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Abstract Following the history of mechanics (Dugas in A history of mechanics, Dover, New York, 1988),
we read that Poisson’s theorem figured in the 1811 edition of the celebrated Mécanique Analytique. Indeed,
as it can be observed in the classical textbooks, Poisson brackets formulation is one of the cardinal chapters
of analytical mechanics. Given the natural motivation to accommodate variable-mass systems at the level of
classical analytical mechanics, we will herein direct our attention toward Poisson brackets formulation. To
wit, considering the case of a position-dependent mass particle, in which we will assume that the absolute
velocity of mass ejection or aggregation is a linear function of the generalized velocity, we will endeavor to
provide such position-dependent mass problems with an appropriate Poisson brackets formulation. To our
very best knowledge, this means an original contribution to the research field of the analytical mechanics
of variable-mass systems. We will start establishing the Poisson brackets definition for the dynamics of a
position-dependent mass particle, which will be posited in harmony with the classical mathematical portrait
of analytical mechanics. Therefrom, we will demonstrate consequent results which give rise to the required
formulation, namely, Jacobi’s identity, canonical equations expressed by means of such Poisson brackets and
Poisson’s theorem. Last, we will apply Poisson’s theorem to evaluate the relationship between the conservation
laws which are at our disposal in the domain of position-dependent mass problems.

1 Motivation

The idea of varying mass is intimately related to situations in which—through the agency of certain
standpoints—we conceive of the quantity of matter in such a way that its conservation does not hold true
obligatorily. It means that variable-mass problems arise from approaches that view a specific portion of the
system. To wit, the mechanics of variable-mass systems encompasses problems which in general comprehend
non-material control volumes and points of varying mass. To unfamiliar readers, we suggest, as representative
works, [1–3].

Studies of the subject date back to eighteenth century, and, thenceforth, a flow of contributions has estab-
lished itself (see, e.g., [1,2,4]). We recollect that the mathematical framework of classical mechanics was
originally conceived for constant-mass problems. This has driven forward a series of investigations which aim
to provide variable-mass systems with suitable formulations. Needless to say, there have been serious efforts
in this sense, and, for a brief sample of them, we indicate [3,5–7].

It has been evidenced that the inverse problem of Lagrangian mechanics (see [8,9]) is a fruitful tool to
introduce variable-mass systems into the cardinal chapters of analytical mechanics. See, for instance, [7] and
references therein cited. An important result in this field is the fact that position-dependent mass particles
admit a first integral of energy (see, e.g., [7]). Recently, it was demonstrated that there is a conservation law of
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different form holding in such type of variable-mass problem (see [10]). We clarify that by position-dependent
mass particle we mean a particle having its quantity of matter given by a function depending only upon the
generalized coordinate.

Given the conservation laws, it is interesting to evaluate if there exists a relation between them. With
the initial intent of tackling this issue, we will herein make use of Poisson’s theorem. This consequently
motivates us to delineate the Poisson brackets formulation of the dynamics of a position-dependent mass
particle. Moreover, to our very best knowledge, an investigation of this nature is original within the realm of
position-dependent mass problems. Poisson brackets formulation is indeed one of the basic topics of analytical
mechanics (see, e.g., [11]); therefore, we humbly believe that our present endeavor can be of some value for
the current developments of the theory about variable-mass systems.

Before proceeding, it is appropriate to somehow emphasize the advantage of the aimed formulation with
respect to the previously established one. First, we explain that Poisson brackets formulation is related to the
Hamiltonian picture. Second, Poisson brackets formulation inherently owns an aspect of elegancy, and, as
remarked by Dugas [12, p. 387], Poisson’s theorem has become classical and evidently exhibits considerable
aesthetic value. This reinforces our motivation to delineate the Poisson brackets formulation of the dynamics
of a position-dependent mass particle. Turning our attention to the use of the Poisson brackets formulation
within the dynamics of a position-dependent mass particle, we lay stress on the fact that, besides the possibility
of being applied to deal with the conservation laws currently at our disposal, there is also the possibility of
being used to test the canonical character of a given transformation. The latter use will not be addressed herein,
but the reader finds a general explanation of it in [13, p. 216].

2 Preliminaries

ThisSectionbrings forward elements of the dynamics of a position-dependentmass particlewhich are important
for our discussion. Please consider the following:

In conformity with our previous works (see [7,10]), we assume that the equation of motion of our position-
dependent mass problem is

m(q)q̈ + dV (q)

dq
− αq̇2 dm(q)

dq
= 0, (1)

in which q is the generalized coordinate, m = m(q) is position-dependent mass, V = V (q) is the real potential
energy, and an overdot represents differentiation with respect to t . It is also assumed that the absolute velocity
of mass ejection or aggregation is a linear function of the generalized velocity q̇ , i.e., kq̇ , where k = const.
and α = k − 1 = const.

Hamiltonian formulation By virtue of the inverse problem of Lagrangian mechanics, the Hamiltonian of our
problem is (see [8])

H̃(q, p̃) = 1

2

p̃2

m(q)−2α +
∫

m(q)−2α−1 dV (q)

dq
dq, (2)

where p̃ is the canonical momentum, i.e.,
p̃ = m(q)−2αq̇. (3)

Canonical equations Having the Hamiltonian H̃ and the canonical momentum p̃, we write the canonical
equations (see [8]), i.e.,

q̇ = ∂ H̃

∂ p̃
⇒ q̇ = p̃

m(q)−2α , (4)

˙̃p = −∂ H̃

∂q
⇒ ˙̃p = −α

dm(q)

dq

p̃2

m(q)1−2α − m(q)−2α−1 dV (q)

dq
. (5)

Conservation law 1By reason of themathematical framework settled by the inverse problem, the conservation
law (see [8])

H̃(q, p̃) = 1

2

p̃2

m(q)−2α +
∫

m(q)−2α−1 dV (q)

dq
dq = Ẽ = const. (6)

holds.
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Conservation law 2 As demonstrated in [10], the conservation law

f (q)

(
1

2
m(q)q̇2 + V (q)

)
= const., (7)

where f = exp
[
−( 12 + α)

∫ (
2(dm(q)/dq)m(q)2α(Ẽ−Ṽ (q))

m(q)2α+1(Ẽ−Ṽ (q))+V (q)

)
dq

]
, Ṽ = ∫

m(q)−2α−1 dV (q)

dq
dq, and 1

2m(q)−2αq̇2

+ Ṽ (q) = Ẽ = const.; also holds in the position-dependent mass problem in question.
Through the canonical momentum (3), Eq. (7) is translated into

I (q, p̃) = f (q)

(
1

2

p̃2

m(q)−4α−1 + V (q)

)
= const. (8)

3 Poisson brackets formulation written for the position-dependent mass problem

For the sake of clarity of purpose, we elucidate that the following formulation is consistent with the classical
mathematical frame of analytical mechanics (see [11–16]). It means that the following formulae are specific
for our position-dependent mass problem in the sense that they will carry the superscript ∼. This is a question
of symbology, which facilitates the reader to keep in mind that we are dealing with quantities properly resulting
from the inverse problem of Lagrangian mechanics (see [8]).

It is likewise appropriate to explain the reason why we will lead the reader through the content which will
be next presented. Namely, we will trace a way which originates at Poisson brackets definition in the realm
of our position-dependent mass problem and ends at the corresponding Poisson’s theorem. The motivation
is to provide the reader who is not familiar with Poisson brackets formulation with an easily checked out
demonstration of it. Furthermore, we believe that the next exposition will be helpful for who is not familiar
with our previous discussions involving the tilde symbology (see [8]), that is, they will be able to immediately
recognize the relation between the well-known results of classical literature and the corresponding ones having
tilde symbols.

Given that, please consider:

Poisson brackets For any functions u and v of the type u = u(q, p̃, t) and v = v(q, p̃, t), we define the
Poisson brackets of the dynamics of a position-dependent mass particle to be

[u, v]q, p̃ =
(

∂u

∂q

∂v

∂ p̃
− ∂u

∂ p̃

∂v

∂q

)
. (9)

Remark 1 For the sake of a clarifying notation, the subscript q, p̃ is attached to the brackets.

Identity 1 Given such Poisson brackets definition for the dynamics of a position-dependent mass particle, we
become able to accordingly conceive of the meaning of total derivative. Namely, for a function of the type
w = w(q, p̃, t), it follows from the canonical equations q̇ = ∂ H̃/∂ p̃ and ˙̃p = −∂ H̃/∂q (see Sect. 2) that the
total derivative can be expressed as

dw

dt
= [w, H̃ ]q, p̃ + ∂w

∂t
. (10)

Proof By differentiation,
dw

dt
= ∂w

∂q
q̇ + ∂w

∂ p̃
˙̃p + ∂w

∂t
. (11)

Substituting the canonical equations q̇ = ∂ H̃/∂ p̃ and ˙̃p = −∂ H̃/∂q in (11), we obtain

dw

dt
= [w, H̃ ]q, p̃ + ∂w

∂t
. (12)

The proof is concluded. ��
Identity 2 (Jacobi) In light of the Poisson brackets definition (9), the identity

[u, [v,w]q, p̃]q, p̃ + [v, [w, u]q, p̃]q, p̃ + [w, [u, v]q, p̃]q, p̃ = 0 (13)

holds.
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Proof The identity can be verified by simply using definition (9) and differentiation; therefore, for the sake of
brevity, we will here not present such a proof. ��
Remark 2 As it will be confirmed by the eye of the reader, identities 1 and 2 play a fundamental role in the
demonstration of the next results.

Canonical equations expressed by means of Poisson bracketsThe canonical equations (4) and (5) are
equivalent to

q̇ = [q, H̃ ]q, p̃, (14)

˙̃p = [ p̃, H̃ ]q, p̃. (15)

Proof If w(q, p̃, t) = q , it is immediate that ∂w/∂t = 0. Therefrom, identity 1 yields

dq

dt
= [q, H̃ ]q, p̃, i.e., (16)

q̇ = [q, H̃ ]q, p̃. (17)

If w(q, p̃, t) = p̃, then also ∂w/∂t = 0. Since ˙̃p = d p̃/dt , identity 1 gives

˙̃p = [ p̃, H̃ ]q, p̃. (18)

The proof is concluded. ��
Theorem (Poisson) If A = A(q, p̃) and B = B(q, p̃) are conservation laws of the canonical equations (4)
and (5); then, [A, B]q, p̃ is also a conservation law.

Proof Let us consider identity 1. For w = A(q, p̃), we have

dA

dt
= [A, H̃ ]q, p̃. (19)

Due to the fact that A = const. is a conservation law of the canonical equations (4) and (5), the left-hand
side of Eq. (19) vanishes, i.e.,

[A, H̃ ]q, p̃ = 0. (20)

By the same manner, we have

[B, H̃ ]q, p̃ = 0. (21)

Now we write identity 2 in the form of

[H̃ , [A, B]q, p̃]q, p̃ + [A, [B, H̃ ]q, p̃]q, p̃ + [B, [H̃ , A]q, p̃]q, p̃ = 0. (22)

In virtue of the anti-symmetry property, i.e., [u, v]q, p̃ = −[v, u]q, p̃ (see, e.g., [13]), we transform Eq. (22)
into

−[[A, B]q, p̃, H̃ ]q, p̃ + [A, [B, H̃ ]q, p̃]q, p̃ + [B, −[A, H̃ ]q, p̃]q, p̃ = 0. (23)

Substituting Eqs. (20) and (21) into (23), we obtain

−[[A, B]q, p̃, H̃ ]q, p̃ + [A, 0]q, p̃ + [B, 0]q, p̃ = 0. (24)

It follows from definition (9) that
[A, 0]q, p̃ = [B, 0]q, p̃ = 0; (25)

hence, Eq. (24) becomes

[[A, B]q, p̃, H̃ ]q, p̃ = 0. (26)
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Making use of the definition for [A, B]q, p̃ (see Eq. 9), we are able to conclude that [A, B]q, p̃ is a function of
q and p̃. Consequently,

∂

∂t
[A, B]q, p̃ = 0. (27)

Notice that, if w = [A, B]q, p̃, identity 1 furnishes

d

dt
[A, B]q, p̃ = [[A, B]q, p̃, H̃ ]q, p̃ + ∂

∂t
[A, B]q, p̃, (28)

which, owing to Eqs. (26) and (27), yields

d

dt
[A, B]q, p̃ = 0 ⇒ [A, B]q, p̃ = const. (29)

The proof is concluded. ��

4 Application

Now we have plenty of tools to deal with our foremost motivation—videlicet, evaluating the relationship
between the conservation laws 1 and 2, which are at our disposal in the domain of position-dependent mass
problems. Namely, we are able to apply Poisson’s theorem of the preceding Section to the conservation laws
1 and 2, i.e., H̃ and I—which signifies to calculate [I, H̃ ]q, p̃. Thus, inserting Eqs. (6) and (8) in the definition
for [I, H̃ ]q, p̃ (see Eq. 9), we produce the expression

[I, H̃ ]q, p̃ = f (q)m(q)4α
dm(q)

dq

{
p̃

[
−(1 + 2α)

(
(Ẽ − Ṽ (q))V (q)

m(q)2α+1(Ẽ − Ṽ (q)) + V (q)

)]

+ p̃3
[
−

(
1

2
+ α

) (
m(q)4α+1(Ẽ − Ṽ (q))

m(q)2α+1(Ẽ − Ṽ (q)) + V (q)

)
+

(
1

2
+ α

)
m(q)2α

]}
. (30)

As can be observed, [I, H̃ ]q, p̃ does not equal a constant—at least not for indiscriminate choices of the
terms appearing in the right-hand side of Eq. (30). The crux of the matter is that, for q and p̃ satisfying
the canonical equations (4) and (5), [I, H̃ ]q, p̃ truly gives rise to a constant. To wit, by using the canonical
momentum definition (see Eq. 3) and the conservation law 1 in the form of 1

2m(q)−2αq̇2 + Ṽ (q) = Ẽ , we find

[I, H̃ ]q, p̃ = 0. (31)

This confirms the fact that Eq. (31) holds true particularly for q and p̃ satisfying the canonical equations (4)
and (5)—which is the expectation given by the Poisson’s theorem for the dynamics of a position-dependent
mass particle.

5 Conclusions

We have established the Poisson brackets formulation for the dynamics of a position-dependent mass particle.
The development of it was guided through the agency of mathematical arguments, and starting from the
foundations laid by the inverse problem of Lagrangian mechanics. This was organized into a sequence of
original results, which were demonstrated to specially suit the dynamics of a position-dependent mass particle,
namely:

1. The Poisson brackets definition (see Eq. 9);
2. The Jacobi’s identity (see Eq. 13);
3. The canonical equations expressed by means of such Poisson brackets (see Eqs. 14 and 15);
4. The Poisson’s theorem (see Theorem (Poisson));
5. The application of Poisson’s theorem to the conservation laws 1 and 2, i.e., H̃ and I . To wit, we have proved

that [I, H̃ ]q, p̃ equals a constant particularly for q and p̃ satisfying the canonical equations q̇ = ∂ H̃/∂ p̃
and ˙̃p = −∂ H̃/∂q (see the Section on Application).
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Our closing observation is that the Poisson brackets formulation herein proved is harmonious with the
classical mathematical frame of analytical mechanics (see [11–16]). This notable aspect was achieved via
considering the inverse problem of Lagrangian mechanics.

Very humbly, we expect to have revealed to the readers an original contribution to the important research
field of variable-mass systems mechanics.

Acknowledgements This research did not receive any specific grant. I thank the anonymous reviewers for their suggestions,
which have in a great manner improved the article. The conclusion of this work was only possible due to the inestimable support
which has been very gently provided by Carlos Roberto do Prado and Tânia Mara Carbonar do Prado, who are my parents-in-law.

References

1. Irschik, H., Holl, H.J.: Mechanics of variable-mass systems-part 1: balance of mass and linear momentum. Appl. Mech. Rev.
57(2), 145–160 (2004)

2. Irschik, H., Belyaev, A.K. (eds.): Dynamics of mechanical systems with variable mass. In: Series: CISM—International
Centre for Mechanical Sciences, vol. 557, p. 266. Springer, Berlin (2014)
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