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Abstract We consider the motion of a charged rigid body about a fixed point carrying a rotor that is attached
along one of the principal axes of the body. This motion occurs under the action of the resultant of the uniform
gravity field and the homogeneous magnetic field. The equations of motion are formulated, and they are
presented by means of the Hamiltonian function in the framework of the Lie–Poisson system. These equations
of motion have six equilibrium solutions. The sufficient conditions for instability for these equilibria are
studied by utilizing the linear approximation method, while the sufficient conditions for stability are presented
bymeans of the energy-Casimirmethod. For certain configuration of the body, the regions of Lyapunov stability
and instability are determined in the plane of some parameters. Furthermore, we clarify that the regions of
Lyapunov stability are a portion of the regions of linear stability.

1 Introduction

Stability problems of rigid bodies have received extensive attention in the latter decades, essentially due to
an increasing interest in spaceflight. Numerous investigations of such problems have been performed and can
be found in the literature. In 1956, Rumiantsev presented the sufficient conditions for the stability of a rigid
body rotating about a principal axis through a fixed point of the body, with no requirement that the other two
principal moments of inertia with respect to the fixed point be equal [1]. His results have been extended to
accommodate, for example, Newtonian force fields [2], arbitrary potential fields of forces [3], Euler case [4],
and other stability problems related to the motion of the rigid body under the influence of a uniform force.
In many of these investigations, Rumiantsev and his followers made extensive employment of the methods
developed by Lyapunov [5] in 1892 for determining the stability of the system of differential equations. Routh
[6] considered the general stability problem of a heavy unsymmetrical rotating top, using a linear analysis
to examine its stability. Unfortunately, only the instability results of Routh’s analysis were extendible to the
complete nonlinear system. This fact comes fromLyapunov’s theorem on the stability in the first approximation
(see [7], p. 227). By the direct method due to Lyapunov, Rumiantsev [8] investigated the stability of certain
motions of a heavy gyrostat with a fixed point. In the case where the mass center of the gyrostat is taken to
be the fixed point, he obtained the sufficient conditions for both stability and instability of these motions. The
same problem was independently considered by Kan and Fowler [9] and also was considered by Crespo da
Silva [10]. The results of all these studies were equivalent. Various different cases were also examined by
Rumiantsev [8,11], Anchev [12,13], Kolensnikov [14], and others.
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A gyrostat is a mechanical system consisting of an invariable part S1 and the other body S2 variable or
rigid but not rigidly connected with S1 in order that the motion of S2 with respect to S1 keeps the distribution
of the mass within the mechanical system S unchanged. It is also named in the literature as dual-spin body
due to the motion of the two bodies S1 and S2 [15]. It is well known that the notions of a gyrostat were firstly
presented by Volterra in order to study the motion of the Earth’s polar axis and explain variations in the Earth’s
latitude by means of the internal motion that does not change the planet’s distribution of mass [16]. Also, it
has various applications in diverse branches of science such as Astrodynamics. For instance, it is used as a
control device in spacecrafts for stabilizing their rotations (see, e.g., [17–21]). Moreover, the majority of the
problems concerning the rigid body-gyrostat can be summarized in the following:

(i) The first problem: The stability of the equilibria in a rigid body-gyrostat either with a fixed point or in
orbit (see, e.g., [12,15,22–27]).

(ii) The second problem: The periodic solutions, bifurcation or chaos in several problems of a rigid body
gyrostat (see, e.g., [28–30]).

(iii) The third problem: The integrability and the construction of the first integrals of motion. The majority
of these problems were collected in [31], and some new integrable problems have been added by many
authors (see, e.g., [32–35]).

Iñarrea et al. [23] studied the stability of the permanent rotations of a heavy gyrostat with a fixed point
in the presence of a constant gyrostatic momentum resulting from a rotor that rotates with a constant angular
velocity around an axis passing through the center of mass of the gyrostat. They presented the necessary and
sufficient conditions for those permanent rotations to be stable by employing the energy-Casimir method. The
present work deals with this problem in the presence of a homogeneous magnetic field, and therefore, the
current work is an extension of the problem that has been discussed in [23].

2 Equations of motion

We consider the motion of a charged gyrostat about a fixed point O , composed of a rigid body attaching an
axisymmetric rotor that is aligned along one of the principal axes of the body and rotates with a constant angular
velocity. We assume that the gyrostat is subjected to a uniform gravity field and a homogenous magnetic field
�H . To describe the motion, we assume that OXY Z and Oxyz are two Cartesian coordinate systems fixed
in the space and in the body, respectively. Let �ω = (ω1, ω2, ω3) be the angular velocity of the body and
�γ = (γ1, γ2, γ3) be the unit vector in the direction of OZ -axis (see Fig. 1). The two vectors �ω and �γ are
referred to the body system which is taken as the system of principal axes of inertia at the fixed point O .
Assume the tensor of inertia of the gyrostat in the body’s system is I = diag(A, B,C). The vector �γ can be
expressed in terms of Eulerian angles as outlined in [15],

�γ = (γ1, γ2, γ3) = (sin θ sin ϕ, sin θ cosϕ, cos θ), (1)

where ψ is the angle of precession about the z-axis, θ is the angle of nutation between z- and Z -axes, and
ϕ is the angle of proper rotation. Now, we introduce down the equations of the motion. The total angular
momentum of the gyrostat admits the form

�G = �M + �K , (2)

where �M = I �ω is the angular momentum of the whole gyrostat when the rotor is at relative rest and �K =
(0, 0, k) is the gyrostatic momentum, that is, the relative angular momentum of the rotor with respect to the
body. The torque due to the gravity field is given by

�M1
O = �r0 × (−mg �γ ) = mg �γ × �r0 (3)

where m and g are the total mass of the gyrostat and the acceleration due to the gravity while �r0 = (x0, y0, z0)
is the position vector for the center of mass with respect to the fixed point O . For simplicity, we assume
the center of mass lies on the Oz-axis, and so, we have x0 = y0 = 0. Let the magnetic field be a constant
acting in the direction of OZ -axis and thus �H = ν �γ , where ν is a constant characterizing the magnitude of
the magnetic field. Let p be an element of the body that moves with velocity �v(p) and is carrying a charge
dq . Also, assume that �r be a position vector of this element. This element is subjected to Lorenz forces
d �F = dq(�v × �H) = νσdV [( �ω × �r) × �γ ] = νσdV [( �ω · �γ )�r − (�r · �γ ) �ω] where dV is the volume element of
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Fig. 1 The charged gyrostat and references frames

the gyrostat and σ is the charge distribution.1 Thus, the torque due to the magnetic field can be expressed in
the form

�M2
O =

∫
V

�r × d �F = �ω × σν

∫
V

�r(�r · �γ )dV = �ω × A �γ (4)

where A is a constant 3×3matrix. For simplicity, we postulate A = diag(a, b, c)where a, b, and c are arbitrary
parameters. Taking all obtained results into account and according to the angular momentum’s theorem about
the fixed point O , we have

d �G
dt

= �MO

where �MO is the total torque about the point O . Then, the equations of the motion with respect to coordinates
Oxyz that are fixed in the body take the form

�̇M = −�ω × ( �M + �μ) + mg �γ × �r0 (5)

where

�μ = (μ1, μ2, μ3) = �K + A �γ (6)

Expression (6) represents the torque due to gyroscopic forces that are velocity-dependent forces. Since to the
vector �γ is a constant unit vector in space, we have

�̇γ = �γ × �ω. (7)

Although the variables employed in Eqs. (5) and (7) are not canonical, the problem under consideration can
be described by means of the Hamiltonian function in the framework of Lie–Poisson systems. In this case, the
Hamiltonian function admits the form

H = 1

2

[
M2

1

A
+ M2

2

B
+ M2

3

C

]
+ mgz0γ3. (8)

1 Here MKS units are used. In Gaussian units dq should be divided by the velocity of the light c (e.g., [36]). We also assume
that the velocity and acceleration are sufficiently small to neglect both relativistic effects and classical radiation damping.
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Following [37], the equations of motion (5) and (7) become a Hamiltonian-Poisson system generating the
matrix Π �μ

Π �μ =

⎛
⎜⎜⎜⎜⎜⎝

0 −M3 − μ3 M2 + μ2 0 −γ3 γ2
M3 + μ3 0 −M1 − μ1 γ3 0 −γ1

−M2 − μ2 M1 + μ1 0 −γ2 γ1 0
0 −γ3 γ2 0 0 0
γ3 0 −γ1 0 0 0

−γ2 γ1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

(9)

provided that the Jacobi-identity holds, i.e.,

Π li
�μ ∂lΠ

jk
�μ + Π

l j
�μ ∂lΠ

ki
�μ + Π lk

�μ ∂lΠ
i j
�μ = 0, i, j, k = 1, 2, . . . , 6. (10)

Or, equivalently, the vector �μ( �γ ) satisfies the equation

�γ · ∇�γ × �μ = 0. (11)

It is easy to prove that the vector �μ satisfies the condition (11). The equations of motion (5) and (7) can be
expressed as

�̇X = Π �μ �∇H (12)

where �X = (M1, M2, M3, γ1, γ2, γ3) and �∇H is the naive gradient of H . This system has three general
integrals of motion bearing the name Casimirs. They are the Hamiltonian H itself and

C1 := γ 2
1 + γ 2

2 + γ 2
3 = 1, (13)

C2 := (M1 + a

2
γ1)γ1 + (M2 + b

2
γ2)γ2 + (M3 + k + c

2
γ3)γ3 = c0 (14)

where c0 is an arbitrary constant. The second Casimir equation (14) is named in the literature as a cyclic
integral due to its correspondences to the cyclic variable ψ .

3 Equilibria

The permanent rotations have a significant interest in numerous fields of application, and they are obtained as

equilibrium solutions [15,38]. Thus, we set �̇M = �̇γ = �0. Equations (5) and (7) take the form

�ω × ( �M + �K + A �γ ) − mg �γ × �r0 = �0, (15)

�γ × �ω = 0. (16)

Equation (16) indicates that the vectors �ω and �γ are parallel, and so �ω = ω �γ . Inserting the last expression in
Eq. (15), we have

�γ ×
[
ω2

I �γ + ω( �K + A �γ ) − mg �r0
]

= �0. (17)

Equation (17) can be expressed in a scalar form as

γ2[ω2(C − B)γ3 + kω + ωγ3(c − b) − mgz0] = 0, (18)

γ1[ω2(A − C)γ3 − kω + ω(a − c)γ3 + mgz0] = 0, (19)

γ1γ2ω[ω(B − A) + (b − a)] = 0. (20)
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Equation (20) holds in four possible cases. They are (γ1 = 0, γ2 = 0) or (γ1 = 0, γ2 �= 0) or (γ1 �= 0, γ2 = 0)
and (γ1 �= γ2 �= 0). Let us study each case individually. The equilibrium solutions are introduced in terms of
the components of angular momentum vector �M and the components of the vector �γ .
• For the first case in which γ1 = 0, γ2 = 0, Eqs. (18)–(20) hold identically. Casimir (13) gives γ3 = ±1.
Thus, we obtain two equilibrium solutions E±

1 = (0, 0,Cω, 0, 0,±1). For the equilibrium solution E+
1 ,

the angle θ among the two axes Oz and OZ equals zero. Consequently, this equilibrium solution indicates
the motion of the body in the upward direction (in other words, the center of the mass of the body lies
above the fixed point O). Similarly, the equilibrium solution E−

1 refers to the motion of the body around
the vertical in the downward direction, i.e., the center of mass lies down the fixed point O .

• For γ1 = 0 and γ2 �= 0, the two Eqs. (19) and (20) are identically satisfied. Taking into account expression
(1) and Casimir (13), we obtain γ2 = sin θ and γ3 = cos θ . Inserting all obtained results in Eq. (18), we
get

ω2(C − B) cos θ + ω[k + (c − b)cosθ ] − mgz0 = 0. (21)

Thus, the equilibrium solution E2 = (0, Bω sin θ,Cω cos θ, 0, sin θ, cos θ) exists if the angular velocity
ω satisfies condition (21). In a similar way, for the case in which γ1 �= 0 and γ2 = 0, the equilibrium
solution E3 = (Aω sin θ, 0, Bω cos θ, sin θ, 0, cos θ) exists if the condition

ω cos θ [ω(A − C) + a − c] − kω + mgz0 = 0 (22)

is satisfied.
• For the case in which γ1 �= 0 and γ2 �= 0, the two equations (18) and (19) give

γ3 = kω − mgz0
ω((B − C)ω + b − c)

and γ3 = kω − mgz0
ω((A − C)ω + a − c)

(23)

provided that

∣∣∣∣ kω − mgz0
ω((B − C)ω + b − c)

∣∣∣∣ < 1 and

∣∣∣∣ kω − mgz0
ω((A − C)ω + a − c)

∣∣∣∣ < 1. (24)

The two expressions (23) are identical if ω = ω0 = b−a
A−B provided that A �= B and a �= b. It is clear that

this value of ω satisfies Eq. (20). Thus, the equilibrium solution E4 = (Aω0γ1, Bω0γ2,Cω0γ3, γ1, γ2, γ3)

with ω0 = b−a
A−B and γ3 = kω−mgz0

ω((B−C)ω+b−c) exists if the condition
∣∣∣ kω−mgz0
ω((B−C)ω+b−c)

∣∣∣ < 1 is verified. From

another side, if A = B, Eq. (20) is satisfied if a = b and the two equations (18) and (19) are identical

and they give γ3 = kω−mgz0
ω[ω(A−C)+a−c] . This is verified only if

∣∣∣ kω−mgz0
ω[ω(A−C)+a−c]

∣∣∣ < 1. Thus, we obtain the

permanent rotation E5 = (Aωγ1, Bωγ2,Cωγ3, γ1, γ2, γ3).

The above results can be collected and summarized in the following:

Theorem 1 The mechanical system (5) and (7) describing the motion of a charged gyrostat has at least six
equilibria. They are:

(i) E±
1 = (0, 0,Cω, 0, 0,±1);

(ii) E2 = (0, Bω sin θ,Cω cos θ, 0, sin θ, cos θ) exists ifω satisfies the conditionω2(C− B) cos θ +ω[k+
(c − b)cosθ ] + mgz0 = 0;

(iii) E3 = (Aω sin θ, 0, Bω cos θ, sin θ, 0, cos θ) exists if ω satisfies the condition ω cos θ [ω(A−C)+ a−
c] − kω − mgz0 = 0;

(iv) If A �= B and a �= b, the permanent rotation E4 = (Aω0γ1, Bω0γ2,Cω0γ3, γ1, γ2, γ3)withω0 = b−a
A−B

and γ3 = kω−mgz0
ω((B−C)ω+b−c) exists if and only if the condition

∣∣∣ kω−mgz0
ω((B−C)ω+b−c)

∣∣∣ < 1 is verified. On the

other side, if A = B and a = b, the permanent rotation E5 = (Aωγ1, Bωγ2,Cωγ3, γ1, γ2, γ3) exists

if the condition
∣∣∣ kω−mgz0
ω[ω(A−C)+a−c]

∣∣∣ < 1 holds,
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4 Stability analysis

In this Section, we study the stability of the permanent rotations presented in Theorem 1. Applying a linear
approximationmethod, we obtain the necessary conditions for stability. Thismeans, according to the Lyapunov
theorem (see, e.g., [39]), that the equilibrium solutions that are unstable in linear approximation remain unstable
when the nonlinear terms are taken into accountwhile the stable equilibrium solutions need further investigation
when the nonlinear terms are taken into account. Thus, the linear approximation method gives the necessary
conditions for the stability and the sufficient conditions for instability. Consequently, in order to obtain the
sufficient conditions for the stability of these permanent rotations, we utilize the energy-Casimir method. This
method was applied in various works (see, e.g., [22–25]). This method is epitomized in the following.

Theorem 2 (Generalized energy-Casimir method) Let (M, {., .}, h) be a Poisson system, and m ∈ M be an
equilibrium of the Hamiltonian vector field Xh. If there is a set of conserved quantities C1,C2, . . . ,Cn ∈
C∞(M) for which

d(h + C1 + C2 + · · · + Cn)(m) = 0

and

d2(h + C1 + C2 + · · · + Cn)(m)|W×W

is definite for W defined by

W = kerdC1(m) � kerdC2(m) � · · · � kerdCn(m), (25)

then m is stable. If W = {0}, m is always stable.

4.1 Necessary conditions for stability

We are going to demonstrate the necessary conditions for stability (or sufficient conditions for instability) for
the permanent rotations that are introduced in Theorem 1. We evaluate the tangent flow of Eqs. (5) and (7) at
the equilibrium solution E = (M10, M20, M30, γ10, γ20, γ30) that is denoted

dz
dt

= JEz

where JE is the Jacobian matrix and is given by

JE =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 J12 J13 0 bM30
C + mgz0 − cM20

B
k+cγ30

A + (C−A)M30
AC 0 J23 −mgz0 − aM30

C 0 cM10
A

(A−B)M20
AB − bγ20

A
(A−B)M10

BA + aγ10
B 0 aM20

B − bM10
A 0

0 − γ30
B

γ20
C 0 M30

C −M20
B

γ30
A 0 − γ10

C −M30
C 0 M10

A

− γ20
A

γ10
B 0 M20

B −M10
A 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

where

J12 = −k + cγ30
B

+ (B − C)M30

BC
, J13 = bγ20

C
+ (B − C)M20

BC
, J23 = (C − A)M10

AC
− aγ10

C
.

In order to study the linear stability, we determine the eigenvalues of the matrix JE corresponding to the
equilibrium solutions. These eigenvalues are the roots of the characteristic equation

det(JE − λI6) = 0 (27)

where I6 is the 6 × 6 identity matrix and JE is the Jacobian matrix that is given by (26) while λ denotes the
eigenvalue. The characteristic equation (27) corresponding to the equilibrium solutions Ei , i = 1, 2, 3, 4, 5
takes the form
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λ2(λ4 + Piλ
2 + Qi ) = 0, i = 1, 2, . . . , 5 (28)

where Pi and Qi are calculated for each equilibrium solution Ei individually. Thus, we have:

• For the equilibrium solution E±
1 , we have

P1 = 1

AB
[((2A − C)A − C(B − C))ω2 − (A(K ± a) + B(K ± b) − 2CK )ω

+ K 2 ∓ mgz0(A + B)],
Q1 = 1

AB
[(B − C)ω2 − (K ∓ b)ω ± mgz0][(A − C)ω2 − (K ∓ a)ω ± mgz0], (29)

where K = k ± c.
• For the permanent rotation E2, the two expressions P2 and Q2 are given by

P2 = ω2

ABC
[(B − C) cos2 θ(−C2 + (2A + B)C + B(A − B) + B3 − (A + C)B2 + 2ACB]

+ k2

AB
+ b2

AC
− 2kω cos θ(A + B − C)

BA
+ cos2 θ(Cc2 − Bb2)

ABC
+ ω

ACB
[B(2bB − (b + c)C

−A(a + b)) + (B(−2bB2 + ((b − c)C + A(a + b))B + (2c + A(a − b + 2c))c)) cos2 θ ],
Q2 = 3ω sin2 θ((B − A)ω + b − a)

ABC
[(B − C)(3ω2(B − C) cos2 θ − 4kω cos θ + Bω2) + k2

+ (b − c)((3(B − C)ω + b − c) cos2 θ − 2k cos θ + Bω)]. (30)

Notice that the weight of the gyrostat is eliminated by utilizing the condition (21).
• The two expressions P3 and Q3 corresponding to the permanent rotation E3 admit the form

P3 = ω2[A(A2 − A(B + C) + 2BC) − (A − C)(C2 − (A + 2B)C + A(A − B)) cos2 θ ]
−2Ckω(A + B − C) cos θ + k2C − 2cCk cos θ + [[2cC2 − (A(c − a) − B(a − b − 2c))Cω

+ (2Aa + B(a + b)A)] − Aa2 − Cc2] cos2 θ + A[a2 + ((2A − B − C)a − Bb − cC)a],
Q3 = ω sin2 θ(ω(A − B) + a − b)[(3(A − C)2ω2 + 3(a − c)(A − C)ω + (a − c)2)

−2k(2ω(A − C) + a − c) cos θ + ω2(A2 − C2) + Aω(a − c) + k2]. (31)

We should observe that the weight of the gyrostat is removed by using the condition (22).
• Taking into account the permanent solution E4, the two expressions P4 and Q4 are given by

P4 = γ 2
30

AB
[Cω2(C − A − B) − ω(A(a + c) + B(b + c) − 2cC) + c2] − γ30

AB
[kω(2C − A − B)

+mgz0(A − B) + 2ck] + 2ω2 + ωγ 2
10

CB
[a(2A − C) − B(b + a) − cC] − γ 2

20ω

AC
[A(a + b)

+C(b + c) − 2bB] + a2γ 2
10

CB
+ b2γ 2

20

AC
+ k2

AB
,

Q4 = γ 2
10γ

2
20(b − a)2

ABC(A − B)2
[a(C − B) + b(A − C) + c(B − A)] (32)

where γ10, γ20, and γ30 are given by

γ30 = kω + mgz0
ω((B − C)ω + b − c

, γ10 =
√
1 − γ 2

30 sin ϕ, γ20 =
√
1 − γ 2

30 cosϕ. (33)

• The two expressions P5 and Q5 associated to the permanent rotation E5 take the form

P5 = 1

CA2ω2((A − C)ω + a − c)2
[m2g2z20A(3A2Cω2 − (4C2ω2 − Cω(a − 3c) − a2))

−2mgz0kω(Cω(A − C)(Aω − a) − a(Aa − cC)) + (A − C)2A2Cω6 + (A − C)AC
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(a) (b)

Fig. 2 The regions of linear stability and instability corresponding to the equilibrium positions E±
1 in the plane of the two

parameters k + c, ω when the other constants admit the value A = 3, B = 2.5,C = 1.5,mgz0 = 1, a = 1, b = −4. a E+
1 and

b E−
1

+C(a + c))ω5 + A(a2A2 − 3(a2 − c2 + 2ac

3
)AC + C2(3a2 − 2c2) + A(a − c)(C(c2

−3a2k2)((a − 3c)A + 2a2A)ω3 + ω2((a − c − k)(a + k − c)A + Ck2)a2),

Q5 = 0. (34)

Theorem 3 The necessary conditions for the permanent rotation Ei involving in theorem 1 to be linearly
stable (spectrally stable) are

Pi ≥ 0, Qi ≥ 0, P2
i − 4Qi ≥ 0, i = 1, 2, . . . , 4 (35)

where Pi and Qi are given by expressions (29), (30), (31), and (32). While the permanent rotation E5 is linearly
stable if P5 ≥ 0. Or, equivalently, the sufficient condition for the instability of those permanent rotations can
be obtained if one of the conditions (35) is not verified.

Now, we are going to determine the regions where the necessary conditions for stability (35) are satisfied
in the plane of certain parameters while the other parameters take constant values. In Fig. 2, the three curves
P1 = 0, Q1 = 0, P2

1 − 4Q1 = 0 that are characterized by the solid lines divide the plane of the parameters
k ± c and ω into some regions. The regions of linear stability have a yellow color while the uncolored regions
represent the regions of instability. A similar conclusion can be performed for other Figs. 3 and 4.

4.2 Sufficient conditions for stability

In this Subsection, we are going to delimit the sufficient conditions for the permanent rotations Ei to be
Lyapunov stable employing the energy-Casimir method. We apply this method to the permanent rotations E±

1
and E2 with more details, and due to similar computations, the final results for the other permanent rotations
are introduced without details.

To apply the energy-Casimir method for E±
1 , we introduce the augmented Hamiltonian

H = 1

2

(
M2

1

A
+ M2

2

B
+ M2

3

C

)
+ mgz0γ3 + δ

[
(M1 + a

2
γ1)γ1 + (M2 + b

2
γ2)γ2 + (M3 + k + c

2
γ3)γ3

]

+ ρ(γ 2
1 + γ 2

2 + γ 2
3 ) (36)
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Fig. 3 The regions of linear stability and instability corresponding to the equilibrium positions E2,3 in the plane of the two
parameters γ3, ω when the other constants admit the values A = 3, B = 2.5,C = 1.5, a = 1, b = 2, c = 6, k = 2. a E2 and b
E3

Fig. 4 The regions of linear stability and instability corresponding to the equilibrium positions E2,3 in the plane of the two
parameters γ3, k, and γ3, ω, respectively, when the other constants admit the values B = 3, A = 2.5,C = 1.5,m = 1, g =
1, z0 = 1, a = 2, b = 1, c = 3. a E4 and b E5

where δ and ρ are arbitrary constants that are determined in such a way guaranteeing that E±
1 is a critical point

of H, i.e.,

∂H
∂Mj

|E±
1

= 0,
∂H
∂γ j

|E±
1

= 0, j = 1, 2, 3, (37)

which give the values of δ, ρ as

δ = ∓ω, ρ = 1

2
[Cω2 + (k ± c)ω ∓ mgz0]. (38)

Now, we determine the space W ,

W = ker dC1(E
±
1 )

⋂
ker dC2(E

±
1 ), (39)

where C1, C2 are two Casimirs (13) and (14). On the other side, we have

dC1(E
±
1 ) = ±2dγ3, dC2(E

±
1 ) = ±dM3 + (Cω + k ± c)dγ3. (40)
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(a) (b)

Fig. 5 The regions of Lyapunov stability and instability corresponding to the equilibrium positions E±
1 in the plane of the two

parameters ω, k ± c when the other constants admit the values B = 3, A = 2.5,C = 1.5,m = 1, g = 1, z0 = 1, a = 2, b =
1, c = 3. a E+

1 and b E−
1

Thus, the space W is spanned by the vectors �e1, �e2, �e4, �e5 where �ei , i = 1, 2, . . . , 6 are the canonical basis of
R
6. The Hessian matrix corresponding to the augmented Hamiltonian (36) in the reduced space W admits the

form

Hess|W×W =

⎛
⎜⎜⎝

1
A 0 0 ∓ω

0 1
B ∓ω 0

0 ∓ω Cω2 + (k ± c ∓ b)ω ∓ mgz0 0
∓ω 0 0 Cω2 + (k ± c ∓ a)ω ∓ mgz0

⎞
⎟⎟⎠ . (41)

Employing the Sylvester criterion to demonstrate the definiteness of the Hessian matrix (41), we compute its
principal minors

Δ1 = 1

A
, Δ2 = 1

AB
,

Δ3 = − (B − C)ω2 − ω(k ± c ∓ b) ± mgz0
AB

,

Δ4 = −Δ3[(A − C)ω2 − (k ± c ∓ a)ω ± mgz0]. (42)

It is clear that Δ1 and Δ2 are always positive while Δ3 and Δ4 are always positive together if and only if

(B − C)ω2 − ω(k ± c ∓ b) ± mgz0 < 0, (A − C)ω2 − (k ± c ∓ a)ω ± mgz0 < 0. (43)

Taking into account all obtained results concerning the permanent rotation E±
1 , we can present the following

Theorem 4 The necessary and sufficient conditions for the permanent rotation E±
1 to be Lyapunov stable are

(B − C)ω2 − ω(k ± c ∓ b) ± mgz0 < 0, (A − C)ω2 − (k ± c + a)ω ± mgz0 < 0. (44)

Two conditions (44) are represented by a gray region in the plane of the two parameters ω and k ± c as
it is outlined in Fig. 5. This region specifies the regions of Lyapunov stability. Moreover, two Figs. 2 and 5
clarify that the region of Lyapunov stability for the permanent rotation E±

1 is a portion of the yellow region
that defines the linear stability.

Now, we consider a special case corresponding to the axisymmetric gyrostat B = A and b = a, and the
stability conditions (44) for E+

1 (similarly for E−
1 ) reduce to a single condition

(A − C)ω2 − ω(k + c − a) + mgz0 < 0. (45)
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For the uncharged gyrostat c = a = 0, condition (45) reduces to

(A − C)ω2 − kω + mgz0 < 0, (46)

which is identifiedwith the condition obtained in [23]. Furthermore, this condition is different from the classical
condition [15,40]

(Cω + k)2 ≥ mgAz0. (47)

Condition (46) is more restrictive, in the sense that if condition (46) is verified also condition (47) is satisfied,
but not necessarily in the reverse way. This is due to

(Cω + k)2 − 4A((C − A)ω2 + kω) = (k + (C − 2A)ω)2 ≥ 0. (48)

We now are going to study the Lyapunov stability for the permanent rotation E2 utilizing the energy-
Casimir method. To do this, we consider the augmented Hamiltonian (36) and determine the values of the two
constants δ, ρ which make E2 a critical point for the augmented Hamiltonian (36), i.e.,

∂H
∂Mj

|E2 = 0,
∂H
∂γ j

|E2 = 0, j = 1, 2, 3. (49)

Using condition (21), Eq. (49) gives

δ = −ω, ρ = 1

2
(Bω + b)ω. (50)

Let us now specify the space W that is defined as

W = ker dC1(E2)
⋂

ker dC2(E2) (51)

where C1 and C2 are given by (13) and (14), respectively. On another side, we have

dC1 = dγ3 + sin θ

cos θ
dγ2,

dC2 = dM3 + sin θ

cos θ
dM2 + sin θ

cos2 θ
[((B − C)ω + b − c) cos θ − k]dγ2. (52)

After some manipulations, the space W is spanned by the vectors

�e1, �e4, cos θ �e2 − sin θ �e3, sin θ [((B − C)ω + b − c) cos θ − k] �e3 − cos2 θ �e5 + sin θ cos θ �e6
where �ei , i = 1, 2, . . . , 6 are the canonical basis of R6. The Hessian matrix associated to the augmented
Hamiltonian in the reduced space W takes the form

Hess|W×W =

⎛
⎜⎜⎝

1
A 0 0 −ω

0 cos2 θ
B + sin2 θ

C H23 0
0 H23 H33 0

−ω 0 0 ω(Bω + b − a)

⎞
⎟⎟⎠ (53)

where

H23 = Cω cos3 θ + ((B − 2C)ω + b − c) cos θ sin2 θ − k sin2 θ

C
,

H33 = 1

C
[BCω2 cos4 θ + ((B2 − 3BC + 3C2)ω2 + (b − c)(2B − 3C) + (b − c)2) sin2 θ cos2 θ

−2k((B − 2C)ω + b − c) cos θ sin2 θ + k2 sin2 θ ]. (54)

The Sylvester criterion is used to determine the definiteness of the Hessian matrix (53), and so, we write down
the principal minors as
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Fig. 6 The regions of linear stability and instability corresponding to the equilibrium positions E2,3 in the plane of the two
parameters γ3, ω when the other constants admit the values A = 3, B = 2.5,C = 1.5, a = 1, b = 2, c = 6, k = 2. a E2 and b
E3

Δ1 = 1

A
, Δ2 = 1

A

(
cos2 θ

B
+ sin2 θ

C

)
,

Δ3 = sin2 θ cos2 θ

ABC
[((4B2 − 7BC + 3C2)ω2 + (b − c)(4B − 3C)ω + (b − c)2) cos2 θ

−2k cos θ(2(B − C)ω + b − c) + Bω((B − C)ω + b − c) sin2 θ + k2],
Δ4 = ω[(B − A)ω − a + b]Δ3. (55)

It is clear that Δ1 and Δ2 are always positive for any values of the angle θ ∈]0, 2π[. The principal minor Δ3
is positive if

((4B2 − 7BC + 3C2)ω2 + (b − c)(4B − 3C)ω + (b − c)2) cos2 θ − 2k cos θ(2(B − C)ω + b − c)

+Bω((B − C)ω + b − c) sin2 θ + k2 > 0, (56)

and Δ4 is positive only if ω[(A − B)ω + a − b] < 0. Thus, we can formulate the following theorem:

Theorem 5 The necessary and sufficient conditions for the permanent rotation E2 to be Lyapunov stable are
ω[(B − A)ω − a + b] > 0 and

((4B2 − 7BC + 3C2)ω2 + (b − c)(4B − 3C)ω + (b − c)2) cos2 θ − 2k cos θ(2(B − C)ω + b − c)

+Bω((B − C)ω + b − c) sin2 θ + k2 > 0.

In an analogous way, we can study the Lyapunov stability for the permanent rotation E3, and this result is
summarized in the following theorem:

Theorem 6 The necessary and sufficient conditions for the permanent rotation E3 to be Lyapunov stable are
ω[(A − B)ω + a − b] > 0,

[(4A2 − 7AC + 3C2)ω2 + (a − c)(4A − 3C) + (a − c)2] cos2 θ − 2k cos θ [2ω(A − C) + a − c]
+Aω[(A − C)ω + a − c] sin2 θ + k2 > 0. (57)

It is clear that the two Figs. 3 and 6 illustrate the regions of the Lyapunov stability for the permanent
rotations E2 and E3 that are characterized by a gray color which are a part of the regions of linear stability
that are colored by yellow color.

For the two permanent rotations E4 and E5, the energy-Casimir method does not give us any information
about the sufficient conditions of stability because the quadratic form is semidefinite.
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