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Abstract Based on the complex function method and a multipolar coordinate system, scattering of shear
waves by a cylindrical inclusion in an anisotropic (orthotropic) half space is studied. In order to find the
solution of shear waves, the governing equation is transferred into its normalized form. Then, the scattering
wave in the half space and the standing wave in the inclusion are deduced. Different incident wave angles and
anisotropies are considered to obtain the reflected wave. Then, the unknown coefficients in scattering wave and
standing wave are found by utilizing the continuous condition at the boundary of the inclusion. Subsequently,
the dynamic stress concentration factor (DSCF) around the inclusion is calculated and analyzed. The results
demonstrate that the distribution of the DSCF is influenced by the anisotropy of the half space, and the value
of the DSCF is mainly affected by the wave numbers ratio and the shear modulus ratio.

1 Introduction

Dynamic stress analysis of elastic waves in a continuous medium or in continuous structures is significant for
practical engineering. Besides, wave propagation in different kinds of medium also attracts a lot of attention in
elastodynamics. Because different media and defects (cavities, inclusions or cracks) may influence the stresses
in continuous media or structures, the dynamic response of elastic waves in the complex medium or medium
with defects should be considered in materials science, structural damage detection, earthquake engineering,
and many other fields.

Problems of elastic waves in media and structures have been discussed for centuries. Wave propagation
in simple media firstly which attracted scholars’ attention. Pao and Mow [1] researched diffraction of elastic
waves in 1973. Moreover, dynamic stress concentration under different kinds of waves was also investigated
by them. Wave propagation in elastic solids was expounded by Achenbach [2] in the same year. Liu et al.
[3] studied dynamic stress concentrations around defects by the complex function method. The problem of
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plane SH wave scattering by a semicylindrical canyon was researched by Trifunac [4], and then, displacement
amplitudes of different incident wave angles were analyzed. Subsequently, the surface displacement problem
of a semi-elliptical canyon under SH waves was discussed byWong and Trifunac [5]. Nowadays, wave motion
problems in homogeneous and isotropic media are also popular in elastodynamics. Parvanova et al. [6] studied
the dynamic response of a finite-size elastic plate containing multiple defects by using BEM. The model was
subjected to time-harmonic loads along its perimeter, and anti-plane strain conditions were assumed. The same
methodwas utilized to discuss the dynamic stress concentration formultiplemultilayered inclusions embedded
in an elastic half space by Sheikhhassani and Dravinski [7]. Xu et al. [8] investigated the dynamic response
of complex defects near bimaterials’ interface by incident out-plane waves. By utilizing complex function
method and Green’s function, the dynamic stress concentration factor around the cavity and the dynamic stress
intensity factor at the crack were calculated and discussed. The axisymmetric time-harmonic response of a half
space was studied by Eskandari et al. [9]. The half space is transversely isotropic and surface stiffened. The
half space is reinforced by a Kirchhoff thin plate on its surface. Then, effects of anisotropy, depth of loading,
bonding assumption, and frequency of excitation are discussed.

Except problems of wave propagation in simple media, wave motion problems in complex media, are hot
as well. Liu and Han [10] researched scattering of SH waves by a noncircular cavity in anisotropic media.
Based on complex function method, the dynamic stress concentration of rectangular and elliptical cavities
was analyzed. Two formulations for the dynamic response of a cylindrical cavity in cross-anisotropic porous
media were researched by Eslami and Gatmiri [11]. Then, pore pressure, radial stress, hoop stress, and shear
stress at different points are obtained. C.H. Daros [12] investigated the Green’s function for SH waves in
an inhomogeneous anisotropic elastic solid. The wave velocity has a expression of power function, and the
Green’s functionwas derived tomodel transient SHwaves. Then, the formof thewave frontwas given.Multiple
scattering of elastic waves in heterogeneous anisotropic media was modeled by Baydoun et al. [13]. Relying
on the kinetic approach, the waves are described in terms of their associated energy densities. The model
has practical application meaning to metallic and mineral crystals. Similarly, wave propagation in elastic
quasicrystals was researched by Wang and Schiavone [14]. The surface waves and interfacial waves were
considered, and the quasicrystals were anisotropic. Then, the Stroh formalism was presented. Problems of SH
waves propagating in anisotropic laminated plates were studied byMaigre andKuznetsov [15]. Amathematical
model was obtained to analyze propagation ability and the specific energy of SH waves. Different boundary
conditions were considered, and then analytical solutions are presented. Scattering by an anisotropic circle
was researched by Bostrm [16]. The outside medium is isotropic, and the inside medium is orthotropic. The
equation inside the circle is transformed to polar coordinates, and the far-field amplitude is obtained. The
solution demonstrated that the anisotropy has strong effects on the scattering when the frequencies are high.
A general ultrasonic scattering model for a polycrystal was obtained by Li and Rokhlin [17]. Numerical
examples were given, and the scattering coefficients were obtained. An numerical analysis of an SH wave
field was performed by Lee et al. [18]. By applying parallel volume integral equation method (PVIEM), wave
scattering in an unbounded isotropic solid was analyzed. The numerical method is widely applicable for many
kinds of elastodynamic problems.

This paper aims to research wave scattering by a cylindrical inclusion in an anisotropic (orthotropic)
half space. A transformation is introduced in order to normalize the governing equation. Considering the
anisotropy of the half space, the reflected wave is obtained. According to the image principle, the scattering
wave in the anisotropic half space is derived. Then, the expression of stress components is given, and the
unknown coefficients are solved using the boundary condition. Subsequently, dynamic stress concentration
factors with different parameters are calculated and discussed.

2 Model description and basic equations

The scattering model of a cylindrical inclusion buried in a half space is described in Fig. 1. The half space
(medium I) is homogeneous but anisotropic, while the homogeneous inclusion (medium II) is isotropic. The
shear modulus and the mass density of medium I are μ1 and ρ1. Similarly, the shear modulus and the mass
density of medium II are μ2 and ρ2. The origin of the polar coordinate system coincides with the center of
the inclusion. The radius of the inclusion is R, and the buried depth of the inclusion is h. The incident angle
of shear waves is ai , and the reflected angle is ar . Because the medium of the half space is anisotropic, the
reflected angle does not equal the incident angle. The surface of the half space is at y1 = 0. The conversion
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Fig. 1 Model of the problem

relation between xoy and x1o1y1 can be expressed as

x1 = x, y1 = y − h. (1)

Under the shear model for the problem, the anisotropic parameters corresponding to the shear parts need to be
considered only. Hence, the anisotropic problem degenerates to an orthotropic one, and only three anisotropic
parameters (c44, c45 and c55) are useful. In this condition, the governing equation in Cartesian coordinates
(x, y) can be written as

c55
∂2φ

∂x2
+ 2c45

∂2φ

∂x∂y
+ c44

∂2φ

∂ y2
= ρ

∂2φ

∂t2
. (2)

Introducing complex variables z = x + iy and z̄ = x − iy, the governing equation in the complex plane (z, z̄)
has the form of

(c55 − c44 + 2ic45)
∂2φ

∂z2
+ 2 (c55 + c44)

∂2φ

∂z∂ z̄
+ (c55 − c44 − 2ic45)

∂2φ

∂ z̄2
= ρ

∂2φ

∂t2
(3)

where φ is the displacement function and ρ is the mass density of the anisotropic medium. c44, c45, and c55
are elastic constants which are independent of each other. The elastic constants take the following form:

c55 > 0,
(
c44c55 − c245

)
> 0. (4)

A transformation is applied in order to normalize the governing equation,

χ = 1

2

[
(1 − iγ ) z + (1 + iγ ) z̄

]

χ̄ = 1

2

[
(1 − i γ̄ ) z + (1 + i γ̄ ) z̄

]

⎫
⎪⎪⎬

⎪⎪⎭
, (5)

where γ = −c45
c44

+ i

(
c44c55 − c245

) 1
2

c44
, i = √−1.

Substituting Eq. (5) into (3), the governing equation obeys

∂2φ

∂χ∂χ̄
=

[
ikT
2

]2
φ (6)

where kT = ω/cT is the wave number, cT = √
μ1/ρ1 , μ1 = (

c44c55 − c245
)
/c44 is the shear modulus of the

half space, ρ1 is the mass density of the half space; ω is the circular frequency.
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3 Wave fields and stress components

3.1 Expressions of wave fields

Suppose the plane shear wave propagates with the arbitrary angle ai in medium I, the incident wave can be
expressed as

φ(i) = φ0exp

(
iki
2

[
(z + ih) βi + (z̄ − ih) βi

])
(7)

where φ0 is the amplitude of the incident wave, βi = eiαi , β̄i = e−iαi . ki = ω/ci is the wave number of the
incident wave. ci is the velocity with the direction of the incident wave which can be written as

ci =
[
1

ρ

(
c55cos

2αi − 2c45 cosαi sin αi + c44sin
2αi

)]
1

2 . (8)

Subsequently, with the aid of the stress-free condition at the surface, the reflected wave has the form of [19]

φ(r) = φ0exp

(
ikr
2

[
(z + ih) βr + (z̄ − ih) βr

])
(9)

where kr = ω/cr is the wave number of the reflected wave, cr is the velocity of the reflected wave.
In an anisotropic half space, the expression of reflected wave velocity is determined by the incident angle

αi ; if tan αi ≥ 2c45/c44, there is βr = e−iαr , β̄r = eiαr , then tan αr = (tan αi − 2c45/c55). In this condition,
cr can be formulated as

cr =
[
1

ρ

(
c55cos

2αr + 2c45 cosαr sin αr + c44sin
2αr

)
]1
2

. (10)

If tan αi < 2c45/c44, we have βr = eiαr , β̄r = e−iαr , then tan αr = − (tan αi − 2c45/c44). Therefore, cr
has the following expression:

cr =
[
1

ρ

(
c55cos

2αr − 2c45 cosαr sin αr + c44sin
2αr

)
]1
2 . (11)

The scattering wave excited by the inclusion is

φ(s) =
∞∑

n=−∞
An

{

H (1)
n (kT |χ |)

(
χ

|χ |
)n

+ H (1)
n (kT |χ1|)

(
χ1

|χ1|
)−n

}

(12)

where An is a series of unknown coefficients, H (1)
n (·) is the first kind Hankel function of the nth order,

χ1 = 1

2

[
(1 − iγ ) · (z + 2hi) + (1 + iγ ) (z̄ − 2hi)

]
. The scattering wave can satisfy the stress-free condition

at the surface and the Sommerfeld radiation condition at infinity automatically. The entire wave fields in
medium I are the superposition of the incident wave, the reflected wave, and the scattering wave, which can
be written as

φI = φ(i) + φ(r) + φ(s). (13)

Because the homogeneous isotropic inclusion exists, the standing wave in medium II is

φ(t) =
∞∑

n=−∞
Bn Jn (k2 |z|)

(
z

|z|
)n

(14)

where Bn is another series of unknown coefficients.
Therefore, the entire wave fields in medium II are the standing wave

φI I = φ(t). (15)
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3.2 Stress components

The stress components in Cartesian coordinate (x, y) in an isotropic medium are

τxz = μ
∂φ

∂x
, τyz = μ

∂φ

∂y
. (16)

Hence, in cylindrical coordinate systems (r, θ, z), the stress components corresponding to the wave fields
can be written as

τr z = μ
∂φ

∂r
, τθ z = μ

1

r

∂φ

∂θ
. (17)

In complex coordinate systems (z, z̄), the constitutive equations of an isotropic medium become

τr z = μ

(
∂φ

∂z
eiθ + ∂φ

∂ z̄
e−iθ

)
, (18)

τθ z = iμ

(
∂φ

∂z
eiθ − ∂φ

∂ z̄
e−iθ

)
. (19)

According to Hooke’s law, the constitutive relations in an anisotropic medium between stress components
and the wave fields obey

τr z = 1

2

[
(c55 + c44)

∂φ

∂z
+ (c55 − c44 − 2ic45)

∂φ

∂ z̄

]
eiθ

+ 1

2

[
(c55 − c44 + 2ic45)

∂φ

∂z
+ (c55 + c44)

∂φ

∂ z̄

]
e−iθ , (20)

τθ z = 1

2

[
i (c44 + c55)

∂φ

∂z
+ (2c45 + i(c55 − c44))

∂φ

∂ z̄

]
eiθ

+ 1

2

[
(2c45 + i(c44 − c55))

∂φ

∂z
− i (c44 + c55)

∂φ

∂ z̄

]
e−iθ . (21)

In the coordinate systems (χ, χ̄), Eqs. (20) and (21) can be shown to be

τr z = 1

4

{
[
(c55 + c44) (1 − iγ ) + (c55 − c44 − 2ic45) (1 + iγ )

] ∂φ

∂χ

+ [
(c55 + c44) (1 − i γ̄ ) + (c55 − c44 − 2ic45) (1 + i γ̄ )

] ∂φ

∂χ̄

}
eiθ

+ 1

4

{
[
(c55 − c44 + 2ic45) (1 − iγ ) + (c55 + c44) (1 + iγ )

] ∂φ

∂χ

+ [
(c55 − c44 + 2ic45) (1 − i γ̄ ) + (c55 + c44) (1 + i γ̄ )

] ∂φ

∂χ̄

}
e−iθ , (22)

τθ z = 1

4

{[
i (c44 + c55) (1 − iγ ) + (2c45 + i (c55 − c44)) (1 + iγ )

] ∂φ

∂χ

+ [
i (c44 + c55) (1 − i γ̄ ) + (2c45 + i (c55 − c44)) (1 + i γ̄ )

] ∂φ

∂χ̄

}
eiθ

+ 1

4

{[
(2c45 + i (c44 − c55)) (1 − iγ ) + i (c44 + c55) (1 + iγ )

] ∂φ

∂χ

+ [
(2c45 + i (c44 − c55)) (1 − i γ̄ ) − i (c44 + c55) (1 + i γ̄ )

] ∂φ

∂χ̄

}
e−iθ . (23)

Substituting the wave fields into Eqs. (18)–(23), respectively, the specific expression of stress components
can be obtained.
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4 Boundary conditions

Considering the continuity condition at the boundary of the cylindrical inclusion, the boundary condition is
the continuity condition of the displacement and radial shear stress, which can be written as

φI = φI I , |z| = R, (24)

τr z,I = τr z,I I |z| = R. (25)

Substituting the incident wave, reflected wave, scattering wave, and the standing wave into Eq. (24), and
substituting the stress components into Eq. (25) at the same time, the boundary condition becomes

∞∑

n=−∞
(Anξn − Bnζn) = ξ, (26)

∞∑

n=−∞
(Anεn − Bnηn) = ε (27)

where

ξn = Fn + Fn
′, (28)

ζn = Gn, (29)

Fig. 2 Verification of DSCF by the degeneration procedure

Fig. 3 Distribution of DSCF with h/R = 2, kR = 1
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ξ = −φ(i) − φ(r), (30)

εn = kT
[
(a + ic)

(
Fn−1 − F ′

n−1

) − (b − ic)
(
Fn+1 − F ′

n+1

)]
eiθ

+ kT
[
(b + ic)

(
Fn−1 − F ′

n−1

) − (a − ic)
(
Fn+1 − F ′

n+1

)]
e−iθ , (31)

ηn = 2k2μ2

(
Gn−1e

iθ − Gn+1e
−iθ

)
, (32)

ε = − ikiφ
(i)

{[
(c44 + c55) βi + (c55 − c44 − 2ic45) β̄i

]
eiθ

+ [
(c55 − c44 + 2ic45) βi + (c44 + c55) β̄i

]
e−iθ

}

− ikrφ
(r)

{[
(c44 + c55) βr + (c55 − c44 − 2ic45) β̄r

]
eiθ

+ [
(c55 − c44 + 2ic45) βr + (c44 + c55) β̄r

]
e−iθ

}
. (33)

Fig. 4 Distribution of DSCF with h/R = 2, kR = 1

Fig. 5 Distribution of DSCF with h/R = 2, kR = 1
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The expressions of Fn , F ′
n , Gn and the forms of a, b, and c in Eqs. (28)–(33) can be shown to be

Fn = H (1)
n (kT |χ |)

(
χ

|χ |
)n

, (34)

F ′
n = H (1)

n (kT |χ1|)
(

χ1

|χ1|
)−n

, (35)

Gn = Jn (k2 |z|)
(

z

|z|
)n

, (36)

a = (
c55c44 − c245

) 1
2

⎡

⎣1 +
(
c55c44 − c245

) 1
2

c44

⎤

⎦ , (37)

b = −(
c55c44 − c245

) 1
2

⎡

⎣1 −
(
c55c44 − c245

) 1
2

c44

⎤

⎦ , (38)

Fig. 6 Distribution of DSCF with h/R = 2, kR = 1

Fig. 7 Distribution of DSCF with h/R = 2, kR = 1
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c = c45
(
c55c44 − c245

) 1
2

c44
. (39)

Multiplying e−imθ with both sides of Eqs. (26) and (27) and integrating on the interval (−π, π) in order
to solve the undefined coefficients An and Bn , one obtains

∞∑

n=−∞
(Anξmn − Bnζmn) = ξm, m = n = 0,±1,±2, . . . (40)

∞∑

n=−∞
(Anεmn − Bnηmn) = εm, m = n = 0,±1,±2, . . . (41)

Fig. 8 Distribution of DSCF with h/R = 2, kR = 1

Fig. 9 Distribution of DSCF with h/R = 2, k∗ = 0.8
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where

ξmn = 1

2π

∫ π

−π

ξne
−imθdθ, ζmn = 1

2π

∫ π

−π

ζne
−imθdθ, ξm = 1

2π

∫ π

−π

ξe−imθdθ, (42)

εmn = 1

2π

∫ π

−π

εne
−imθdθ, ηmn = 1

2π

∫ π

−π

ηne
−imθdθ, εm = 1

2π

∫ π

−π

εe−imθdθ. (43)

5 Dynamic stress concentration factor (DSCF)

According to the definition of the dynamic stress concentration factor, the DSCF is the ratio of the hoop stress
to the stress τ0 (induced by the incident wave), which has the form

τ ∗
θ z = |τθ z/τ0 | (44)

Fig. 10 Distribution of DSCF with h/R = 2, k∗ = 0.8

Fig. 11 Distribution of DSCF with h/R = 2, k∗ = 0.8
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where τ0 = c55kiφ0. Substituting the wave fields into Eqs. (21) and (23), the hoop stress obeys

τθ z =kT
4

∞∑

n=−∞
An

[(
a′ + ib′) (

Fn−1 − F ′
n+1

) − (−a′ + ic′) (
Fn+1 − F ′

n−1
)]
eiθ

+ kT
4

∞∑

n=−∞
An

[(−a′ − ic′) (
Fn−1 − F ′

n+1
) − (

a′ − ib′) (
Fn+1 − F ′

n−1
)]
e−iθ

+ ikiφ(i)

4

[
i (c44 + c55) βi + (2c45 + ic55 − ic44) β̄i

]
eiθ

+ ikiφ(i)

4

[
(2c45 − ic55 + ic44) βi − i (c44 + c55) β̄i

]
e−iθ

Fig. 12 Distribution of DSCF with h/R = 2, k∗ = 0.8

Fig. 13 Distribution of DSCF with kR = 0.1, k∗ = 2
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+ ikrφ(r)

4

[
i (c44 + c55) βr + (2c45 + ic55 − ic44) β̄r

]
eiθ

+ ikrφ(r)

4

[
(2c45 − ic55 + ic44) βi − i (c44 + c55) β̄r

]
e−iθ (45)

where a′ = −c, b′ = a, c′ = b.

6 Numerical results and solution analysis

In order to verify the validity of the method presented in this paper, we set μ2 = 0 to degenerate the inclusion
into a cavity. Meanwhile, the depth of the inclusion is modified into fifty, and the anisotropic parameter is set
as c44 = 1, c45 = 0, c55 = 1 to contrast with the solution obtained by Pao et al. (in Ref. 1) in Fig. 2. Figure 2
shows that the degenerate results are coincident with the solution calculated by Pao et al. perfectly.

Fig. 14 Distribution of DSCF with kR = 0.5, k∗ = 2

Fig. 15 Distribution of DSCF with kR = 1.0, k∗ = 2
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The distribution of the DSCF around the inclusion is presented in Figs. 3, 4, 5, 6, 7, and 8 for different
anisotropic parameters.With the purpose of showing the anisotropy in different directions, two new parameters
c1 = c45/c55 and c2 = c44/c55 are introduced.Moreover, wave numbers ratio k∗ = k2/k1 and shear modulus
ratio μ∗ = μ1/μ2 are defined to show the property relation between the inclusion and the half space. It can
be inferred that μ∗ > 1 (k∗ > 1) represents that the medium I is harder than the medium II while μ∗ < 1
(k∗ < 1) signifies the opposite condition.

Figures 3 and 4 show the distribution of DSCF with different k∗ and μ∗ when the incident wave angle is
αi = 0 and π/2 . The dimensionless incident wave number is kR and kR = 1, the depth of the inclusion is
h/R = 2. c1 = 0 and c2 = 1 represent the medium I which is homogeneous and isotropic. If the inclusion is
softer than the half space, the dynamic stress concentration factor becomes larger. That means the soft inclusion
embedded in the half space will enhance the stresses around it. Moreover, the distribution of DSCF becomes
complex with the k∗ augments. In Fig. 4, the DSCF displays a symmetric distribution along the y-axis because
the background medium (medium I) is isotropic, and the incident angle is π/2 .

Figures 5, 6, 7, and 8 demonstrate the distribution of the DSCF around the inclusion when the half space
is anisotropic. The dynamic stress concentration factor is still larger when the inclusion is softer than the half
space. However, because the background is anisotropic, the DSCF does not have a symmetric distribution
anymore, and the distribution of the DSCF turns more complex at the same time. Then, in contrast with the
case when the half space is isotropic, the distribution of the DSCF seems distorted. When k∗ = 0.5, 2.0, 4.0,
the DSCF distorts evidently, but it changes little when k∗ = 0.8, that is because the properties of internal and
external medium are similar. The maximum of the DSCF varies little when the half space is anisotropic. It
approximately equals 1.5 when αi = 0 and 2.1 when αi = π/2 .

The distribution of the DSCF with different dimensionless incident wave numbers is shown in Figs. 9, 10,
11, and 12. The incident wave angle is αi = 0 and αi = π/2 , and the background medium is anisotropic. Two
cases are considered (k∗ = 0.8 and k∗ = 2) in Figs. 9, 10, 11, and 12. With the increasing of the incident wave
number, the DSCF distribution becomes complex. Besides, if the inclusion is harder than the half space, the
maximum of the DSCF changes little with the incident wave number increasing, but if the inclusion is softer,
the maximum of the DSCF varies apparently. This phenomenon indicates that the stresses around soft defects
are significantly affected by the incident wave number.

Figures 13, 14, 15, and 16 present the distribution of the DSCF when the depth of inclusion h/R is 1.5, 3,
10, and 15. The background medium is anisotropic, and the wave numbers ratio is k∗ = 2 . When the incident
wave number is small (kR = 0.1 and 0.5), the distribution of DSCF is nearly unchanged with the increase of
h/R . However, when the incident wave number is large (kR = 1 and 2), the DSCF changes evidently with the
h/R augments. The reason is when kR is small, the condition is the near static case, but when kR becomes
large, the dynamic effects become clear. Furthermore, the values of the DSCF decrease when the depth of the

Fig. 16 Distribution of DSCF with kR = 2.0, k∗ = 2
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Fig. 17 Variation of DSCF with changing kR (h/R = 2)

Fig. 18 Variation of DSCF with changing kR (h/R = 2)

inclusion grows, because the interplay between shallow burial inclusion and the surface is more intense than
in case of the deep one. As the condition of deep burial inclusion the influences of the reflected wave on the
inclusion turn small, and it can be regarded as infinite medium condition.

Figures 17 and 18 display the variation of the DSCF with changing incident wave number kR when the
inclusion and the half space have different wave numbers ratio and shear modulus ratio. The burial depth of the
inclusion is h/R = 2, and the point is θ = π/2 . Considering the case of hard inclusion (k∗ < 1), the DSCFs
at the inclusion are small, but the DSCFs become large when the inclusion is softer than the half space. This
result is the same as we obtained in Figs. 3, 4, 5, 6, 7, and 8. Then, if the inclusion is softer than the half space,
the DSCFs fluctuate obviously with the variation of the incident wave number. The phenomenon proves that
the stresses around soft defects are significantly affected by the incident wave number again.
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7 Conclusions

Based on the complex functionmethod andmultipolar coordinate system, the dynamic response of shear waves
by a cylindrical inclusion is investigated. The governing equation is converted into its normal form, and the
expressions of incident wave, reflectedwave, scatteringwave, and standingwave are obtained. According to the
continuity condition at the boundary of the cylindrical inclusion, the unknown coefficients in the scatteringwave
and standing wave are found. Then, the dynamic stress concentration factor (DSCF) around the inclusion is
calculated. The results reveal that the soft inclusion embedded in the half space will enhance the stresses around
it, and the DSCF around the soft inclusion is influenced by the incident wave number evidently. This indicates
that a soft inclusion in the medium can influence the mechanical properties around it significantly. So the
dynamic problems of a medium with soft defects should be paid more attention in practical engineering. Then,
with the increase of the incident wave number, the distribution of the DSCF becomes complex, which means
high-frequency excitation may cause complicated structural damage. Moreover, the depth of the inclusion
affects the distribution of the DSCF significantly when the incident wave number is large. So, an appropriate
depth of the underground structure needs to be considered in practical engineering.

Acknowledgements This work was supported by the Scientific Research Fund of Institute of Engineering Mechanics,
China Earthquake Administration (Grant No. 2017QJGJ06), the National Science and Technology Pillar Program (Grant No.
2015BAK17B06), the Earthquake Industry Special Science Research Foundation Project (Grant No. 201508026-02), the Funda-
mental Research Funds for the Central Universities (Grant No. HEUCF170202), and the Program for Innovative Research Team
in China Earthquake Administration.

References

1. Pao, Y.H., Mow, C.C.: Diffraction of elastic waves and dynamic stress concentrations, pp. 114–304. Crane and Russak, New
York (1973)

2. Achenbach, J.D.: Wave propagation in elastic solids. North-Holland Publishing Company, Amsterdam (1973)
3. Liu, D.K., Gai, B.Z., Tao, G.Y.: Applications of the method of complex functions to dynamic stress concentrations. Wave

Motion 4, 293–304 (1982)
4. Trifunac, M.D.: Scattering of plane SH waves by a semi-cylindrical canyon. Earthq. Eng. Struct. Dyn. 1, 267–281 (1973)
5. Trifunac, M.D.: Scattering of plane SH waves by a semi-elliptical canyon. Earthq. Eng. Struct. Dyn. 3, 157–169 (1974)
6. Parvanova, S.L., Dineva, P.S., Manolis, G.D., Kochev, P.N.: Dynamic response of a solid with multiple inclusions under

anti-plane strain conditions by the BEM. Comput. Struct. 139, 65–83 (2014)
7. Sheikhhassani, R., Dravinski, M.: Dynamic stress concentration for multiple multilayered inclusions embedded in an elastic

half-space subjected to SH-waves. Wave Motion 62, 20–40 (2016)
8. Xu, H.N., Yang, Z.L., Wang, S.S.: Dynamics response of complex defects near bimaterials interface by incident out-plane

waves. Acta Mech. 227, 1251–1264 (2016)
9. Eskandari, M., Samea, P., Ahmadi, S.F.: Axisymmetric time-harmonic response of a surface-stiffened transversely isotropic

half-space. Meccanica 52, 1–14 (2016)
10. Liu, D.K., Han, F.: The scattering of plane SH-waves by noncircular cavity in anisotropic media. J. Appl. Mech. 60, 769–772

(1993)
11. Eslami, H., Gatmiri, B.: Two formulations for dynamic response of a cylindrical cavity in cross-anisotropic porous media.

Int. J. Numer. Anal. Methods Geomech. 34, 331–356 (2010)
12. Daros,C.H.:Greens function for SH-waves in inhomogeneous anisotropic elastic solidwith power-function velocity variation.

Wave Motion 50, 101–110 (2013)
13. Baydoun, I., Savin, E., Cottereau, R., et al.: Kinetic modeling of multiple scattering of elastic waves in heterogeneous

anisotropic media. Wave Motion 51, 1325–1348 (2014)
14. Wang, X., Schiavone, P.: Surface and interfacial waves in anisotropic elastic quasicrystals. Wave Motion 51, 77–85 (2014)
15. Djeran-Maigre, I., Kuznetsov, S.V.: Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates. Acoust.

Phys. 60, 200–207 (2014)
16. Boström, A.: Scattering by an anisotropic circle. Wave Motion 57, 239–244 (2015)
17. Li, J., Rokhlin, S.I.: Elastic wave scattering in random anisotropic solids. Int. J. Solids Struct. 78–79, 110–124 (2016)
18. Lee, J., Lee, H., Jeong, H.: Numerical analysis of SH wave field calculations for various types of a multilayered anisotropic

inclusion. Eng. Anal. Bound. Elem. 64, 38–67 (2016)
19. Liu, D.K., Han, F.: Scattering of plane SH-wave by canyon topography in anisotropic medium. Earthq. Eng. Eng. Vib. 10,

11–25 (1990). (in Chinese)


	Scattering of shear waves by a cylindrical inclusion  in an anisotropic half space
	Abstract
	1 Introduction
	2 Model description and basic equations
	3 Wave fields and stress components
	3.1 Expressions of wave fields
	3.2 Stress components

	4 Boundary conditions
	5 Dynamic stress concentration factor (DSCF)
	6 Numerical results and solution analysis
	7 Conclusions
	Acknowledgements
	References




