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Abstract In the present study, a micromechanics model is proposed to predict the coefficients of nonlinear
thermal expansion (CTEs) of fiber-reinforced composites. The influence of fiber aspect ratio on the CTEs
is also investigated. It is noted that the parameters of fiber aspect ratio have a significant effect on both the
longitudinal CTEs and transverse CTEs. The CTEs of composites are also very sensitive to the different fiber
volume fractions. Moreover, the Young’s modulus and Poisson’s ratio of composites are taken into account in
the present analysis. The theoretical derivations are applicable for the composites under mechanical or thermal
environment conditions. The present model offers a direct prediction of CTEs and can account for the effects
of fiber aspect ratio and volume fractions.

1 Introduction

The fiber-reinforced composites are widely employed in modern engineering structures. This is because they
have some advantages, such as a high stiffness to weight ratio, an excellent durability and a design flexibility.
To date, many mechanics models have been developed to study the thermal properties of fiber-reinforced
composites [1–4]. Bian and Zhao [5] proposed a continuum model to study the mechanical properties of
carbon nanotubes, in which a thermal expansion coefficient of carbon nanotubes is proposed and is defined as
a continuous variation. Zhao et al. [6] developed a new continuum theory incorporating interatomic potentials
and finite temperature to study the bifurcation strain and force of single-walled carbon nanotube (SWNT)
under the action of tension. Dong [7] studied the transverse coefficients of thermal expansion (CTEs) for
unidirectional carbon fiber composites by finite element analysis with a representative unit cell. Gusev [8]
derived an exact self-consistent solution of n-layered composite sphere model based on the homogeneous
solutions, which could be applied to predict effective thermal expansion coefficients of composites. The study
of Karadeniz and Kumlutas [9] developed a model for the microstructure of composites using a representative
unit cell of finite element method, and thermal expansion coefficients of composites have been estimated.

Some analysis methods for effective coefficients of thermal expansion of composites have been suggested
based on the micromechanics [10–12]. The earlier investigators, Turner [11] and Kerner [12] proposed models
for predicting CTEs of composites, which can be used to define a lower and an upper bound, respectively.
A model has been developed by Rosen and Hashin [13] using thermoelastic energy principles. This model
can determine the effective thermal expansion coefficients of anisotropic composites having any number of
anisotropic phases. Schapery [14] presented amodel that was based on the simple planar model with alternative
fibers and matrix strips. A study of Schneider [15] was based on a cylinder assemblage model, which has
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been cited in German literature. Islam et al. [16] used the finite element method to investigate the linear
thermal expansion coefficients of unidirectional fiber composites. A combined experimental and numerical
methodology for the evaluation of fiber properties was presented in the study by Rupnowski et al. [17], on the
basis of the composite macro-data.

The aimof the present paper is to investigate theCTEs of unidirectional fiber-reinforced composites,with an
emphasis on the influence of fiber aspect ratio on the CTEs. The self-consistent and Mori–Tanaka approaches
have been extended in the present investigation, and a new model of isotropic composites which includes
two-phase materials has been developed. Moreover, analytical expressions are also derived for predicting the
CTEs of fiber-reinforced composites without the filler aspect ratio and any particle inclusions. It is shown that
the fiber aspect ratio has a significant effect on both the longitudinal CTEs and transverse CTEs. The CTEs of
composites at different fiber volume fractions are very sensitive to the aspect ratio of fiber.

2 Model development

2.1 Prediction of CTEs

The representative element of composites is subjected to uniform stress σ . Local stress and strain that caused in
representative element are denoted by σ and ε, respectively. In the same way, it is assumed that the composite
is subjected to a uniform temperature change �T. Local stress and strain that caused in representative element
with �T are denoted by σ T and εT , respectively. Local stresses σ and σ T conform to the balance equation,
and 〈σ 〉 = σ ,
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where uT is a relative displacement.
Here, Eq. (1) can be simplified as follows:
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According to the definition of the coefficient of thermal expansion,
〈
εT

〉
= αc�T . (3)

For the composites with two-phase materials, the thermal expansion coefficients of composite, matrix and
filler are denoted by αc, αm and αf , respectively, and using Eqs. (1)–(3), we have

cfαf 〈σ 〉f + cmαm 〈σ 〉m = σαc = αcσ , (4)

where cm and cf are volume fractions of matrix and filler, 〈σ 〉m and 〈σ 〉f are stresses of matrix and filler,
respectively.

For the general two-phase composites, we have

σ = 〈σ 〉 = cf 〈σ 〉f + cm 〈σ 〉m
ε = 〈ε〉 = cf 〈ε〉f + cm 〈ε〉m
ε = Hσ , 〈ε〉f = Hf 〈σ 〉f , 〈ε〉m = Hm 〈σ 〉m

⎫
⎬

⎭
(5)
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Fig. 1 Coordinate system of unidirectional ellipsoid inclusion along x1 direction in the matrix with aspect ratio λ =
a1/a2 (a1 �= a2 = a3)

whereH,Hm andHf are the flexibility tensors of composite,matrix andfiller, respectively, andH =
(

1
3K

, 1
2G

)
.

From Eq. (5), the following equations can be defined:

〈σ 〉m = 1

cm
(Hm − Hf)

−1 (
H − Hf

)
σ , (6)

〈σ 〉f = 1

cf
(Hf − Hm)−1 (

H − Hm
)
σ . (7)

Substituting Eqs. (6) and (7) into Eq. (4), the effective thermal expansion coefficient of composites can be
obtained as follows:

αc = αf (Hf − Hm)−1 (
H − Hm

) + αm (Hm − Hf)
−1 (

H − Hf
)
. (8)

Simplifying Eq. (8), then
αc = αm + (αf − αm) (Hf − Hm)−1 (

H − Hm
)
. (9)

For unidirectional ellipsoid inclusion (a1 �= a2 = a3) with x1 to be the symmetry axis of rotation, plane 2–3
is isotropic, as shown in Fig. 1. Then, the composite is a transversely isotopic material.

Therefore, Eq. (9) can be expressed as follows:
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Since the effective modulus tensor of transversely isotopic composite can be denoted by L = (
2k, l, l, n, 2m,

2p), the elastic constants k, l, n,m, p are Hill’s notation [18]. Thus, we get the flexibility tensor as follows:
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The flexibility tensor can be denoted by the bulk and shear modulus,

Hi jkl = 1

9K
δi jδkl + 1

4G

(
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3
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)
, (12)

where K and G are bulk modulus and shear modulus, respectively. The parameter δ is the Kronecker delta.
Then, we can obtain the following formula,
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By the expression of thermal expansion coefficient and flexibility of isotropic material, we get
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By Eq. (14), the expression, i.e., Eq. (9), of thermal expansion coefficient can be further simplified into a
unified form as follows:

αc
i j = αmδi j + αf − αm

1/Kf − 1/Km

(
3Hmni j − 1

Km
δi j

)
. (15)

Here, considering a unidirectional ellipsoid inclusion andmacroscopically isotropic composite, the longitudinal
CTEs and transverse CTEs are defined by αc

11 and αc
22, respectively. Then, combining Eqs. (11) and (15), the

longitudinal CTE αc
11 and transverse CTE αc

22 are obtained as:
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. (17)

2.2 Elastic constants considering fiber aspect ratio

The effective elastic modulus of hybrid inclusions and matrix can be predicted by different micromechanics
methods. In this paper, it is assumed that the composites are transversely isotropic, and the elastic modulus
of composites is estimated. According to the extension of Mori–Tanaka approach, the basic formula of the
equivalent modulus of two-phase composites is

L = Lm + cf
[
(Lf − Lm)−1 + cmQ

]−1
. (18)

Here, the subscripts m and f denote the matrix and effective fibers, respectively, and tensor Q = SL−1
m . The

tensor S is the Eshelby tensor. The tensor Li (i = m, f ) and the components of tensor Q can be denoted as
follows:
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(
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)
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)
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In the process of analysis, we assume

W = [
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]−1 = (y1, y2, y3, y4, y5, y6) , (21)

where the tensorW is a shorthand symbol, and y j ( j = 1 − 6) are the components of the tensorW . Based on
the principle of inverse tensor, we obtain
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where K̃ = Kf − Km, G̃ = Gf − Gm.
In the same way,
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According to the above definition, we have:

ξ = A · B − 2C2, (26)
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where ξ , A, B and C are shorthand symbols, respectively.
Substituting Eqs. (19) and (21)–(25) into Eq. (18), the expression of elastic constants can be obtained as
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The components of the tensorQ can be derived byQ = SL−1
m and are given as follows (aspect ratio λ = a1/a2),
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where γm is the Poisson’s ratio of the matrix, then
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2.3 Case study of related composites

In the case without fiber aspect ratio, for the unidirectional fiber-reinforced composites, the tensor Q can be
denoted as follows:

Q =
(

3

8Gm + 6Km
, 0, 0, 0,

7Gm + 3Km

4Gm (4Gm + 3Km)
,

1

4Gm

)
. (41)

Substituting Eqs. (19) and (41) into Eq. (18), the expression of elastic constants can be obtained as follows:

k∗ = Km + 1

3
Gm + (4Gm + 3Km) (Gf − Gm + 3Kf − 3Km)

3 [(3 + cf)Gm + cmGf + 3 (cfKm + cmKf)]
cf , (42)

l∗ = Km − 2

3
Gm + (4Gm + 3Km) (2Gm − 2Gf + 3Kf − 3Km)

3 [(3 + cf)Gm + cmGf + 3 (cfKm + cmKf)]
cf , (43)

n∗ = Km + 4

3
Gm + F + 3 [3Km (Kf − Km) + Gf (9cfKm + 9cmKf − 5Km)]

3 [(3 + cf)Gm + cmGf + 3 (cfKm + cmKf)]
cf , (44)

m∗ = Gm + 2Gm (Gf − Gm) (4Gm + 3Km)

2Gm (4Gm + 3Km) + cm (Gf − Gm) (7Gm + 3Km)
cf , (45)

p∗ = Gm + 2cfGm (Gf − Gm)

2Gm + cm (Gf − Gm)
, (46)

where F = −16G2
m + 16GmGf + 3Gm [Km − 5Kf + 9cf (Kf − Km)].

For the particle-reinforced composites, the details of Mori–Tanaka scheme can be found in [19] and the
bulk modulus can be written as

K = Km

[
1 + cf(Kf − Km)

Km + α(1 − cf)(Kf − Km)

]
, (47)

where K is the bulk modulus of composites with α = 3Km
3Km+4Gm

.

The tensor H can be denoted as H =
(

1
3K

, 1
2G

)
; thus, we get

(
H − Hm

) =
(

1

3K
− 1

3Km
,

1

2G
− 1

2Gm

)
. (48)

Substituting Eqs. (47) and (48) into Eq. (9), the CTE expression of particle-reinforced composites can be
obtained as

αc = cfαf + cmαm + 4cfcm (Kf − Km) (αf − am)Gm

3KfKm + 4Gm (cfKf + cmKm)
. (49)

2.4 Fibers of spatial and planar arbitrary orientations

Through the above analysis, the thermal expansion coefficients of unidirectional fiber-reinforced composites
have been defined. The effective thermal expansion coefficients of composites with spatial arbitrary orientation
can be also predicted using the same methodology as unidirectional fiber-reinforced composites [20].

For the fibers of spatial arbitrary orientation, the mechanical and thermal properties of composites are
isotropic. Differentially, for the planar arbitrary orientation fibers, the mechanical and thermal properties of
composites are transversely isotropic. Therefore, we have the following formulas,

〈
αc
2d

〉
11 = αc

22,
〈
αc
2d

〉
22 = 1

2
(αc

11 + αc
22), (50)

αc
3d = 1

3
αc
11 + 2

3
αc
22, (51)

where
〈
αc
2d

〉
11 and

〈
αc
2d

〉
22 are longitudinal CTE and transverse CTE of planar arbitrary orientation fiber-

reinforced composites, respectively. αc
3d is the thermal expansion coefficient of composites reinforced by

spatial arbitrary orientation fibers.
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3 Results and discussion

3.1 Some existing models

For a comparison, some of existing micromechanical models for predicting the CTEs of composites from the
literature are reviewed. A simple summary of some theories for CTEs of composites is as follows.

3.1.1 Law of mixtures [10]

αc = cmαm + cfαf (52)

3.1.2 Turner model [11]

αc = cmαmKm + cfαfKf

cmKm + cfKf
, (53)

where Km and Kf are the bulk moduli of the matrix and fibers, respectively.

3.1.3 Kerner model [12]

αc = cmαm + cfαf + (αf − αm) (Kf − Km)

cmKm + cfKf + 3KmKf/4Gm
cmcf , (54)

where Gm is the shear modulus of the matrix.

3.1.4 Schapery model [14]

αc
11 = cmαmEm + cfαfEf

cmEm + cfEf
, (55)

αc
22 = (1 + γm) cmαm + (1 + γf) cfαf − αc

11 (cmγm + cfγf) , (56)

where Ef and Em are elastic moduli; γf and γm are the Poisson’s ratios of fiber and matrix, respectively.

3.1.5 Schneider model [15]

αc
11 = cmαmEm + cfαfEf

cmEm + cfEf
(57)

αc
22 = αm − (αm − αf)

[
2 (1 + γm)

(
γ 2
m − 1

)

2γ 2
m + γm − 1 − (1 + γm)/bcf

− γmEf/Em

Ef/Em + (1 − bcf)/bcf

]

, (58)

where the parameter b is correction factor, and b = 1 for the fibers which are ideally aligned as straight and
parallel.

3.2 Numerical result predictions

The CTEs of composites with the epoxy matrix are numerically predicted in the present investigation. The
material property data of epoxy matrix and fillers for Figs. 2, 3, 4, 5 and 6 are given in Table 1, whereas Table 2
presents the isotropic phase properties of particle-reinforced composites for Fig. 7.
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Fig. 2 The CTEs of composite changed with fiber volume fractions without the variation of aspect ratio

Fig. 3 Effect of fiber aspect ratio 10−4 < λ < 104 on the thermal expansion coefficients of composites

Figure 2 presents a comparison between the present predictions and other theories given in the literature in
the case of not considering the effect of fiber aspect ratio. Note that the predictions are obtained from Eqs. (16),
(17) and (42)–(44). The results show that both the longitudinal CTE and the transverse CTE according to the
present study are closer to Schneider’s predictions. Under the same conditions, the data from ROM model lie
between them and can only offer an approximate prediction of transverse CTE. Moreover, it can be also found
from Fig. 2 that the works by Turner and Kerner provide the upper and lower bounds for the predictions of
longitudinal CTE and transverse CTE, respectively.

Figures 3 and 4mainly describe the change of longitudinal and transverse CTEs with fiber volume fractions
and aspect ratio using Eqs. (16), (17) and (30)–(32). The results from the presentmodel and Schneider’smethod
are shown in Fig. 3, and Fig. 3 also presents the effect of aspect ratio (10−4 < λ < 104) on the CTEs. The
overall pictures show that the longitudinal CTE decreases and the transverse CTE increases with the increase
of fiber aspect ratio, and at λ = 1 the longitudinal CTE is equal to transverse CTE, which is in the situation of
spherical inclusion. Moreover, both longitudinal CTE and transverse CTE decrease with the increase of fiber
volume fractions, and the Schneider’s results provide an upper bound for CTEs. However, as shown in Fig. 3,
when λ → ∞, it is observed that the variation of CTEs with fiber aspect ratios is insignificant and remains
unchanged. The present analyses are in a good agreement with the results given by studies [20,21].

To investigate the influences of fiber aspect ratio (λ > 1) on the CTEs of composites, the variation of CTEs
with fiber volume fractions is shown in Fig. 4. As shown in Fig. 4, the longitudinal CTE αc

11 decreases with
the increase of fiber aspect ratio. On the contrary, the transverse CTE αc

22 increases with the increase of fiber
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Fig. 4 The variation of longitudinal CTE and transverse CTE with fiber volume fractions in the case of aspect ratio λ > 1

Fig. 5 Variation of coefficients of thermal expansion with aspect ratio for planar arbitrary orientation fiber-reinforced composites

Fig. 6 Variation of coefficients of thermal expansion with aspect ratio for spatial arbitrary orientation fiber-reinforced composites
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Table 1 Material properties of composite consisting of isotropic glass fibers and isotropic epoxy matrix [10]

Material E (GPa) γ α
(×10−6/◦C

)

Epoxy 3.5 0.35 52.5
Glass fiber 72 0.2 5

Table 2 Isotropic phase properties of particle-reinforced composites [8]

Material E (GPa) γ α
(×10−6/K

)

Epoxy 2.8 0.4 80
Silica particles 70 0.2 4

E Young’s modulus, γ Poisson’s ratio, α coefficient of nonlinear thermal expansion

Fig. 7 Effect of silica particle volume fractions on thermal expansion coefficient of particle-reinforced composite

aspect ratio. Furthermore, it is also found that the effect of fiber aspect ratio on the transverse CTE αc
22 is more

significant than the effect on the longitudinal CTE αc
11 when the fiber aspect ratio is in a range λ > 1. Both

longitudinal CTE and transverse CTE decrease with the increase of fiber volume fractions in this case.
For the composites reinforced by fibers of planar arbitrary orientation, the change of CTEs with the fiber

aspect ratio (10−4 < λ < 104) is plotted in Fig. 5 using Eq. (50). It can be found from Fig. 5 that the
longitudinal CTE increases, but the transverse CTE decreases with increase fiber aspect ratio. As compared
with the curves shown in Fig. 3, the influence of fiber aspect ratio on the longitudinal CTE and transverse CTE
is completely opposite.

For the composites reinforcedbyfibers of spatial arbitrary orientation, Fig. 6 showshowCTEsof composites
change with the aspect ratio using Eq. (51). As plotted in Fig. 6, the CTE of composites has the maximum
value at λ = 1 and gently decreases with the change of fiber aspect ratio λ in other cases. It is also found
from Fig. 6 that the Turner prediction results can serve as the upper bound for the present work. The present
model for the CTEs of composites is not sensitive to the fiber aspect ratio as compared to the results shown in
Fig. 3. The reason for this difference may be due to that the composite with spatial arbitrary orientation fiber
is isotropic in the present model, whereas the unidirectional fiber and planar arbitrary orientation fibers are
transversely isotropic.

As shown in Fig. 7, the present investigation is related to the thermal expansion coefficient of particle-
reinforced composites. It is seen that the numerical results defined by Eq. (49) are closer to the results obtained
from ROMmodel. Moreover, it can be also found from Fig. 7 that the results from other theories by Schapery
[14] and Schneider [15] are higher than the present predictions.
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4 Concluding remarks

Amicromechanical model is proposed for predicting the coefficients of nonlinear thermal expansion of epoxy
matrix composites. Two cases for the CTEs of fiber-reinforced composites are considered. The effect of filler
aspect ratio on the CTEs is investigated. The analysis results illustrate that the theoretical derivations are
applicable for the composites under mechanical or thermal environment conditions and have the advantage to
obtain the desired responses of composites.

In this study, it is noted that the CTEs depend on both the fiber aspect ratio and volume fractions of
reinforcements. The model proposed offers a direct prediction of CTEs, and the predictions from the model
agree well with the results of those theories in the literature. Therefore, the present analysis provides a helpful
tool for optimizing the material design and manufacture of advanced composites.
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