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Abstract We study the heat conduction with a general form of a constitutive equation containing fractional
derivatives of real and complex order. Using the entropy inequality in a weak form, we derive sufficient
conditions on the coefficients of a constitutive equation that guarantee that the second law of thermodynamics
is satisfied. This equation, in special cases, reduces to known ones. Moreover, we present a solution of a
temperature distribution problem in a semi-infinite rod with the proposed constitutive equation.

Mathematics Subject Classification 26A33 · 74A20

1 Introduction

The aim of the paper is twofold. First, we generalize a heat conduction law, that is, a constitutive equation for
the heat flux vector, involving the complex order fractional Caputo-type derivative along the lines proposed in
[4], and then, by the use of the weak form of the second law of thermodynamics, called Clausius inequality,
we find a necessary condition for the coefficients of that constitutive equation. Note that the strong form of the
second law of thermodynamics, known as the Clausius–Duhem inequality (cf. [15]), could not be applied to the
proposed constitutive equation. Our method is based on a new form of the complex order fractional derivative
derived by the use of a method proposed in [14]. The second aim is to apply the proposed model to the heat
conduction in a rigid spatially one-dimensional body. The restrictions of the second law of thermodynamics
guarantee the solvability for the corresponding equations determining the heat flux vector and the temperature.

2 Preliminaries

First, we explain our generalization of the classical Fourier law for the heat flux vector given as

q (x, t) = −K1
∂T

∂x
, t ∈ [t0, ∞), x ∈ (0, L) (1)
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in order to achieve a better agreement with experiments. In this paper, for the sake of simplicity, we consider
a one-dimensional body; q is the heat flux vector, K1 is the thermal conductivity, and T is the absolute
temperature at x and time instant t. Also, t0 ∈ R is the initial time instant, and L ≤ ∞ is the length of the
body. Using the arguments of the kinetic theory of gases, Müller [25] stated that the modifications of (1) can
be classified as a differential type and a rate type:

q (x, t) = −K1
∂T (x, t)

∂x
+ K2

∂

∂t

∂T (x, t)

∂x
, (2.1)

q (x, t) + σ
∂

∂t
q (x, t) = −K1

∂T (x, t)

∂x
, t ∈ (t0, ∞), x ∈ (0, L), (2.2)

respectively1. The constant σ is called the relaxation time. We assume, because of (2.1) and the analysis that
follows, that

∂T (x, t)

∂x
,
∂2T (x, t)

∂x2
,
∂T (x, t)

∂t
,
∂2T (x, t)

∂t2
,
∂(∂T (x, t)/∂x)

∂t
,
∂(∂2T (x, t)/∂2x)

∂t

are real valued, continuous, and bounded with respect to x ∈ [0, L] for every t ≥ t0, that they are equal to
zero in (−∞, t0) and belong to L1

loc[t0, ∞), for every x ∈ (0, L) (If L = ∞, then (0, L) = (0,∞)). So, the
continuity and boundedness with respect to x and local integrability with respect to t hold for q and ∂q/∂t ,
as well. It could be shown (see [9, p. 96]) that (2.1) follows from the kinetic theory of gases when the kinetic
energy of a molecule consists of translational, rotational, and internal degrees of freedom.

Equation (2.2) is known as the Cattaneo equation [8]. It follows that

q (x, t) = − K1

σ

∫ t

t0
exp

(
− t − τ

σ

)
∂T (x, τ )

∂x
dτ, t > t0, x ∈ (0, L). (3)

Equation (3) expresses the heat flux vector in terms of the history of the temperature gradient (see [16,17,29]).
In general, one can assume instead of (3) the following relation for the heat flux vector (cf. [16], p. 43):

q (x, t) = −
∫ t

t0
Q (t − τ)

∂T (x, τ )

∂x
dτ, t > t0, x ∈ (0, L) (4)

where Q(t) is a positive, decreasing relaxation function that tends to zero as t → ∞.
The energy balance for a rigid body at rest, in a simplified version, reads

ρ
du

dt
= −∂q

∂x
, u = cT + u0 (5)

where ρ is the density of the body, u is the specific internal energy, c is the specific heat, and u0 does not
depend on T . The equations in (2.1) combined with (5) give (see [26]):

∂T (x, t)

∂t
= K1

ρc

∂2T (x, t)

∂x2
− K2

ρc

∂

∂t

∂2T (x, t)

∂x2
, (6.1)

σ

K1

∂2T (x, t)

∂t2
+ ∂T (x, t)

∂t
= K1

ρc

∂2T (x, t)

∂x2
, t > t0, x ∈ (0, L), (6.2)

respectively. Equation (6.2) is of hyperbolic type and has a finite speed of propagation of thermal disturbances.
Recall ([18]) that the Caputo fractional derivative of real order α ∈ (0, 1) is defined as

c
t0D

α
t q(x, t) = 1

Γ (1 − α)

∫ t

t0

1

(t − τ)α

∂q(x, τ )

∂τ
dτ =

(
τ−α

Γ (1 − α)
∗ ∂q(x, τ )

∂τ

)
(x, t), t > t0, x ∈ (0, L)

where ∗ denotes the convolution with respect to t ; in general, for f, g ∈ L1
loc(R) being equal zero in (−∞, t0),

( f ∗ g) (t) =
∫ t

t0
f (t − τ) g (τ ) dτ, t > t0.

1 The interesting question of replacing the partial derivative ∂q/∂t with the material time derivative Dq/Dt in (2.2) was
discussed in [27].
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It is a locally integrable function, as well.
The Cattaneo constitutive Eq. (2.2) can be considered as a special case of a constitutive equation with

distributed order fractional derivatives for the heat flux vector,
∫ 1

0
φq (γ ) c

t0D
γ
t q (t, x) dγ = −K1

∂T (x, t)

∂x
, t ≥ t0, x ∈ (0, L) (7)

where φq (γ ) is a constitutive function, or distribution, see [1]. In the special case when φq (γ ) = δ (γ ) ,where
δ is theDirac distribution, (7) becomes the classical Fourier constitutiveEq. (1). Ifφq (γ ) = δ (γ )+τδ (γ − 1) ,
Eq. (7) becomes the Cattaneo equation (cf. [26,31] for the properties of such equations).

Heat conduction equations involving real order fractional derivatives were studied in detail in [11,29]
with selection of concrete problems. A model presented in [2] is a generalization of the one treated in [11,
pp. 7280]. We refer to Section 2.1 of [29] for different possibilities of the use of the generalized telegraph
equation modeling the heat conduction. Note that a distributed order fractional heat conduction equation is
treated in [3].

Up to our knowledge, complex order fractional derivatives in Mechanics are used by Macris, see [20–
22]. In our recent paper [4], with a new form of the complex fractional derivative in a constitutive equation,
we derived restrictions following from the dissipation inequality and studied creep and stress relaxation for
viscoelasticity. In the cases when the Lagrangian density contains fractional derivatives of complex order, our
more recent papers [5,6] are related to waves and variational problems, respectively.

The physical interpretation of the parameters of the model will be examined by experiments. This part
of our work is in progress. In the case of viscoelasticity with complex order derivatives presented in [21] it
is stated that the complex order derivatives modulate the phase and amplitude of harmonic components of a
time-dependent function in a more complex way than the real order derivatives. In the model that we propose
here [see (12)], there are five constants characterizing it. Since we are using the complex order derivative in the
context of heat conduction problems, it is expected that the modulation of phase and amplitude in harmonic
components of the solution of the heat conduction equation will be also more complex than in the case of
real order derivatives. In any case, it is an interesting open problem to understand fully the physical meaning
of the parameters in the model proposed here. However, before attempting to interpret the constants in the
model, we derive in this paper the restrictions on them that follow from fundamental principles of Physics.
In order to obtain restrictions that follow from the Entropy inequality, we use here a new representation of
the complex order derivative. Then, as we mentioned, we apply these restrictions to an equation related to the
heat conduction in a rigid spatially one-dimensional body. Note that in our approach the fractional derivatives
of complex order must have real part different from zero. Complex derivatives of purely imaginary order
are studied in [19] with appropriate assumptions implying the existence of a fractional derivative of purely
imaginary order. Such assumptions are different from the ones used in this paper.

Concerning a constitutive equation of the form (4) itwas observed in [32] that the extension of the “memory”
involved in a problem implies amorewavelike solution of the heat conduction equation. In our case, the solution
depends on both real and imaginary part of the complex fractional derivatives of the heat flux vector appearing
in the constitutive equation. From the results of [4] we know that the complex part of the fractional derivative
brings a wavelike behavior. This makes the use of complex fractional derivatives useful and challenging, in
general.

3 Generalized heat conduction law

As it is postulated, a heat conduction equation, that is, an equation connecting q(x, t) and ∂T (x,t)
∂x , t > t0, x ∈

(0, L), must satisfy the restrictions that follow from the second law of thermodynamics.
Let r denote the heat supply per unit mass, and let η be the entropy density. Then, the local form of the

Clausius–Duhem inequality reads

ρ (x, t)
∂η (x, t)

∂t
+ ∂

∂x

[
q (x, t)

T (x, t)

]
− ρ (x, t) r (x, t)

T (x, t)
≥ 0, t > t0, x ∈ (0, L).

There exists aweaker formof the second lawof thermodynamics (see [15], p. 11), called theClausius inequality,
∫ t2

t1

[
− ∂

∂x

[
q (x, t)

T (x, t)

]
+ ρ (x, t) r (x, t)

T (x, t)

]
dt ≤ 0, (8)
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that involves cyclic processes between equilibrium states. Thus, (8) states that in any cyclic process (called
D-cyclic process in [33, p. 585]) between times t1 and t2, where t0 ≤ t1 < t2, which starts from equilibrium
at a material point x , the inequality (8) must hold.

Following [13, p. 25] and [33, p. 586], the energy Eq. (5) with r = 0 and the periodicity condition imply
that Eq. (8) can be written as ∫ t2

t1

q (x, t) ∂T (x,t)
∂x

T 2 (x, t)
dt ≤ 0, x ∈ (0, L). (9)

It was shown in [24] that (9) holds if and only if
∫ s2

s1
q (x, t)

∂T (x, t)

∂x
dt ≤ 0, x ∈ (0, L), (10)

for arbitrary t1 ≤ s1 < s2 ≤ t2.
Motivated by the results of [4,5], we propose in this paper a completely different constitutive equation for

the heat flux vector:2

q (x, t) + â c
t0D

α
t q (x, t) + 2b̂ c

t0 D̄
α,β
t q (x, t) = −K1

∂T (x, t)

∂x
, t > t0, x ∈ (0, L) . (11)

Here c
t0D

α
t , α ∈ (0, 1) is given by (7), and c

t0 D̄
α,β
t is a combination of complex order fractional derivatives

defined as

c
t0 D̄

α,β
t q(x, t) = 1

2

[
T

iβc
t0D

α+iβ
t q(x, t) + T

−iβc
t0D

α−iβ
t q(x, t)

]

or

c
t0 D̄

α,β
t q(x, t) = 1

2

[
T

iβ
(

t−α−iβ

Γ (1 − α − iβ)
∗ ∂q(x, t)

∂t

)
+ T

−iβ
(

t−α−1+iβ

Γ (1 − α + iβ)
∗ ∂q(x, t)

∂t

)]
(12)

where t > t0, 0 < α < 1, β > 0, i = √−1, and T is a constant having the dimension of time, and â, b̂ ≥ 0
are constants having dimension (time)1/α .Both constants â andT can be interpreted as relaxation times. Since
q is a real valued function of x and t , the derivative t0 D̄

α,β
t is also real valued. Equation (11) is a generalization

of the classical Fourier law (1) and Cattaneo conduction law (2.1). Physically, it shows a thermal inertia of
fractional type, i.e., thermal inertia with memory effects.

As our main result in this paper, we give the restrictions on coefficients in (11) which are a consequence
of (10).

Introducing the dimensionless quantities in a usual way (and (0, 1) instead of (0, L)), we obtain, instead
of (11),

q (x, t) + a c
t0D

α
t q (x, t) + 2b c

t0 D̄
α,β
t q (x, t) = −∂T (x, t)

∂x
, t > t0, x ∈ (0, 1) (13)

where c
t0 D̄

α,β
t q (x, t) (in the dimensionless form) is

c
t0 D̄

α,β
t q(x, t) = 1

2

[
c
t0D

α+iβ
t q(x, t) + c

t0D
α−iβ
t q(x, t)

]
, t > t0, x ∈ (0, 1). (14)

Equation (13) can be written in an equivalent form as

q (x, t) +
(

Φα,β (τ ) ∗ ∂q(x, τ )

∂τ

)
(x, t) = −∂T (x, t)

∂x
, t > t0, x ∈ (0, 1) (15)

with

Φα,β (τ ) = a
τ−α

Γ (1 − α)
+ b

{
τ−α−iβ

Γ (1 − α − iβ)
+ τ−α+iβ

Γ (1 − α + iβ)

}
, τ ≥ 0. (16)

2 We studied in [4,5] the stress strain relation for the viscoelastic body of the Kelvin–Voigt type σ (t, x) =
E

(
1 + â c

t0D
α
t ε (t, x) + 2 b̂ c

t0 D̄
α,β
t ε (t, x)

)
and derived restrictions on this constitutive equation which follow from the dis-

sipation inequality
∫ t1
0 σ (x, t) dε(x,t)

dt
dt ≥ 0.
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Now, the heat conduction Eq. (15) can be written as

q (x, t) +
∫ t

0

{[
a

(t − τ)−α

Γ (1 − α)
+ b

(
(t − τ)−α−iβ

Γ (1 − α − iβ)
+ (t − τ)−α+iβ

Γ (1 − α + iβ)

)]
∂q(x, τ )

∂τ
dτ

}

= −∂T (x, t)

∂x
, t > t0, x ∈ (0, 1). (17)

Remark 1 (i) We note that the second law of thermodynamics interpreted as (8) for (17) can be proved by a
method given in our book [1] and papers [4,5]. Here, we give another simpler proof which can be used in
different situations, as well.

(ii) Equation (17) is the generalized heat conduction law that we propose in this paper. As a motivation for
the generalization of (1), we quote a statement from [16, p. 44]: It would be a miracle if for some real
conductor the relaxation kernel could be rigorously represented by an exponential kernel with a single
time of relaxation, as it is required by Cattaneo’s model. Our generalization of (2.2) given by (17) follows
the idea of the quoted statement. It contains the Cattaneo equation as a special case α = 1, β = 0, b = 0.

4 New representation of the complex order fractional derivative

Recall that ∂q(x,t)
∂t ∈ L1 ([t0, t1]) t1 > t0, for each x ∈ (0, 1). First, we state a new representation for the

complex order fractional derivative given by (14).

Proposition 1 Let F ∈ L1 ([t0, t1]), t ∈ [t0, t1]. Then

c
t0 D̄

α,β
t F(t) = 1

2

[
c
t0D

α+iβ
t F(t) + c

t0D
α−iβ
t F(t)

]
, α ∈ (0, 1) , β ∈ R

can be represented as

c
t0 D̄

α,β
t F(t) = 1

π

∫ ∞

0
G (ξ)

(∫ t

t0
F (1) (τ ) exp (−(t − τ)/ξ) dτ

)
dξ (18)

where

G (ξ) = sin (πα) cosh (πβ) cos (β ln ξ) + cos (πα) sinh (πβ) sin (β ln ξ)

ξα+1 , ξ > 0.

Proof We start with the definition of the Gamma function of complex argument α + iβ,

Γ (α + iβ) =
∫ ∞

0
uα+iβ−1 exp (−u) du.

The integral converges for α > 0. Fix t > 0. By the substitution u = t/ξ , as in [14], one obtains

Γ (α + iβ) =
∫ ∞

0
tα+iβ

(
1

ξ

)α+iβ+1

exp (−t/ξ) dξ.

This implies, as in the real case [14],

1

tα+iβ
= 1

Γ (α + iβ)

∫ ∞

0

(
1

ξ

)α+iβ+1

exp (−t/ξ) dξ, t > 0,

so that

c
t0D

α+iβ
t F(t) = 1

Γ (1 − α − iβ)

∫ t

t0

F (1) (τ )

(t − τ)α+iβ
dτ

= 1

Γ (1 − α − iβ)

∫ t

t0
F (1) (τ )

(∫ ∞

0

1

Γ (α + iβ)

(
1

ξ

)α+iβ+1

exp (−(t − τ)/ξ) dξ

)
dτ

=
∫ ∞

0

1

g (ξ)

(∫ t

t0
F (1) (τ ) exp (−(t − τ)/ξ) dτ

)
dξ, t > t0.



1116 T. M. Atanackovic, S. Pilipovic

Since Γ (u) Γ (1 − u) = π/ sin (πu) , 	u < 1, with u = α + iβ and u = α − iβ, we obtain

g (ξ) = 1

Γ (1 − α − iβ) Γ (α + iβ) ξ (α+iβ+1)

= sin (πα) cosh (πβ) cos (β ln ξ) + cos (πα) sinh (πβ) sin (β ln ξ)

πξ(α+1)

+ i
cos (πα) sinh (πβ) cos (β ln ξ) − sin (πα) cosh (πβ) sin (β ln ξ)

πξ(α+1)
, ξ > 0. (19)

Similarly, for c
t0D

α−iβ
t F the same type of equation is obtained with the complex conjugate g instead of g.

Adding c
t0D

α+iβ
t F to c

t0D
α−iβ
t F we obtain (18) with G = 2 	g > 0.

Remark 2 If β = 0, then the definition of the Caputo derivative of real order α ∈ (0, 1) follows from (19):

c
t0D

α
t F(t) = 1

π

∫ ∞

0

sin (πα)

πξ(α+1)

(∫ t

t0
F (1) (τ ) exp (−(t − τ)/ξ) dτ

)
dξ, t > t0. (20)

It is presented in [14] in a slightly different form.

Remark 3 It could be easily shown that the right Caputo fractional derivative of order α ∈ (0, 1) defined by
c
t D

α
T F(t) = −1

Γ (1−α)

∫ T
t

F(τ )
(τ−t)α dτ , for a function F ∈ L1 ([t0, T ]) T ≥ t0, can be represented as

c
t D

α
T F(t) = − 1

π

∫ ∞

0

sin (πα)

πξ(α+1)

(∫ T

t
F (1) (τ ) exp (−(τ − t)/ξ) dτ

)
dξ.

For the right Caputo derivative of complex order, we obtain (t0 ≤ t ≤ T )

c
t0D

α+iβ
t F(t) = −1

Γ (1 − α − iβ)

∫ T

t

F (1) (τ )

(τ − t)α+iβ
dτ

= −
∫ ∞

0

1

g (ξ)

(∫ T

t
F (1) (τ ) exp (−(τ − t)/ξ) dτ

)
dξ,

α ∈ (0, 1) , β ∈ R

(function g is given by (19)).

5 Clausius inequality

We now state the main result related to the heat flux vector given by (17). We shall prove the consequences of
(10).

Theorem 1 The heat flux vector given by (17), or equivalently (13), satisfies (10) if

a > 2b cosh βπ

√
1 + (cot (απ) tanh (βπ))2, α ∈ (0, 1), β ∈ R. (21)

Proof For the sake of simplicity, we took in the previous section t0 = 0, t2 = d. Multiplying (13) with q and
integrating with respect to time, we obtain

∫ d

0
q2 (t) dt +

∫ d

0

(
a c

t0D
α
t q (x, t) + 2b c

t0 D̄
α,β
t q (x, t)

)
q (t) dt = −

∫ d

0
q (t)

∂T (x, t)

∂x
dt, x ∈ (0, 1).

A sufficient condition for (10) to hold, that is,
∫ d
0 q (x, t) ∂T (x,t)

∂x dt < 0, x ∈ (0, 1), is

∫ d

0

[
a c

t0D
α
t q (x, t) + 2b c

t0 D̄
α,β
t q (x, t)

]
q (t) dt ≥ 0. (22)
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Using (19) and (20), the inequality (22) becomes (x ∈ (0, 1))

∫ ∞

0

[
sin (πα)

πξ(α+1)
{a + 2b [cosh (πβ) cos (β ln ξ) + cot (πα) sinh (πβ) sin (β ln ξ)]}

×
∫ d

0
q (x, t)

(∫ t

0
q(1) (τ ) exp (−(t − τ)/ξ) dτ

)
dt

]
dξ ≥ 0. (23)

Let M (x, t, ξ) = ∫ t
0

∂
∂τ

q (x, τ ) exp (−(t − τ)/ξ) dτ x ∈ (0, 1), t > 0, ξ > 0. Then (for x ∈ (0, 1), t >
0, ξ > 0),

∂ M (x, t, ξ)

∂t
= ∂

∂t
q (x, t) − 1

ξ
M (x, t, ξ) ,

so that

∂q (t, x)

∂t
= ∂ M (x, t, ξ)

∂t
+ 1

ξ
M (x, t, ξ) , M (0, ξ) = 0.

Condition M (x, 0, ξ) = 0 is satisfied since ∂q(x,t)
∂t ∈ L1 ([0, d]) , x ∈ (0, 1) . Also,

q (x, t) = M (x, t, ξ) + 1

ξ

∫ t

0
M (x, τ, ξ) dτ, t ∈ [0, d],

and (23) becomes

∫ d

0

[
a c

t0D
α
t q (x, t) + 2b c

t0 D̄
α,β
t q (x, t)

]
q (x, t) dt

=
∫ ∞

0

1

πξ(α+1)
S (ξ)

{
1

2ξ
M2 (x, d, ξ) +

∫ d

0
M2 (x, t, ξ) dt

}
dξ (24)

where

S (ξ) = a sin (πα) + b [sin (πα) cosh (πβ) cos (β ln ξ) + cos (πα) sinh (πβ) sin (β ln ξ)] , ξ > 0.

The sign of the expression in (24) depends on the sign of S (ξ) , ξ ∈ [0,∞). Condition S (ξ) > 0 leads to

a > 2b cosh βπ

√
1 + (cot απ tanh βπ)2, α ∈ (0, 1), β ∈ R.

This proves the theorem.

Remark 4 In the case of a real order fractional derivative, we have b = 0 so that a > 0 guarantees that

q (x, t) + a c
t0D

α
t q (x, t) = −∂T (x, t)

∂x
, t > 0, α ∈ (0, 1) (25)

satisfies the Clausius inequality. Recently, in [23], the constitutive Eq. (25) was treated, and it was shown that
(in our notation) q given by (25) satisfies the second law of thermodynamics for sufficiently small a. To prove
this result, the authors of [23] used the strong form of the entropy inequality.
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6 Thermo-mechanical problem

We consider a rigid semi-infinite rod, that is L = ∞, as well as t0 = 0. Suppose that for t < 0 and x > 0 the
temperature in the rod is constant, i.e., T = θ∞. Moreover, suppose that for t ≥ 0 the end x = 0 is kept at the
constant temperature T = θ∞ + T0, T0 > 0. Thus, we have to solve

∂T (x, t)

∂t
= −∂q (x, t)

∂x
, (26.1)

q (x, t) + a t0D
α
t q (x, t) + 2b t0 D̄

γ
t q (x, t) = −∂T (x, t)

∂x
, t > 0, x > 0, (26.2)

T (0, t) = T0 t > 0, T (x, 0) = 0, t = 0, x > 0, lim
x→∞ T (x, t) = 0 (26.3)

where we used T for T − θ∞. A simplified problem (26.1) for a = b = 0 is the classical one treated in [12].
Applying the Laplace transform

L ( f ) (s) = f (s) =
∫ ∞

0
exp (−st) f (t) dt, s ∈ C

to (26.1,2) we obtain, for 	s > 0, (x > 0)

sT (x, s) = −∂q (x, s)

∂x
,

q (x, s)
[
1 + asα + b

(
sα+iβ + sα−iβ

)]
= −∂T (x, s)

∂x
,

so that
∂2T (x, s)

∂x2
= s

[
1 + asα + b

(
sα+iβ + sα−iβ

)]
T (x, s) . (27)

With T (x, t) , we can determine q (x, t) as

q (x, t) = L−1

⎛
⎝ − ∂T (x,s)

∂x

1 + asα + b
(
sα+iβ + sα−iβ

)
⎞
⎠ , t > 0, x > 0. (28)

From the boundary condition (26.3) we obtain T 0 = ∫ ∞
0 exp (−st) T0dt = T0

s . Solving (27) and using the
value T 0 and (26.3), we obtain, for 	s > 0, t > 0,

T̂ (x, s) = T0
s
exp

[
−xs1/2

{[
1 + asα + b

(
sα+iβ + sα−iβ

)]} 1
2
]

or

T̂ (x, s) = T0
s
exp

(
−xs1/2 − xs1/2

{[
1 + asα + b

(
sα+iβ + sα−iβ

)]1/2 − 1

})
.

This implies

T (x, t) = T0erfc

(
x

1

2
√

t

)
∗ G (x, t) , t > 0, x > 0 (29)

where we used the fact that L−1
(

T0
s exp

(−xs1/2
))

(x, t) = T0erfc
(

x 1
2
√

t

)
, where erfcz = 1 − erfz is the

complementary error function (see [12]) and where

G (x, t) = L−1
(
exp

(
−xs1/2

{[
1 + asα + b

(
sα+iβ + sα−iβ

)]1/2 − 1

}))
,

t > 0, x > 0.

To determine G, we need the following proposition.
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Proposition 2 Let

M (s) = s1/2
(
1 + asα + b

(
sα+iβ + sα−iβ

))1/2 − 1, 	s ≥ 0, |
s| > 0.

Then, M(0) = 0, and M does not have any zero if the condition (21) is satisfied.

Proof It is clear that s = 0 is the zero and the branch point of M. Consider
{[

1 + asα + b
(

sα+iβ + sα−iβ
)]1/2 − 1

}
= 0.

Then
asα + b

(
sα+iβ + sα−iβ

)
= sα

[
a + b

(
siβ + s−iβ

)]
= 0. (30)

Clearly, s = 0 is the zero and the branch point. Moreover, if other zeros exist, they are solutions of

a + b
(

siβ + s−iβ
)

= 0. (31)

Let us show that such zeros do not exist. The zeros of (30) are complex conjugate so we consider only the
upper part of the complex plane 
s > 0 in analyzing (31). Let s = r exp (iθ) , θ ∈ [0, π] . So, (31) leads to

a + 2b cosh θβ cosβ ln r = 0, 2b sinh θβ sin β ln r = 0. (32.1,2)

Condition (32.2) is satisfied for θ = 0 or β ln r = nπ, n = 1, 2, . . . In the first case θ = 0, from (32.1) one
obtains a − 2b = 0. This contradicts to (21). In the second case β ln r = nπ, n = 1, 2, . . . , (32.1) leads to
a − 2b cosh θβ = 0. However,

√
1 + (cot απ tanh βπ)2 > 1, so the condition (21) implies that

a > 2b cosh πβ.

This is a contradiction, again. So, there are no zeros of (31).

Next, we determine G. Let c0 > 0. Let t > 0, x > 0. The inversion reads

G (x, t) = L−1
(
exp

(
−xs1/2

{[
1 + asα + b

(
sα+iβ + sα−iβ

)]1/2 − 1

}))
(x, t)

= 1

2π i

∫ c0+i∞

c0−i∞
exp

(
st − xs1/2

{[{
1 + asα + b

(
sα+iβ + sα−iβ

)}]1/2 − 1

})
ds.

We use the contour shown in Fig. 1 to avoid the branch point at the origin. The branch cut runs along the
negative real axis from origin to infinity. Since

∣∣∣∣exp
(

−xs1/2
{[

1 + asα + b
(

sα+iβ + sα−iβ
)]1/2 − 1

})∣∣∣∣ < a/ |s|−1/2

we conclude (see Lemma 2.2 of [10])3 that the integrals over parts of the contour BC, C D, K P , and P A tend
to zero when R → ∞.

On the arc E Q, we have s = ε exp (iϕ) , ϕ ∈ (π, −π) . Therefore, taking the limit as ε → 0 we obtain

lim
ε→0

1

2π i

∫
E Q

exp

(
st − xs1/2

{[
1 + asα + b

(
sα+iβ + sα−iβ

)]1/2 − 1

})
ds

= lim
ε→0

1

2π i

∫ −π

π

(
exp ε exp (iϕ) t − xε1/2 exp (iϕ/2)

×
{[

1 + εα exp (iαϕ)
{

a + b
(
(ε exp (iϕ)iβ + (ε exp (iϕ)−iβ

)}]1/2 − 1

}
iε exp (iϕ) dϕ

)
= 0.

3 Lemma 2.2 of [10] reads: Let R0, C , and ν be positive constants. If | f (s)| < C R−v , s = Reiθ , −π ≤ θ ≤ π, R > R0, then,∫
BC E f (s) exp(st) → 0 and

∫
K P A f (s) exp(st) → 0, for t > 0.
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Fig. 1 Integration path for the determination of G

We consider now the parts of the contour DE and QK . Let s = p exp (iπ) , p ∈ (∞, ε) on DE and
s = p exp (−iπ) , (ε, ∞) on K Q. We obtain the inversion (t > 0, x ∈ (0, 1)),

G (x, t) = L−1
(
exp

(
−xs1/2

{[
1 + asα + b

(
sα+iβ + sα−iβ

)]1/2 − 1

}))
(x, t)

= − 1

2π i
lim
ε→0

∫ ε

∞
exp

(−pt − xp1/2 exp (iπ/2)
{[
1 + pα exp (iαπ)

×
[
a + b

(
(p exp (iπ))iβ + (p exp (iπ))−iβ

)]]1/2 − 1

})
dp,

− − 1

2π i
lim
ε→0

∫ ∞

ε

exp
(−pt − xp1/2 exp (−iπ/2)

{[
1 + pα exp (−iαπ)

×
[
a + b

(
(p exp (−iπ))iβ + (p exp (−iπ))−iβ

)]]1/2 − 1

})
dp.

This implies

G (x, t) = 1

π
Im

∫ ∞

0
exp

(−pt − i xp1/2
{[
1 + pα exp (iπα)

× {a + b [2 (cosh βπ) (cosβ ln p) − 2i (sinh βπ) sin β ln p]}]1/2 − 1
})

dp. (33)

Equations (29) and (33) determine the solution.

7 Conclusions

The main results of this paper are a new form of the constitutive equation for the heat flux and restrictions
on coefficients obtained from the weak form of the Entropy inequality as well as the solution of the thermo-
mechanical problem by the use of restrictions. In particular, we did the following:

1. We formulated a constitutive equation for the heat flux q given by (13) containing real and complex order
fractional derivatives. It is of the Cattaneo type (2.2).

2. We determined the restrictions on the coefficients in the constitutive equation that follow from the entropy
inequality in the weak form (10). In proving (10), we used a new representation of the symmetrized
fractional derivative (14) given by (18). The restriction (21) also guarantees the solvability of (13) for the
heat flux q in the form (28). Let us note that in our case the memory function given by (16) depends on
both real and imaginary part of the derivatives of the heat flux vector in (13).
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3. We presented an equation of heat conduction in a rigid conductor. The influence of the parameters in the
model on the solution may be examined along the lines presented in [4], where we use results of [7].
On the basis of results presented in [4] we expect that the complex order part of the fractional derivative
provides a non-monotonic temperature distribution in a rod.Also from thegeneral property of complexorder
derivatives, presented in [21, p. 1459], we conclude that themodulation of phase and amplitude of harmonic
components of a solution will be more complicated as compared with the case of real order derivatives.
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