vanishing
resistance toward shearing. We further show that for the asymmetric rotation along the cylinder radial axis
a coupling between shearing and bending exists. Our analytical predictions are compared and validated with
corresponding boundary integral simulations where a very good agreement is obtained.

1 Introduction

The assessment of effects of geometric confinement on the motion of microparticles in a viscous fluid is of
great importance, since such conditions are found in numerous biological or industrial processes [1,2]. In
such systems, the long-range hydrodynamic interactions, which determine macroscopic transport coefficients,
are significantly modified due to the flows reflected from the confining boundaries [3–6]. Many of the works
have been devoted to motion in tubular channels for their relevance to the transport of fluids in microfluidic
systems [7,8] or in human arteries [9]. Notably, an important property of these networks of channels is the
elasticity of their building material. Blood flow in capillaries relies on the collagen and elastin filaments within
their wall, which enable them to deform in response to changing pressure [10,11].

Theoretical modeling of slow viscous dynamics and hydrodynamics of particles in narrow channels has
been mostly focused on flows within hard cylindrical tubes. The monograph of Happel and Brenner [3]
encompasses most theoretical results available. Axial motion of a point particle has been studied extensively
due to relevance to rheology measurements [12–19], with later extensions to account for the finite size [20] or
non-spherical shape [21]. The motion perpendicular to the axis has been further studied by Hasimoto [22].

The first attempt to address the slow symmetric rotation of a sphere in an infinitely long hard cylinder dates
back to Haberman [23] and later to Brenner and Sonshine [24] who gave the torque acting on the rotating
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sphere as power series of the ratio of particle to cylinder diameter. The rotation of an axisymmetric body within
a circular cylinder of finite length has been investigated by Brenner [25] using the point couple approximation
technique. The frictional force [26] and torque [27] exerted on a slowly rotating eccentrically positioned sphere
within an infinitely long circular cylinder have been studied by Greenstein and coworkers. The latter further
investigated the slow rotation of two spheres placed about the cylinder axis in a direction perpendicular to
their line of centers [28]. Complementary theoretical works have been conducted by Hirschfeld et al. [29,30]
to determine the cylindrical wall effects on the translating-rotating particle of arbitrary shape. Additionally,
perturbative solutions for the rotation of eccentric spheres flowing in a cylindrical tube have been derived by
Tözeren [31–33], finding a good agreementwith the previous solutions.Modeling of hydrodynamic interactions
involving a torus or a circular orifice [34] has been further presented [35].

Despite an abundance of results available for hard confining boundaries, not many studies focus on the
role of elasticity on the motion of microparticles in confinement. Observations of flow through a deformable
elastic channel [36,37] demonstrate phenomena that can be related to the cardiovascular and respiratory
systems, including the generation of instabilities [38–40], propagation of small-amplitude waves [41,42], and
hysteretic shearing of arterial walls [43]. The flexibility in microfluidic devices has also been indicated as a
potential way of controlling flow [44,45]. More recent works have been devoted to the influence of elastic tube
deformation on flow behavior of a shear-thinning fluid [46,47] or the steady flow in thick-walled flexible elastic
tubes [48,49]. No theoretical studies, however, explore the role of an elastic confinement on the hydrodynamic
mobility of particles.

This motivates us to compute the flow field generated by a particle rotating inside a realistically modeled
elastic channel. We have modeled the membrane using the neo-Hookean model for shearing [50–53] and the
Helfrich model [54–56] for bending of its surface. An analogous approach has been successfully applied to the
motion of small particles in the presence of planar membranes [57–61], between two elastic sheets [62] and in
the vicinity of a spherical elastic capsule [63,64]. The theoretical results presented in some of these works have
been favorably compared with fully resolved boundary integral method (BIM) simulations and thus constitute
a practical approximate tool for the analysis of confined motion in elastically bounded systems. The present
study computes the frequency-dependent rotational mobility corrections due to the elastic confinement which
has not been previously analyzed.

The remainder of the paper is organized as follows. In Sect. 2, we derive analytical expressions for the flow
field induced by a point torque oriented either parallel or perpendicular to the cylinder axis, by expressing the
solutions of the Stokes equations in terms of Fourier–Bessel integrals. We then compute in Sect. 3 the leading-
order self and pair mobility functions for the rotation along or perpendicular to the cylinder axis. Moreover,
the membrane displacement field induced by the particle for a given actuation is presented. For a given set of
parameters, we compare in Sect. 4 our analytical predictions with fully resolved boundary integral simulations,
where a good agreement is obtained. Concluding remarks are offered in Sect. 5. The “Appendix” outlines the
main derivation steps for the determination of the linearized traction jumps stemming frommembrane shearing
and bending rigidities.

2 Theoretical description

We consider a small solid spherical particle of radius a, placed on the axis of a cylindrical elastic tube of
undisturbed radius R � a. The fluid inside and outside the tube is assumed to be incompressible of the
same shear viscosity η. An oscillatory torque acts on the particle inducing periodic rotational motion whose
amplitude is linearly related to the amplitude of the acting torque. Our final goal is to compute the rotational
mobility representing the coefficient of proportionality between torque and motion. We employ the cylindrical
coordinate system (r, φ, z) where r is the radius, φ is the azimuthal angle, and z is the axial direction along
the cylinder axis with the origin located at the center of the particle (see Fig. 1 for an illustration of the system
setup). The flow fields inside and outside the cylindrical channel are labeled 1 and 2, respectively.

We proceed by computing the rotlet solutionwhich follows from the solution of the forced Stokes equations

η∇2v1 − ∇p1 + F(r) = 0, (1.1)

∇ · v1 = 0, (1.2)
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Fig. 1 Illustration of the system setup. A small spherical particle of radius a placed at the origin rotating nearby an elastic tube
of undisturbed radius R

inside the tube (for r < R) and

η∇2v2 − ∇p2 = 0, (2.1)

∇ · v2 = 0, (2.2)

outside (for r > R). Here F(r) represents an arbitrary time-dependent force density acting on the fluid. We
specifically consider a distribution that has only the asymmetric dipolar term

∮
S
r × F dS = L (3)

where the integral is taken over the surface S of the spherical particle. Since the particle is small, we shall
consider its point-like limit. Then the antisymmetric dipolar term in the force multipole expansion yields the
flow field induced by a rotlet of strength L. The flow field around a rotlet in an infinite fluid is given by [65]

v(r) = 1

8πη

L × r
r3

. (4)

Our aim is to find the corresponding solution in the space confined by an elastic cylindrical tube.
For realistic parameters, we have shown in the earlier work [59] that the term with a time derivative in the

unsteady Stokes equations leads to a negligible contribution to the total mobility corrections and thus is not
considered in the present work.

Equations (1) and (2) are subject to the regularity conditions

|v1| < ∞ for |r| = 0, (5)

v1 → 0 for z → ∞, (6)

v2 → 0 for |r| → ∞, (7)

together with the boundary conditions imposed at the undisplaced membrane r = R. This commonly used
simplification is justified since we are dealing with small deformations only. In other situations, when the finite
amplitude of deformation is important, it becomes necessary to apply the boundary conditions at the displaced
membrane, see for instance Refs. [66–70]. The velocity field across the membrane is continuous, leading to

[vr ] = 0, (8)

[vφ] = 0, (9)

[vz] = 0, (10)
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while the elastic membrane introduces a discontinuity in the fluid stress tensor,

[σφr ] = Δ f Sφ , (11)

[σzr ] = Δ f Sz , (12)

[σrr ] = Δ f Sr + Δ f Br , (13)

with the notation [w] := w(r = R+) − w(r = R−) referring to the jump of a given quantity w across the
membrane. The fluid stress tensor is expressed in cylindrical coordinates as [71]

σφr = η

(
vφ,r − vφ + vr,φ

r

)
,

σzr = η(vz,r + vr,z),

σrr = −p + 2ηvr,r .

The traction jumps can be decomposed into a contribution due to the in-plane shearing elasticity (superscript
S) and a contribution stemming from membrane bending rigidity (superscript B). Shearing is accounted for
using the neo-Hookeanmodel [50]. As derived in the “Appendix”, the linearized traction jumps due to shearing
elasticity are written as

Δ f Sφ = −κS

3

(
uφ,zz + 3uz,φz

R
+ 4(ur,φ + uφ,φφ)

R2

)
, (14.1)

Δ f Sz = −κS

3

(
4uz,zz + 2ur,z + 3uφ,zφ

R
+ uz,φφ

R2

)
, (14.2)

Δ f Sr = 2κS
3

(
2(ur + uφ,φ)

R2 + uz,z
R

)
(14.3)

where κS is the elastic shear modulus. The comma in indices denotes a partial spatial derivative.
Bending of the membrane is described following the Helfrich model [54,56] as

Δ f Br = κB

(
R3ur,zzzz + 2R(ur,zz + ur,zzφφ) + ur + 2ur,φφ + ur,φφφφ

R

)
(15)

where κB is the bendingmodulus.Moreover,Δ f Bφ = Δ f Bz = 0 since bending does not introduce a discontinuity
in the tangential traction jumps [56].

Similar as above, we apply the no-slip boundary condition at the undisplaced membrane surface [72],

∂u(φ, z)

∂t
= v(r, φ, z)|r=R, (16)

which in Fourier space is written as

u(φ, z) = v(r, φ, z)

iω

∣∣∣∣
r=R

. (17)

Having introduced the regularity and boundary conditions, we then solve the equations of fluid motion by
expanding them in the form of Fourier–Bessel integrals. For this aim, solutions will be searched for in the two
distinct regions, i.e., inside and outside the cylindrical membrane separately. We write the solution in terms
of integrals of harmonic functions with unknown coefficients, which we then determine from the boundary
conditions.

We begin by expressing the solution of Eq. (1) inside the cylinder as a sum of a point torque (point couple)
flow field and the flow field reflected from the membrane, as

v1 = vR + v∗,
p1 = pR + p∗



Slow rotation of a spherical particle inside an elastic tube 153

where vR and pR are the rotlet solutions in an unbounded medium and v∗ and p∗ are the solutions of the
homogenous Stokes equations

η∇2v∗ − ∇p∗ = 0, (18.1)

∇ · v∗ = 0, (18.2)

required to satisfy the regularity and boundary conditions. In the next section, we shall first consider the
axisymmetric rotational motion about the cylinder axis.

2.1 Axial rotlet

The solution for a point torque of strength L = Lzez , located at the origin and directed along the z direction
reads [65]

vRx = − Lz

8πη

y

d3
, vRy = Lz

8πη

x

d3
, vRz = 0,

and pR = 0. Here d := √
r2 + z2 is the distance from the rotlet position. Therefore, the velocity field is purely

directed along the azimuthal direction such that

vRr = 0, vRφ = Lz

8πη

r

d3
= − Lz

8πη

∂

∂r

1

d
. (19)

By making use of the integral relation [73,74]

1

d
= 2

π

∫ ∞

0
K0(qr) cos qz dq, (20)

wherein K0 is the zeroth-order modified Bessel function of the second kind [75], the integral representation
of the azimuthal fluid velocity field due to a point torque reads

vRφ = Lz

4π2η

∫ ∞

0
qK1(qr) cos qz dq. (21)

For symmetric rotation about the cylinder axis, the homogenous Stokes Eqs. (2) and (18) reduce to

v∗
φ,rr + v∗

φ,r

r
− v∗

φ

r2
+ v∗

φ,zz = 0, (22)

and analogously for vφ2. Using the method of separation of variables [76] and by making use of the regularity
equations stated byEqs. (5) through (7), the image solution and external fluid velocity can therefore be presented
in integral form as [24]

v∗
φ = Lz

4π2η

∫ ∞

0
A∗(q)I1(qr) cos qz dq, (23.1)

vφ2 = Lz

4π2η

∫ ∞

0
A2(q)K1(qr) cos qz dq. (23.2)

The azimuthal velocity component across the membrane is continuous in virtue of Eq. (9) leading to

K1A2 − I1A
∗ = sK1

R
(24)

where s := qR. The modified Bessel functions have the argument s which is dropped here for brevity. The
unknown functions A∗ and A2 are to be determined from the imposed traction jumps at the membrane.

The discontinuity of the azimuthal-normal component of the fluid stress jump stated by Eq. (11) leads to

(s I0 − I1)A
∗ +

((
1 − iαs2

2

)
K1 + sK0

)
A2 = s(sK0 + K1)

R
(25)
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where we have defined the shearing coefficient as

α := 2κS
3ηRω

, (26)

which quantifies the effect of shearing for a given actuation frequency ω.
Solving Eqs. (24) and (25) for the unknown coefficients A∗ and A2, we obtain

A∗ = 1

R

iαs2K 2
1

(2I0 − iαs I1)K1 + 2K0 I1
, (27)

A2 = 1

R

2s(I0K1 + I1K0)

(2K0 − iαsK1)I1 + 2I0K1
. (28)

Interestingly, the coefficients A∗ and A2 and thus the inner and outer flow fields depend solely on shear and
do not depend on bending. In particular, for α = 0, the image solution Eq. (23.1) vanishes, and the solution
outside the cylinder (23.2) is identical to the rotlet solution given by Eq. (21).

In the limit α → ∞ corresponding to the quasi-steady limit of vanishing actuation frequency, or equiv-
alently to an infinite membrane shearing modulus, we recover the result obtained earlier by Brenner [25],
namely

lim
α→∞ A∗ = − sK1

RI1
,

and A2 = 0 for which the outer fluid is stagnant. In the following, the solution for a radial rotlet will be derived.

2.2 Radial rotlet

Without loss of generality, we shall assume that the rotlet is exerted along the x direction. The induced velocity
field reads [65]

vRx = 0, vRy = − Lx

8πη

z

d3
, vRz = Lx

8πη

y

d3

and pR = 0. Transforming to cylindrical coordinates, we obtain

vRr = − Lx

8πη

z sin φ

d3
, vRφ = − Lx

8πη

z cosφ

d3
, vRz = Lx

8πη

r sin φ

d3
.

After making use of Eq. (20) together with [73,74]

z

d
= 2

π
r
∫ ∞

0
K1(qr) sin qz dq, (29)

and by noting that
z

d3
= −1

r

∂

∂r

z

d
,

r

d3
= − ∂

∂r

1

d
, (30)

the rotlet solution can therefore be expressed in an integral form as

vRr = − Lx

4π2η
sin φ

∫ ∞

0
qK0(qr) sin qz dq, (31.1)

vRφ = − Lx

4π2η
cosφ

∫ ∞

0
qK0(qr) sin qz dq, (31.2)

vRz = Lx

4π2η
sin φ

∫ ∞

0
qK1(qr) cos qz dq. (31.3)
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The reflected flow can be represented by using the fact that the homogenous Stokes Eqs. (18) have a general
solution expressed in terms of three harmonic functions Φ, Ψ , and Γ as [3, p. 77]

v∗
r = Ψ,r + Γ,φ

r
+ r Φ,rr , (32.1)

v∗
φ = Ψ,φ

r
− Γ,r − Φ,φ

r
+ Φ,φr , (32.2)

v∗
z = Ψ,z + r Φ,r z + Φ,z, (32.3)

p∗ = −2η Φ,zz . (32.4)

The functions Ψ , Φ, and Γ are solutions to the Laplace equation which can be written in an integral form as

Φ = Lx

4π2η
sin φ

∫ ∞

0
ϕ(q)g(qr) sin qz dq, (33.1)

Ψ = Lx

4π2η
sin φ

∫ ∞

0
ψ(q)g(qr) sin qz dq, (33.2)

Γ = Lx

4π2η
cosφ

∫ ∞

0
γ (q)g(qr) sin qz dq (33.3)

where ϕ, ψ , and γ are wavenumber-dependent unknown functions to be determined from the underlying
boundary conditions. Moreover, g is a solution of the first order modified Bessel equation [75]. Since the
solution needs to be regular at the origin owing to Eq. (5), we take g ≡ I1 for the image solution, directly
leading to

v∗
r = Lx

4π2η

sin φ

r

∫ ∞

0

( (
(2 + q2r2)I1(qr) − qr I0(qr)

)
ϕ∗(q) + (qr I0(qr) − I1(qr)) ψ∗(q)

− I1(qr) γ ∗(q)

)
sin qz dq, (34.1)

v∗
φ = Lx

4π2η

cosφ

r

∫ ∞

0

(
(qr I0(qr) − 2I1(qr)) ϕ∗(q) + I1(qr)ψ

∗(q)

+ (I1(qr) − qr I0(qr)) γ ∗(q)

)
sin qz dq, (34.2)

v∗
z = Lx

4π2η
sin φ

∫ ∞

0
q

(
qr I0(qr)ϕ

∗(q) + I1(qr)ψ
∗(q)

)
cos qz dq, (34.3)

p∗ = Lx

2π2 sin φ

∫ ∞

0
q2 I1(qr)ϕ

∗(q) sin qz dq. (34.4)

Since the solution has to decay at infinity in virtue of Eq. (7), we thus take g ≡ K1 for the fluid outside, leading
to

vr 2 = Lx

4π2η

sin φ

r

∫ ∞

0

( (
(2 + q2r2)K1(qr) + qrK0(qr)

)
ϕ2(q) − (qrK0(qr) + K1(qr)) ψ∗(q)

− K1(qr) γ ∗(q)

)
sin qz dq, (35.1)

vφ2 = Lx

4π2η

cosφ

r

∫ ∞

0

(
− (qrK0(qr) + 2K1(qr)) ϕ2(q) + K1(qr)ψ

∗(q)

+ (K1(qr) + qrK0(qr)) γ ∗(q)

)
sin qz dq, (35.2)

vz2 = Lx sin φ

4π2η

∫ ∞

0
q

(−qrK0(qr)ϕ2(q) + K1(qr)ψ
∗(q)

)
cos qz dq, (35.3)

p2 = Lx sin φ

2π2

∫ ∞

0
q2K1(qr)ϕ2(q) sin qz dq. (35.4)

The continuity of the fluid velocity field across the membrane as stated by Eqs. (8) through (10) leads to



156 A. Daddi-Moussa-Ider et al.

(
s I0−(2 + s2)I1

)
ϕ∗ + (I1−s I0)ψ

∗ + I1γ
∗ − (K1+sK0)ψ2 + (

sK0 + (2 + s2)K1
)
ϕ2 − K1γ2 = −sK0,

(36)
(2I1 − s I0)ϕ∗ − I1ψ∗ + (s I0 − I1)γ ∗ − (sK0 + 2K1)ϕ2 + K1ψ2 + (K1 + sK0) γ2 = −sK0, (37)

−s2 I0ϕ∗ − s I1ψ∗ − s2K0ϕ2 + sK1ψ2 = sK1. (38)

The unknown functions ϕ2, ψ2, and γ2 associated with the external flow field can readily be expressed in
terms of ϕ∗, ψ∗, and γ ∗ by solving Eqs. (36) through (38) to obtain

ϕ2 = Sϕ∗ + (K1 + sK0)Gψ∗ − K1Gγ ∗

D
, (39)

ψ2 = s
(
(2 + s2)K0 + sK1

)
Gϕ∗ + Sψ∗ − sK0Gγ ∗

D
+ 1, (40)

γ2 = 2sK0Gϕ∗ + 2K1Gψ∗

D
+

(
S − G

(
sK0 + (2 + s2)K1

))
γ ∗

D
− 1 (41)

where we have defined

S = −sK0K1
(
s I0 + (2 + s2)I1

) − s2
(
s I0K

2
0 + I1K

2
1

)
,

G = −s (I0K1 + I1K0) ,

D = s
(
s2K 3

0 + sK 2
0K1 − sK 3

1 − (2 + s2)K0K
2
1

)
.

The expressions of ϕ∗, ψ∗, and γ ∗ may be determined given the membrane constitutive model. In the
following, explicit analytical expressions will be derived by considering independently an idealized membrane
with pure shearing or pure bending.

2.2.1 Pure shearing

As a first model, we consider an idealized elastic membrane with pure shearing resistance, such as an artificial
capsule [77,78]. The traction jump along the azimuthal direction given by Eq. (11) depends only on the
membrane shearing resistance. We obtain(

(4 + s2)I1 − 2s I0
)
ϕ∗ + (s I0 − 2I1)ψ

∗ + (
s I0 − (2 + s2)I1

)
γ ∗ + ( (

iα(8 + 3s2) − (4 + s2)
)
K1

+ 2s
(
iα(2 + s2) − 1

)
K0

)
ϕ2 + 1

2

((
4 + 2s2 − iα

(
8 + s2

))
K1 + s

(
2 − iα

(
4 + s2

))
K0

)
γ2

+ (
2

(
1 − iα(2 + s2)

)
K1 + s(1 − 2iα)K0

)
ψ2 = −s2K1.

(42)

The traction jump along the axial direction stated by Eq. (12) is also independent of bending leading to

s2(I0 + s I1)ϕ
∗ + s(s I0 − I1)ψ

∗ + s
(
s
(
1 + iα(3 + 2s2)

)
K0 + (

iα(5 + s2) − s2
)
K1

)
ϕ2

+ s
((
1 − iα(3 + 2s2)

)
K1 + s(1 − iα)K0

)
ψ2 − iαs

2
(3sK0 + 5K1) γ2 = −s(sK0 + K1).

(43)

By considering only the shearing contribution in the normal traction jump in Eq. (13), we get

2s2 I1ϕ
∗ + (

iαs(4 + s2)K0 + 2
(
iα(4 + s2) − s2

)
K1

)
ϕ2 − iα

(
2sK0 + (4 + s2)K1

)
ψ2

−2iα(sK0 + 2K1)γ2 = 0. (44)

Equations (39) through (44) form a closed system of equations for the unknown functions. Due to their
complexity, analytical expressions are not listed here. In particular, in the limit α → ∞ we obtain

lim
α→∞ ϕ∗ = (I0K1 + I1K0)(2I1 − s I0)

s(s I0 − I1)(I 20 − I 21 ) − 2I0 I 21
, (45)

lim
α→∞ ψ∗ = s I 20 (sK0 − K1) + I0 I1(s2K1 − 2sK0 + 2K1) − s I 21 K1

s(s I0 − I1)(I 20 − I 21 ) − 2I0 I 21
, (46)

lim
α→∞ γ ∗ = (s2K0 + sK1 + 4K0)I 21 + 2I0 I1K1 − s I 20 (sK0 + K1)

s(s I0 − I1)(I 20 − I 21 ) − 2I0 I 21
(47)

where the functions ϕ2, ψ2, and γ2 vanish in this limit.
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2.2.2 Pure bending

Another membrane model involves only a bending resistance, as commonly considered for fluid vesicles [79,
80]. Neglecting the shearing contribution in the traction jump along the φ direction, Eq. (11) reads

(
(4 + s2)I1 − 2s I0

)
ϕ∗ + (s I0 − 2I1)ψ

∗ + (
s I0 − (2 + s2)I1

)
γ ∗ − (

(4 + s2)K1 + 2sK0
)
ϕ2

+ (2K1 + sK0) ψ2 + ((
2 + s2

)
K1 + sK0

)
γ2 = −s2K1.

(48)

The traction jump across the z direction in the absence of shearing is continuous leading to

s(I0 + s I1)ϕ
∗ + (s I0 − I1)ψ

∗ + s (K0 − sK1) ϕ2 + (K1 + sK0) ψ2 = −(sK0 + K1) (49)

while the normal traction jump is discontinuous leading to

2I1ϕ
∗ + (

iα3
Bs

2 (
sK0 + (2 + s2)K1

) − 2K1
)
ϕ2 − iα3

Bs
2(sK0 + K1)ψ2 − iα3

Bs
2K1γ2 = 0 (50)

where we have defined the bending coefficient αB as

αB := 1

R

(
κB

ηω

)1/3

, (51)

quantifying the effect of bending.
By plugging the expressions of ϕ2, ψ2, and γ2 as given by Eqs. (39) through (41) into Eqs. (48) through

(50), expressions for ϕ∗,ψ∗, and γ ∗ can be obtained. In particular, by taking the limit αB → ∞ the coefficients
read

lim
αB→∞ ϕ∗ = −sK0(sK0 + K1)

sK0
(
2s I0 − (3 + s2)I1

) + (3 + s2)(s I0 − 2I1)K1
,

lim
αB→∞ ψ∗ = sK0

(
sK0 + (2 + s2)K1

)
sK0

(
2s I0 − (3 + s2)I1

) + (3 + s2)(s I0 − 2I1)K1
,

lim
αB→∞ γ ∗ = 2sK0K1

sK0
(
2s I0 − (3 + s2)I1

) + (3 + s2)(s I0 − 2I1)K1
,

which are in contrast to the solution for a hard cylinder with stick boundary conditions given by Eqs. (45)
through (47). This difference is explained by the fact that bending following the Helfrich model does not lead
to a discontinuity in the tangential traction jumps [56].Moreover, the normal traction jump as stated by Eq. (15)
depends uniquely on the radial (normal) displacement and does not involve the tangential displacements uφ

and uz . As a result, even by taking an infinite membrane bendingmodulus, the tangential displacements are still
completely free. This behavior therefore cannot represent the rigid cylinder limit wheremembrane deformation
in all directions must be restricted. Such behavior has previously been observed near spherical membranes as
well [63,64].

2.2.3 Shearing and bending

For a membrane endowed simultaneously with shearing and bending rigidities, a similar resolution procedure
can be employed. Explicit analytical expressions can be obtained via computer algebra systems, but they are
rather complicated and are therefore not listed here. We further mention that a coupling between shearing
and bending exists, meaning that the solutions derived above for pure shearing and bending cannot be added
up linearly. This coupling behavior has previously been observed for two parallel planar [62] or spherical
membranes [63,64], in contrast to the single membrane case where adding up linearly the shearing- and
bending-related solutions holds [59,61].

In order to clarify the mentioned coupling between shear and bending, consider two different idealized
membranes, onewith pure bending resistance (α = 0) and another onewith pure shear resistance (αB = 0). For
a membrane endowed simultaneously with both shear and bending rigidities, we have shown in Eqs. (39)–(41)
that the unknown functions outside the tube X2 are related to the functions inside X∗ in the following way:

X2 = AX∗ + b (52)
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where X2 = (ϕ2, ψ2, γ2)
T, X∗ = (ϕ∗, ψ∗, γ ∗)T, A is a 3 × 3 known matrix, and b = (0, 1, −1)T.

We now denote by X2S, X2B the solutions outside the tube for a membrane with pure shear and pure
bending, respectively, and by X∗

S, X
∗
B the corresponding image system solutions. Accordingly,

X2S = AX∗
S + b, X2B = AX∗

B + b, (53)

leading after taking the sum member by member to

X̂2 = AX̂∗ + 2b (54)

where X̂2 = X2S + X2B and X̂∗ = X∗
S + X∗

B are the superposition solutions. Clearly, this relation is different
from the original Eq. (52) since b �= 0, and therefore, the true solutions X2 and X∗ cannot both be identical to
the superposed functions X̂2 and X̂∗. As a consequence, they cannot satisfy the correct boundary conditions
showing that shear and bending are coupled and cannot be added up linearly.

3 Particle rotational mobility and membrane deformation

The rotlet solution obtained in the previous section serves as a basis for the determination of the particle
rotational mobilities along and perpendicular to the cylinder axis. We restrict our present consideration to the
point particle approximation, and thus, the particle size is much smaller than the cylinder radius. We shall
show that this approximation, despite its simplicity, can lead to a surprisingly good agreement with boundary
integral simulations of truly extended particles.

3.1 Axial rotational mobility

Beginning with the rotational motion symmetrically around the cylinder axis, the leading-order correction to
the rotational mobility of a point particle is

ΔμS‖ = L−1
z lim

r→0
Ω∗

z (55)

with

Ω∗
z = 1

2

(
v∗
φ,r + v∗

φ

r

)

being the z component of the correction to the fluid angular velocityΩ∗ := 1
2∇×v∗. Making use of Eq. (23.1),

we obtain

ΔμS‖ = 1

8π2η

∫ ∞

0
q A∗ dq.

Scaling by the bulk rotational mobility μrr
0 = 1/(8πηa3), the scaled frequency-dependent correction to the

rotational mobility takes the form

ΔμS‖
μrr
0

= 1

π

( a

R

)3 ∫ ∞

0

iαs3K 2
1

(2I0 − iαs I1)K1 + 2K0 I1
ds. (56)

Notably, the correction at lowest order follows a cubic dependence in the ratio of particle to cylinder radius.
Particularly, in the hard cylinder limit we get

lim
α→∞

ΔμS‖
μrr
0

= − 1

π

( a

R

)3 ∫ ∞

0

s2K1

I1
ds ≈ −0.79682

( a

R

)3
(57)

in agreement with the result know in the literature [24,81–83]. We further emphasize that in the absence of
shearing the correction to the particle rotational mobility vanishes.

We now turn our attention to hydrodynamic interactions between two spherical particles of equal radius [84,
85] positioned on the centerline of an elastic cylinder. For the rest of our discussion, we shall denote by γ the
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particle located at z = 0 and by λ the particle at z = h. The particle rotational pair mobility function about
the line connecting the two centers is computed at leading order as

μP‖ = L−1
z lim

r→rλ

Ω1z . (58)

Using Eqs. (19) and (23.1), we get

μP‖ = 1

8πηh3
+ 1

8π2η

∫ ∞

0
q A∗ cos (σ s) dq

wherein σ := h/R. The first term in the equation above is the leading-order rotational pair mobility for two
isolated spheres, i.e., in an unbounded medium [86]. Scaling by the bulk rotational mobility, we obtain

μP‖
μrr
0

=
(a
h

)3 + 1

π

( a

R

)3 ∫ ∞

0

iαs3K 2
1 cos (σ s)

(2I0 − iαs I1)K1 + 2K0 I1
ds

which is dependent on membrane shearing properties only. The hard cylinder limit is recovered by taking
α → ∞ to obtain

lim
α→∞

μP‖
μrr
0

=
(a
h

)3 − 1

π

( a

R

)3 ∫ ∞

0

s2K1

I1
cos (σ s) ds (59)

which is positively defined for all values of σ . Therefore, the two particles have always the same sense of
rotation around the cylinder axis, in the same way as in an unbounded flow.

3.2 Radial rotational mobility

We compute the particle self mobility correction for the asymmetric rotation around an axis perpendicular to
the cylinder axis which for a point particle situated on the cylinder axis is

ΔμS⊥ = L−1
r lim

r→0
Ω∗

r = L−1
φ lim

r→0
Ω∗

φ (60.1)

where Lr = Lx cosφ and Lφ = −Lx sin φ, and

Ω∗
r = 1

2

(
v∗
z,φ

r
− v∗

φ,z

)
, Ω∗

φ = 1

2
(v∗

r,z − v∗
z,r ) (60.2)

are the corrections to the radial and azimuthal fluid angular velocity, respectively. Bymaking use of Eqs. (34.2)
and (34.3), we get

ΔμS⊥
μrr
0

= 1

2π

( a

R

)3 ∫ ∞

0

(
γ ∗ + 2ϕ∗) s2 ds.

Considering a membrane with both shearing and bending and by taking the vanishing frequency limit, we
obtain

lim
α→∞

ΔμS⊥
μrr
0

= − 1

2π

( a

R

)3 ∫ ∞

0

w

W
ds ≈ −0.73555

( a

R

)3
, (61)

in agreement with the literature [24,81]. Moreover,

w = s2
(
2I0 I1(sK0 − 3K1) + s I 20 (sK0 + 3K1) − I 21

(
(s2 + 8)K0 + sK1

) )
, (62.1)

W = s I 31 − (s2 + 2)I0 I
2
1 − s I 20 I1 + s2 I 30 . (62.2)

The same limit is obtained when considering a membrane with pure shearing. Another limit is recovered if the
membrane possesses only a resistance toward bending such that

lim
α→∞

ΔμS⊥,B

μrr
0

= − 1

π

( a

R

)3 ∫ ∞

0

wB

WB
ds ≈ −0.24688

( a

R

)3
(63)
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where we have defined

wB = s4K 2
0 ,

WB = s I0
(
(3 + s2)K1 + 2sK0

) − (3 + s2)(sK0 + 2K1)I1.

Next, we turn our attention to the rotational pair mobility perpendicular to the line of centers. At leading
order, we have

μP⊥ = L−1
r lim

r→rλ

Ω1r = L−1
φ lim

r→rλ

Ω1φ. (64)

In a scaled form, we obtain

μP⊥
μrr
0

= −1

2

(a
h

)3 + 1

2π

( a

R

)3 ∫ ∞

0

(
γ ∗ + 2ϕ∗) s2 cos (σ s) ds (65)

which in the vanishing frequency limit reduces to

lim
α→∞

μP⊥
μrr
0

= −1

2

(a
h

)3 − 1

2π

( a

R

)3 ∫ ∞

0

w

W
cos (σ s) ds (66)

with w and W given above by Eq. (3.2). It can be shown that upon integration the second term in the latter
equation is negatively valued for all values of σ . Therefore, the two particles undergo rotation in opposite
directions for all values of σ , i.e., in the same way as in a bulk fluid.

3.3 Startup rotational motion

We now compute the mobility coefficients for a particle starting from rest and then rotating under a constant
external torque (e.g., a magnetic or optical torque) exerted in the direction either parallel or perpendicular to
the cylinder axis. The steady torque is mathematically modeled by a Heaviside step function L(t) = A θ(t)
whose Fourier transform in the frequency domain reads [87]

L(ω) =
(

πδ(ω) − i

ω

)
A. (67)

The components of the time-dependent angular velocity can readily be obtained upon inverse Fourier trans-
formation to obtain

ωk(t)

μrr
0 Ak

= 1 + ΔμS
kk(0)

2
+ 1

2iπ

∫ +∞

−∞
ΔμS

kk(ω)

ω
eiωt dω, k ∈ {r, φ, z}. (68)

We note that the third term in Eq. (68) is a real quantity which takes values between −ΔμS
kk(0)/2 when

t → 0 and +ΔμS
kk(0)/2 as t → ∞, corresponding to the bulk and hard-wall behaviors, respectively. As the

frequency-dependent mobilities are expressed as integrals over the scaled wavenumber s, the computation of
the time-dependent angular velocities requires a double-integration procedure. For this aim, we use the Cuba
Divonne algorithm [88,89] which is found to be suitable for the numerical computation of the present double
integrals.

3.4 Membrane deformation

Finally, our results can be employed to compute the membrane deformation resulting from an arbitrary time-
dependent point torque acting parallel or perpendicular to the cylinder axis. The membrane displacement field
can readily be computed from the fluid velocity at r = R via the non-slip relation stated by Eq. (17). We define
the membrane frequency-dependent reaction tensor in the same way as previously defined for a point force
as [62,90]

ui (z, φ, ω) = Qi j (z, φ, ω)L j (ω) , (69)



Slow rotation of a spherical particle inside an elastic tube 161

relating between themembrane displacement field u and the torque L acting on the nearby particle. Considering
a harmonic-type driving torque Li (t) = Aieiω0t , the membrane deformation in the time domain is calculated
as

ui (z, φ, t) = Qi j (z, φ, ω0)A je
iω0t . (70)

The physical displacement is then obtained by taking the real part of the latter equation. From Eqs. (23.2) and
(28), we obtain

Qφz = �

∫ ∞

0

2sK1(I0K1 + I1K0)

(2K0 − iαsK1)I1 + 2I0K1
cos

( sz
R

)
ds

wherein � := 1/(4iπ2ηωR2), giving access to the membrane azimuthal deformation when an axial torque is
exerted on the particle. We further have Qrz = Qzz = 0 due to symmetry.

Next, considering a torque acing along an axis perpendicular to the cylinder axis, we obtain

Qrφ = −�

∫ ∞

0

( (
(2 + s2)K1 + sK0

)
ϕ2 − (sK0 + K1) ψ∗ − K1 γ ∗

)
sin

( sz
R

)
ds,

Qφr = �

∫ ∞

0

(
− (sK0 + 2K1) ϕ2 + K1ψ

∗ + (K1 + sK0) γ ∗
)
sin

( sz
R

)
ds,

Qzφ = −�

∫ ∞

0
s
(−sK0ϕ2 + K1ψ

∗) cos ( sz
R

)
ds,

and Qrr = Qφφ = Qzr = 0.

4 Comparison with numerical simulations

In order to assess the validity and appropriateness of the point particle approximation employed throughout
this work, we compare our analytical predictions with computer simulations performed using a completed
double-layer boundary integral equation method [91–95]. The method is known to be ideally suited for the
simulation of fluid flows in the Stokes regime [96] where both solid objects and deformed boundaries are
present. Technical details regarding the method and its numerical implementation have been reported by some
of us elsewhere, see, e.g., Refs. [62,97].

In the simulations, the cylindrical membrane is of length 200a uniformly meshed with 6550 triangles.
The spherical particle is discretized by 320 triangular elements obtained by refining an icosahedron consecu-
tively [98,99].

In order to compute numerically the particle rotational self and pair mobility functions, a time-dependent
harmonic torque Lλi (t) = Aλi e

iω0t of amplitude Aλi and frequency ω0 is exerted along the direction i at
the particle labeled λ either parallel (z direction) or perpendicular (x direction) to the cylinder axis. After
a short transient evolution, both particles undergo oscillatory rotation with the same frequency ω0 but with
different phases, such that Ωλi = Bλi e

iω0t+δλ and Ωγ i = Bγ i e
iω0t+δγ . For an accurate determination of the

angular velocity amplitudes and phase shifts, we use a nonlinear least-squares solver based on the trust region
method [100]. The particle rotational self and pair mobilities are then computed as

μS
i j = Bλi

Aλ j
eiδλ, μP

i j = Bγ i

Aλ j
eiδγ . (71)

We then define the characteristic frequency associated with shearing as β := 1/α = 3ηωR/(2κS), and for
bending as βB := 1/α3

B = ηωR3/κB. Additionally, we define the reduced bendingmodulus EB := κB/(κSR2),
a parameter quantifying the relative effect between membrane shearing and bending.

As an example setup, we place a spherical particle on the centerline of an elastic cylinder of initial (unde-
formed) radius R = 4a. We mostly take a reduced bending modulus EB = 1/6 for which the characteristic
frequencies associated with shearing and bending have about the same order of magnitude, and thus, both
effects manifest themselves equally.

Figure 2a shows the parallel component of the correction to the rotational self mobility function upon
variation of the forcing frequency β. For a membrane with bending-only resistance (shown in red), both
the real and imaginary parts of the mobility correction vanish, in agreement with our theoretical prediction
stated by Eq. (56). Not surprisingly, the torque exerted on the particle along the cylinder axis induces only
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(a) (b)

Fig. 2 (Color online) Scaled frequency-dependent self (a) and pair (b) mobilities versus the scaled frequency β for the rotational
motion around the cylinder axis. The membrane is endowed with only-shearing (green), only-bending (red) or both shearing and
bending rigidities (black). Green lines/symbols are hardly visible as they overlap with the black lines/symbols. Here the particle
is set on the centerline of an elastic cylindrical membrane of radius R = 4a. For the pair mobility, the interparticle distance
is set h = R. The analytical predictions are shown as dashed and solid lines for the real and imaginary parts, respectively.
BIM simulations are presented as squares and circles for the real and imaginary parts, respectively. The horizontal dashed lines
represent the hard cylinder limits predicted by Eqs. (57) and (59) for the self and pair mobilities, respectively. For other parameters,
see main text

membrane torsion, and therefore the resulting stresses do not cause any out-of-plane deformation or bending.
For a membrane with a non-vanishing shearing resistance, however, we observe that the mobility correction
exhibits a monotonically increasing real part and the typical peak structure for the imaginary part. In the
vanishing frequency limit, the correction to rotational mobility is identical to that predicted nearby a hard
cylinder with stick boundary conditions, given by Eq. (57). Moreover, the bulk behavior is recovered for large
forcing frequencies where both the real and imaginary parts vanish.

In Fig. 2bwe present the rotational pair mobility function for two particles located on the cylinder centerline
a distance h = R apart. Similarly, a membrane with pure bending resistance does not introduce a correction
to the particle pair mobility. Yet, the latter is markedly affected by the membrane shearing resistance where
the correction approaches that near a hard cylinder in the low-frequency regime. For high forcing frequencies,
the pair mobility equals that of two equal-sized spheres in an unbounded medium, given at leading order
by (a/h)3. A good agreement is obtained between theoretical predictions and the numerical simulations we
performed using a completed double-layer boundary integral method.

We now carry out for the rotation about an axis perpendicular to the cylinder axis. In Fig. 3, we show
the perpendicular component of the particle rotational self and pair mobilities nearby a membrane endowed
with shearing-only (green), bending-only (red) or both shearing and bending rigidities (black). The mobility
functions show basically a similar evolution as in the previous case of axisymmetric rotation around the
cylinder axis. As explained before, we observe that the mobility near a no-slip cylinder is recovered only if
the membrane possesses a non-vanishing shearing resistance. The pair mobility in the high-frequency regime
can appropriately be estimated from the leading-order bulk pair mobility −(1/2)(a/h)3.

In order to probe the effect of the aforementioned coupling between shear and bending, we show in Fig. 4
the particle self mobility function versus β for the rotational motion perpendicular to the cylinder axis upon
variation of the reduced bending modulus EB while keeping R = 4a. We observe that as EB increases, a
second peak of lower amplitude emerges for higher forcing frequencies in the imaginary part. Additionally, a
dispersion step in the real part occurs that bridges between the hard cylinder limit Eq. (61) and the bending
limit predicted by Eq. (63). In fact, the peak observed at β ∼ 1 is attributed to the membrane resistance
toward shear and can conveniently be estimated by a simple balance between fluid viscosity and membrane
elasticity as ω ∼ κS/(ηR). The high-frequency peak is, however, attributed to the membrane resistance toward
bending, and its position can properly be estimated by a balance between fluid viscosity and bending such
that ω ∼ κB/(ηR3) corresponding to βB ∼ 1. Since βB = 2β/(3EB), the second peak occurs at β ∼ EB.
Particularly, for EB = 1, the shearing- and bending-related peaks coincide for which both effects manifest
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(a) (b)

Fig. 3 (Color online) Scaled frequency-dependent self (a) and pair (b) mobilities versus the scaled frequency β for the rotational
motion around an axis perpendicular to the cylinder axis. The color code is the same as in Fig. 2

Fig. 4 (Color online) Scaled particle self mobility corrections versus β for various values of the reduced bending modulus EB
for the rotational motion around an axis perpendicular to the cylinder axis. Here we take R = 4a and C = 1

themselves equally. Analogous predictions can be made for the pair mobility where similar conclusions can
be drawn.

In Fig. 5, we show the time-dependent angular velocity of a particle initially at rest, rotating under the
action of a constant external torque. We scale the time by the characteristic timescale for shearing defined as
τ := β/ω = 3ηR/(2κS). At short timescales for which t � τ , the membrane introduces a small correction
to the particle mobility since it does not have enough time to react on these short timescales. As the time
increases, the membrane effect becomes more important and the mobility curves bend down substantially
to asymptotically approach the correction predicted nearby a hard cylinder. The steady rotational mobilities
undergo small corrections relative to the bulk values, making them more difficult to obtain precisely from the
simulations. This explains the small discrepancy between theory and simulations, notably for a membrane
with pure bending resistance.

The membrane displacement induced by the symmetric rotation of the particle around the cylinder axis
is shown in Fig. 6 where both analytical predictions (solid lines) and numerical simulations (symbols) are
presented. Here we use the same parameters as in Fig. 2 and four different actuation frequencies. Displacement
fields are plotted when the oscillating particle reaches its maximal angular position. We observe that the
membrane azimuthal deformation exhibits a bell-shaped behavior that peaks at the origin where deformation
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(a) (b)

Fig. 5 (Color online) Time-dependent angular velocity of a particle starting from rest for a axial and b radial rotational motion
under the action of a constant external torque. Here we use the same parameters as in Fig. 2 with a membrane with both shearing
and bending rigidities. Solid lines are the analytical predictions obtained from Eq. (68), whereas symbols are the boundary
integral simulations results. Black dashed lines are our theoretical predictions based on the point particle approximation. Here τ
is a characteristic timescale defined as τ := β/ω

Fig. 6 (Color online) Scaled azimuthal membrane displacements versus z/a at four forcing frequencies computed at quarter
oscillation period for tω0 = π/2. Solid lines are the analytical predictions, and symbols refer to boundary integral simulations

ismore pronounced. By comparing themembrane displacement field at various forcing frequencies, we observe
that as the forcing frequency gets larger, the membrane undergoes remarkably smaller deformation since the
membrane does not have sufficient time to respond to the fast rotating particle.

Analogous predictions for asymmetric deformation induced by the particle radial rotation are shown in
Fig. 7. Here deformations are shown in the plane of maximum deformation, i.e., φ = 0 for uφ , and φ = π/2
for ur and uz . The radial and azimuthal deformations have fundamentally the same evolution where both have
symmetry with respect to the origin at which the deformation vanishes. On the other hand, axial deformation
reaches its maximum value at the origin and decays far away as the ratio z/a gets larger. It can clearly be seen
that upon particle radial rotation the membrane undergoes primarily axial deformation with a maximum that
is about three times larger than that reached in the radial or azimuthal deformations.

For typical flow parameters, the torques exerted by optical tweezers on suspended nanoparticles are of
the order of 1 pN μm [101]. Assuming a cylinder radius of 10−6 m, a membrane shearing modulus of about
10−6 N/m and an actuation frequency β = 2, the membrane undergoes a maximal deformation of about 3 %
of its undeformed radius. Therefore, deformations upon particle rotational motion are small, and deviations
from cylindrical shape are negligible.
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(a) (b)

(c)

Fig. 7 (Color online) Scaled radial (a), axial (b), and azimuthal (c) membrane displacement field versus scaled distance along
the axis z/a for four forcing frequencies calculated at quarter period for ω0t = π/2 when the particle reaches its maximal radial
position. Here deformations are shown in the plane of maximum deformation. Solid lines are the theoretical predictions, and
symbols refer to the boundary integral simulation results

5 Conclusions

In this contribution, we have presented analytical calculations of the Stokes flow induced by a point torque
exerted parallel or perpendicular to the axis of an elastic circular tube. The membrane is modeled by a
combination of the neo-Hookean model for shearing and Helfrich model for bending. The solution of the
fluid flow is expressed in terms of Fourier–Bessel integrals with unknown coefficients which are determined
from the boundary conditions imposed at the membrane.

The result is the Green’s function for two orientations of the rotlet singularity. In the limit when shearing
and bending coefficients are large, corresponding to a stiff membrane, our results converge to the expressions
previously derived in the literature for a hard cylindrical no-slip tube.

Our results are directly applicable to the determination of the leading-order correction to the self and pair
mobility functions of particles rotating parallel or perpendicular to the cylinder axis. Notably, the correction
to self mobility follows a cubic dependence on the ratio of particle to cylinder radius. We also find that the
rotational mobilities along the axis depend solely on membrane shearing resistance and that bending does not
play any role. Both shearing and bending, however, manifest themselves for the rotational motion along an
axis perpendicular to the cylinder axis. More importantly, the steady particle mobility nearby a hard cylinder
with stick boundary conditions is recovered only if the membrane possesses a non-vanishing resistance toward
shearing. As an example, we have calculated the effects of startup motion, i.e., a particle initially at rest starting
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to rotate under a steady torque. The Green’s function can also be applied to the calculation of the resulting
membrane deformation. For realistic values of parameters, however, this turns out to be negligible.

Our analytical predictions are verified and supplemented by corresponding boundary integral simulations
where a good agreement is obtained.
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Appendix: Membrane mechanics

In this “Appendix,” the traction jump across a membrane endowed with shearing and bending rigidities will
be derived in the cylindrical coordinates system. We denote by a = Rer + zez the position vector of the points
located at the undeformed membrane. Here R is the membrane (undeformed) radius, and z is the axial distance
along the cylinder axis. Here r , φ, and z refer to the radial, azimuthal and vertical coordinates, respectively.
After deformation, the vector position reads

r = (R + ur )er + uφeφ + (z + uz)ez (72)

where u denotes the displacement vector field,which depends on the in-plane variablesφ and z. In the following,
we shall use capital Roman letters for the undeformed state and small Roman letters for the deformed. The
cylindrical membrane is defined by the covariant base vectors g1 := r ,φ and g2 := r ,z , which read

g1 = (ur,φ − uφ)er + (R + ur + uφ,φ)eφ + uz,φez, (73)

g2 = ur,zer + uφ,zeφ + (1 + uz,z)ez . (74)

The unit normal vector n is defined as

n = g1 × g2
|g1 × g2|

, (75)

which, at leading order in deformation reads

n = er + uφ − ur,φ
R

eφ − ur,zez . (76)

The covariant components of the first fundamental form (metric tensor) are defined by the scalar product
gi j = gi · g j . Upon linearization, we obtain

gi j =
(
R2 + 2R(ur + uφ,φ) uz,φ + Ruφ,z

uz,φ + Ruφ,z 1 + 2uz,z

)
. (77)

The contravariant tensor gi j is the inverse of the metric tensor [102], and at leading order reads

gi j =
(

1
R2 − 2 ur+uφ,φ

R3 − uz,φ+Ruφ,z

R2

− uz,φ+Ruφ,z

R2 1 − 2uz,z

)
. (78)

The covariant and contravariant tensors in the undeformed state Gi j and Gi j can immediately be obtained by
considering a vanishing displacement in Eqs. (77) and (78), respectively. In the following, the traction jump
equations across a cylindrical membrane endowed by an in-plane shearing resistance shall be derived.
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Shearing

The two transformation invariants are given by Green and Adkins as [103,104]

I1 = Gi j gi j − 2, (79.1)

I2 = detGi j det gi j − 1. (79.2)

The contravariant components of the stress tensor τ i j can readily be obtained from the membrane constitutive
relation such that [52]

τ i j = 2

JS

∂W

∂ I1
Gi j + 2JS

∂W

∂ I2
gi j , (80)

whereW (I1, I2) is the areal strain energy density and JS := √
1 + I2 is the Jacobian determinant, representing

the ratio between the deformed and undeformed local surface area. In the linear theory of elasticity, JS � 1+e,
where e := (ur + uφ,φ)/R + uz,z is the dilatation function. In the present work, we use the neo-Hookean
model to describe the elastic properties of the membrane, whose areal strain energy reads [105,106]

W (I1, I2) = κS

6

(
I1 − 1 + 1

1 + I2

)
. (81)

Plugging Eq. (81) into Eq. (80), the linearized in-plane stress tensor reads

τ i j = 2κS
3

( ur+uφ,φ

R3 + e
R2

1
2R

(
uφ,z + uz,φ

R

)
1
2R

(
uφ,z + uz,φ

R

)
uz,z + e

)
. (82)

The membrane elastic forces are balanced by the external forces via the equilibrium equations

∇iτ
i j + Δ f j = 0, (83.1)

τ i j bi j + Δ f n = 0 (83.2)

where Δ f = Δ f j g j + Δ f nn is the traction jump vector across the membrane. Here ∇i stands for the
covariant derivative [107], and bi j is the second fundamental form (curvature tensor) defined by the dot
product bi j = gi, j · n. At leading order we obtain

bi j =
(
ur,φφ − (R + ur + 2uφ,φ) ur,φz − uφ,z

ur,θ z − uφ,z ur,zz

)
. (84)

After some algebra, the traction jump equations across the membrane given by Eq. (6) read

κS

3

(
uφ,zz + 3uz,φz

R
+ 4(ur,φ + uφ,φφ)

R2

)
+ Δ fφ = 0, (85.1)

κS

3

(
4uz,zz + 2ur,z + 3uφ,zφ

R
+ uz,φφ

R2

)
+ Δ fz = 0, (85.2)

−2κS
3

(
2(ur + uφ,φ)

R2 + uz,z
R

)
+ Δ fr = 0. (85.3)

Continuing, the jump in the fluid stress tensor across the membrane reads

[σ jr ] = Δ f j , j ∈ {z, r}. (86)
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Therefore, from Eqs. (6), (86) and (17), it follows that

[vφ,r ] = iα

2

(
Rvφ,zz + 3vz,φz + 4(vr,φ + vφ,φφ)

R

)∣∣∣∣
r=R

, (87.1)

[vz,r ] = iα

2

(
4Rvz,zz + 2vr,z + 3vφ,zφ + vz,φφ

R

)∣∣∣∣
r=R

(87.2)

[
− p

η

]
= −iα

(
2(vr + vφ,φ)

R
+ vz,z

)∣∣∣∣
r=R

(87.3)

where α := 2κS/(3ηRω) is the shearing coefficient. Note that it follows from the incompressibility equation,

vr + vφ,φ

r
+ vr,r + vz,z = 0, (88)

that [vr,r ] = 0. In the following, we shall derive the traction jump equations across a membrane with pure
bending rigidity.

Bending

We use the Helfrich model, in which the traction jump equations across the membranes are given by [56,59]

Δ f = −2κB
(
2(H2 − K + H0H) + Δ‖

)
(H − H0) n (89)

where κB is the bending modulus, H and K are, respectively, the mean and Gaussian curvatures, given by

H = 1

2
bii , K = det b j

i , (90)

with b j
i being the mixed version of the curvature tensor related to the covariant representation of the curvature

tensor by b j
i = bikgk j . Continuing,Δ‖ is the Laplace–Beltrami operator, and H0 is the spontaneous curvature,

for which we take the initial undisturbed shape here. The linearized traction jump due to bending is therefore
given by

−κB

(
R3ur,zzzz + 2R(ur,zz + ur,zzφφ) + ur + 2ur,φφ + ur,φφφφ

R

)
+ Δ fr = 0 (91)

and Δ fφ = Δ fz = 0.
Note that bending does not introduce at leading order a jump in the tangential traction [56]. The traction

jump equations take the following final from:

[vφ,r ] = 0, (92.1)

[vz,r ] = 0, (92.2)[
− p

η

]
= −iα3

B

(
R3vr,zzzz + 2R(vr,zz + vr,zzφφ) + vr + 2vr,φφ + vr,φφφφ

R

)∣∣∣∣
r=R

(92.3)

where αB = (κB/(ηω))1/3/R is the bending coefficient.
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