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Abstract The formulation of an Euler–Bernoulli beam finite element with spatially varying uncertain proper-
ties is presented. Uncertainty is handled within a non-probabilistic framework resorting to a recently proposed
interval fieldmodel able to quantify the dependency between adjacent values of an interval quantity that cannot
differ as much as values that are further apart. Once the interval element stiffness matrix is defined, the set
of linear interval equations governing the interval global displacements of the finite element model is derived
by performing a standard assembly procedure. Then, the bounds of the interval displacements and bending
moments are determined in approximate explicit form by applying a response surface approach in conjunction
with the so-called improved interval analysis via extra unitary interval. For validation purposes, numerical
results concerning both statically determinate and indeterminate beams with interval Young’s modulus are
presented.

1 Introduction

The growing awareness of the influence of inevitable uncertainties on the performance of engineering systems
has stimulated an increasing interest toward the development of efficient non-deterministic numerical proce-
dures to achieve more robust and reliable designs (see, e.g., [1,2]). In this context, a major challenge is to
incorporate the non-deterministic input parameters into standard finite element (FE) models and then develop
efficient propagation strategies. This task is commendably accomplished within the probabilistic framework
by the well-established stochastic finite element method (SFEM) (see, e.g., [3]) which may be regarded as the
most powerful tool currently available to integrate random input parameters into numericalmodeling. Recently,
much research effort has been devoted to develop a similar tool within a non-probabilistic framework, giving
rise among others to the so-called interval finite element method (IFEM) where the uncertain parameters are
modeled as interval variables with given lower bound (LB) and upper bound (UB) [4]. Such a model proves to
be very useful when available data are insufficient to build a credible probabilistic distribution of the uncertain
parameters, as it happens in early design stages [5]. Furthermore, the propagation of interval uncertainty usu-
ally requires less intensive calculations. The main drawback of the interval model is the overestimation of the
interval solution range due to the so-called dependency phenomenon [4] which often leads to useless results
in the context of engineering design. Several versions of the IFEM have been proposed with the purpose of
finding sharp bounds of the interval output [6–11]. For a general overview of the state-of-the-art and recent
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advances in interval finite element analysis, readers are referred to [12,13]. An effective remedy to the drastic
overestimation affecting interval-based structural analyses is the improved interval analysis [14] which over-
comes the main drawbacks of the classical interval analysis (CIA) by using a particular unitary interval, called
extra unitary interval (EUI).

Besides the limitation of the effects of the dependency phenomenon, other two challenging tasks need to
be tackled in the development of IFEMs: to properly take into account the spatial character of uncertainties,
like material or geometric properties to build computationally efficient propagation procedures.

In standard IFEMs, spatially variable interval uncertainties, such as Young’s modulus of the material or
plate thickness, are commonly discretized assigning an interval-valued parameter to each FE. The uncertain
property is thus represented over the whole domain by a set of interval variables which are by definition
unable to account for mutual dependency. Indeed, this approach relies on the extreme assumption of spatial
independency of uncertainties which is both unrealistic and computationally expensive due to the large number
of interval variables involved. Alternatively, a single interval variable over the entire model can be assumed
which implies the introduction of the opposite extreme hypothesis of total spatial dependency.

In order to provide a more realistic description of spatially varying interval uncertainties, the interval field
model [15,16] has been recently introduced as the natural extension of the random field concept [17] to the
non-probabilistic framework. The key idea behind the interval field model is to express the uncertain property
as superposition of deterministic basis functions representing the spatial character, weighted by independent
interval coefficients representing the uncertainty. Different definitions of the interval field have been introduced
in the literature, such as those based on the InverseDistanceWeighting interpolation (IDW) or the Local Interval
FieldDecompositionmethod (LIFD) [18,19]. Recently, the author contributed to the development of an interval
field model based on the IIA via EUI [20]. Such a model accounts for the dependency between interval values
of an uncertain property at various locations by introducing a deterministic, symmetric, non-negative, bounded
function, called spatial dependency function, playing the same role of the autocorrelation function in random
field theory. The static analysis of both Euler–Bernoulli [21] and Timoshenko [22] beams with uncertain
properties represented by means of the interval field model based on the IIA via EUI has been performed by
applying the so-called Interval Rational Series Expansion (IRSE) in the context of a finite difference scheme.
Recently, Wu and Gao [23] proposed a computational scheme, called extended unified interval stochastic
sampling, to perform a hybrid uncertain static analysis of structures involving random and interval fields.

The interval field model based on the IIA via EUI [20] exhibits some important advantages with respect
to the above mentioned models, i.e.: (i) the basis functions can be readily defined based on the knowledge of
the eigenvalues and eigenfunctions of the spatial dependency function, which should reproduce as closely as
possible the real spatial variability of the uncertain property; (ii) the interval coefficients are represented by the
EUIs which do not follow the rules of the CIA and thus allow one to limit the overestimation of the solution
range due to the dependency phenomenon; (iii) the dimensionality of uncertainty is drastically reduced since
it does not depend on the number of FEs of the mesh.

The aim of the present paper is to incorporate the interval field representation of uncertain input properties
into the standard finite element procedure. Without loss of generality, attention is focused on the formulation
of an Euler–Bernoulli beam element with uncertain Young’s modulus described as an interval field based on
the IIA via EUI. By applying the standard energy approach, the interval element stiffness matrix is derived as
sum of the nominal value plus an interval deviation. The latter is given by the superposition of independent
contributions which are identified by the associated EUIs. Such a feature enables to apply a standard assembly
procedure to derive the set of linear interval equations governing the interval global displacements of the FE
model. Then, an efficient procedure for evaluating the bounds of the interval response is developed by applying
a response surface approach [24] in conjunction with the IIA via EUI. The proposed solution strategy allows
a drastic reduction of the computational effort compared to combinatorial procedures. Another remarkable
feature of the presented method is the capability of providing very accurate estimates of secondary variables
as well.

The selected case studies concern both statically determinate and indeterminate beams, say a cantilever
beam and a fixed-simply supported beam with interval Young’s modulus under deterministic static loads.
The influence of the spatial dependency of the uncertain property is investigated by appropriate comparisons
with the results provided by the standard IFEM under the assumption of independent interval Young’s moduli
for each FE. Furthermore, the accuracy and efficiency of the presented IFE formulation are demonstrated by
contrasting the proposed bounds of the responsewith those provided by a burdensome combinatorial procedure,
known as vertex method (VM) [25].
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Fig. 1 a Euler–Bernoulli beam under distributed load with uncertain Young’s modulus; b interval Euler–Bernoulli beam FE

The paper is organized as follows: in Sect. 2, the main features of the interval field model based on the IIA
via EUI are briefly summarized; Sect. 3 is devoted to the formulation of the Euler–Bernoulli beam element
with interval Young’s modulus field; Sects. 4 and 5 focus on the development of an efficient procedure for
the evaluation of the bounds of the interval displacements and bending moments; finally, in Sect. 6, numerical
results are presented.

2 Euler–Bernoulli beam with spatially varying interval Young’s modulus

Let us consider a linear elastic Euler–Bernoulli beam of length L subjected to a deterministic transversally
distributed load pz(x) (see Fig. 1). The geometric properties of the beam are assumed to be known deter-
ministically, while Young’s modulus of the material is treated as an uncertain parameter in the context of the
interval model of uncertainty [4]. Specifically, in order to take into account the inherent spatial variability,
the uncertain material property is represented as an interval field, E I (x), adopting a recently proposed model
[20–22] based on the so-called improved interval analysis via extra unitary interval (IIA via EUI) [14]. For
the sake of clarity, first the main features of the assumed interval field model are briefly outlined, and then the
equations governing the response of the beam with interval Young’s modulus are formulated.

Let the uncertain Young’s modulus be described by the following interval function:

E I (x) = [
E(x), Ē(x)

] = E0

[
1 + BI (x)

]
, x ∈ [0, L] (1)

where the superscript I denotes interval quantities; E(x) and Ē(x) are the lower bound (LB) and upper bound
(UB). The midpoint value E0 ∈ R, taken constant over the whole domain [0, L], and the deviation amplitude
�E(x) of the interval function E I (x) are given, respectively, by:

mid
{
E I (x)

}
= Ē(x) + E(x)

2
≡ E0, (2.1)

�E(x) = Ē(x) − E(x)

2
≡ E0�B(x), x ∈ [0, L] (2.2)

where mid{•} denotes the midpoint of the interval quantity into curly parentheses. In Eq. (1), BI (x) =[
B(x), B̄(x)

]
denotes a dimensionless interval function having zero midpoint and deviation amplitude

�B(x) < 1, so that the midpoint value of E I (x) coincides with the nominal value of the uncertain mate-
rial property (see Eq. (2.1)).

The spatial dependency of the interval field is assumed to be governed by a real, deterministic, symmetric,
non-negative function, ΓB(x, ξ), defined as follows:

ΓB(x, ξ) = mid
{
BI (x)BI (ξ)

}
≡ mid

{
E I (x)E I (ξ)

}

(E0)
2 − 1, x, ξ ∈ [0, L]. (3)

Notice thatΓB(x, ξ), named spatial dependency function, represents themidpoint of the dimensionless interval
function BI (x)BI (ξ).

By viewing the function ΓB(x, ξ) as the non-probabilistic counterpart of the autocorrelation function
characterizing probabilistically a random field, the following Karhunen–Loève (KL)-like decomposition can
be applied [26]:
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ΓB(x, ξ) =
∞∑

i=1

λiψi (x)ψi (ξ) ⇒ ΓB(x, x) ≡ mid

{(
BI (x)

)2} =
∞∑

i=1

λiψ
2
i (x) (4)

where λi , (i = 1, 2, . . .), is the i th eigenvalue of the bounded, symmetric, non-negative function,ΓB(x, ξ), and
ψi (x), (i = 1, 2, . . .), is the corresponding eigenfunction, solutions of the following homogeneous Fredholm
integral equation of the second kind:

L∫

0

ΓB(x, ξ)ψi (x)dx = λiψi (ξ). (5)

The eigenvalues, λi , are real positive numbers, and the associated eigenfunctions, ψi (x), are real functions
satisfying the following orthogonality condition:

L∫

0

ψi (x)ψ j (x)dx =
{
1 if i = j
0 if i �= j. (6)

By exploiting the properties of the so-called EUI [14], ê Ii = [−1,+1], the definition (3) of the function
ΓB(x, ξ) and the decomposition (4) truncated to the first M terms lead to the following expression of the
dimensionless interval function BI (x):

BI (x) =
M∑

i=1

√
λi ψi (x)ê

I
i , x ∈ [0, L] . (7)

Then, replacing Eq. (7) into Eq. (1), the interval field E I (x) can be recast as:

E I (x) = E0

[

1 +
M∑

i=1

√
λi ψi (x)ê

I
i

]

, x ∈ [0, L] (8)

with the LB and UB given by the following relationships:

E(x) = E0 [1 − �B(x)] ; Ē(x) = E0 [1 + �B(x)] , x ∈ [0, L] (9.1,2)

where

�B(x) = �E(x)

E0
=

M∑

i=1

∣
∣∣
√

λi ψi (x)
∣
∣∣, x ∈ [0, L] (10)

with |•| denoting the absolute value of •.
It is worth remarking that the interval field model based on the IIA via EUI (8) describes separately the

spatial dependency and the uncertainty of Young’s modulus bymeans of the deterministic functions
√

λi ψi (x)
and the associated EUIs, respectively. This is a highly desirable feature in the framework of interval field
representation (see, e.g., [19]) which enables to apply propagation techniques commonly used for discrete
input interval variables. In this regard, it is also observed that the interval field model based on the IIA via
EUI ensures substantial computational savings since the number of independent interval parameters is no
more related to the number of FEs in the mesh, but it is always given by the truncation order of the KL-like
decomposition, say M .

In analogy with the autocorrelation function characterizing a random field, the analytical expression of the
spatial dependency function, ΓB(x, ξ), needs to be postulated in a physically consistent way. Without loss of
generality, the following exponential form is assumed:

ΓB (x, ξ) = C2
B exp

(
−|x − ξ |

lB

)
(11)

where the parameters CB and lB may be regarded, respectively, as the non-probabilistic counterpart of the
standard deviation and correlation length in random field theory. Indeed, CB is a parameter affecting the
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deviation amplitude of the interval field and thus the degree of uncertainty, while lB rules the spatial dependency
of the uncertain property. If lB → ∞, the spatial dependency function in Eq. (11) approaches the valueC2

B and
the dimensionless interval function BI (x) reduces to a symmetric interval variable, i.e., BI (x) ≡ bI = bêI

with deviation amplitude b = CB . At the opposite extreme, as lB → 0, the uncertainYoung’smodulus becomes
spatially independent [20]. The eigenvalues and eigenfunctions of the exponential function in Eq. (11) can be
evaluated in analytical form [26]. It is worth mentioning that different definitions of the spatial dependency
function, such as the squared exponential, can be assumed as well.

The transverse displacement of the beam with interval Young’s modulus (8) is described by an interval
field w I (x) ruled by the following fourth-order ordinary interval differential equation:

d2

dx2

[
E I (x)J0(x)

d2w I (x)

dx2

]
= pz(x) (12)

supplemented by the pertinent kinematic and static boundary conditions, herein assumed deterministic, i.e.,
independent of interval variables. In the previous equation, J0(x) denotes the moment of inertia of the beam
cross section. Upon replacing Eq. (8) for E I (x), Eq. (12) reads:

E0
d2

dx2

[
J0(x)

d2w I (x)

dx2

]
+ E0

M∑

i=1

√
λi ê

I
i
d2

dx2

[
ψi (x)J0(x)

d2w I (x)

dx2

]
= pz(x). (13)

Notice that, dropping the second term on the left-hand side, Eq. (13) yields the equilibrium equation of the
beam with nominal value of the modulus of elasticity, E0.

By applying interval extension [4], the interval total potential energy (ITPE) of the beam takes the following
form:

�[w I (x)] = �I − W I = 1

2

L∫

0

E I (x)J0(x)
(
χ I (x)

)2
dx −

L∫

0

pz(x)w
I (x)dx (14)

where �I and W I denote the interval strain energy stored in the beam and the interval work done by the
external loads, respectively; E I (x) is the interval Young’s modulus given by Eq. (8), and χ I (x) is the interval
flexural curvature, given by:

χ I (x) = −∂2w I (x)

∂x2
. (15)

In Ref. [21], an approximate solution of Eq. (13) is pursued by applying the so-called Interval Rational
Series Expansion (IRSE) in the context of a finite difference scheme. The aim of the present study is to develop
an interval finite element approach based on the formulation of an interval Euler–Bernoulli FE incorporating
the interval field model of the uncertain Young’s modulus based on the IIA via EUI.

3 Formulation of the interval Euler–Bernoulli beam finite element

Let us discretize the beam with interval Young’s modulus into N two-node beam FEs of length lh = L/N
(see Fig. 1a). According to the standard formulation of the Euler–Bernoulli beam FE, the interval transversal
displacement field within the hth FE (see Fig. 1b) is expressed as follows:

w(h)I (x) = N(h)(x)d(h)I (16)

whereN(h)(x) is the (1×4)matrix collecting the cubicHermite interpolation functionsφ(h)
j (x), j = 1, 2, . . . , 4,

which are the same as those used within a deterministic context; d(h)I is the interval vector listing the nodal
generalized displacements (see Fig. 1b):

d(h)I =
[
w

(h)I
1 θ

(h)I
1 w

(h)I
2 θ

(h)I
2

]T
(17)
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where

w
(h)I
1 = w(h)I (xh); θ

(h)I
1 = − ∂w(h)I (x)

∂x

∣
∣∣
∣∣
x=xh

; (18.1,2)

w
(h)I
2 = w(h)I (xh+1); θ

(h)I
2 = − ∂w(h)I (x)

∂x

∣
∣∣
∣∣
x=xh+1

. (18.3,4)

The interval curvature χ(h)I (x) can be expressed in terms of nodal displacements as:

χ(h)I (x) = −∂2w(h)I (x)

∂x2
= B(h)(x)d(h)I (19)

where B(h)(x) = −∂2N(h)(x)/∂x2 is the (1 × 4) curvature-displacement matrix.
Following the standard energy formulation, the interval Euler–Bernoulli beam FE can be formulated by

evaluating the ITPE of the beam (14) as sum of the contributions, �(h)[d(h)I ], associated to the N FEs.
Specifically, substituting Eqs. (16) and (19) into Eq. (14), the discretized form of the ITPE functional yields
the following quadratic form in the interval nodal displacements:

�[d(h)I ] =
N∑

h=1

�(h)I =
N∑

h=1

(
�(h)I − W (h)I

)

= 1

2

N∑

h=1

d(h)IT

⎛

⎝
xh+1∫

xh

E I (x)J0(x)B(h)T(x)B(h)(x)dx

⎞

⎠d(h)I

−
N∑

h=1

d(h)IT

⎛

⎝
xh+1∫

xh

N(h)T(x)pz(x)dx

⎞

⎠. (20)

Equation (20) can be recast as follows:

�[d(h)I ] = 1

2

N∑

h=1

d(h)ITk(h)Id(h)I −
N∑

h=1

d(h)IT f (h) (21)

where

k(h)I =
xh+1∫

xh

E I (x)J0(x)B(h)T(x)B(h)(x)dx (22)

is the interval element stiffness matrix, and

f (h) =
xh+1∫

xh

N(h)T(x)pz(x)dx (23)

is the element nodal force vector which is not affected by uncertainty.
Replacing definition (8) of the interval Young’s modulus field based on the IIA via EUI, the interval element

stiffness matrix can be recast as:

k(h)I = k(h)
0 +

M∑

i=1

k(h)
i ê Ii (24)

where

k(h)
0 = E0

xh+1∫

xh

J0(x)B(h)T(x)B(h)(x)dx (25)
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is the nominal element stiffness matrix, while

k(h)
i = E0

√
λi

xh+1∫

xh

ψi (x)J0(x)B(h)T(x)B(h)(x)dx (26)

is the deviation matrix associated with the i th term of the KL-like decomposition. The integration in Eq. (26)
may be performed either analytically, if the eigenfunctionsψi (x) of the spatial dependency function,ΓB(x, ξ),
and J0(x) (in the case of non-uniform beams) are known, or numerically. As alreadymentioned, for the selected
exponential form (11) of the function ΓB(x, ξ), the solution of the integral eigenproblem (5) can be derived
in closed form, so that analytical expressions of the interval element stiffness matrices can be obtained. To
expedite the calculations of integrals (26), a local coordinatemay be introduced, as customary in FE procedures.

Then, as in the standard FEM, the interval nodal displacement vector of the hth FE, d(h)I , is related to the
global nodal displacements collected into the interval vector UI as:

d(h)I = L(h)UI (27)

where L(h) is the connectivity matrix. Then, the assembly procedure yields the following set of linear interval
equations governing the equilibrium of the FE model of the beam:

KIUI = F (28)

where

KI = K0 +
M∑

i=1

Ki ê
I
i (29)

and

F =
N∑

h=1

L(h)T f (h) (30)

are the interval global stiffness matrix and the nodal force vector, respectively. In Eq. (29), K0 denotes the
nominal global stiffness matrix, defined as

K0 =
N∑

h=1

L(h)Tk(h)
0 L(h) (31)

while Ki is the global deviation stiffness matrix associated with the i th term of the KL-like decomposition,
given by:

Ki =
N∑

h=1

L(h)Tk(h)
i L(h). (32)

4 Approximate explicit bounds of the interval displacements

The solution set of the interval global equilibrium equations (28), , contains all possible solutions obtained
as the EUIs, ê Ii = [−1, +1], range over their intervals, i.e.:

 =
{
U ∈ R

n
∣∣KU = F, êi ∈ ê Ii = [−1,+1]

}
(33)

where n is the order of the global displacement vector U. The exact evaluation of the solution set is very
difficult since, typically, it is described by a complicated region in the output space. In the framework of
interval analysis, it is common practice to seek the interval displacement vector UI , containing the solution
set , which has the narrowest interval components. Thus, the aim is the evaluation of the LB and UB of
the interval displacement vector UI , say U and Ū. In this context, the knowledge of the exact or approximate
explicit relationship between the interval response and the EUIs is highly desirable. In this section, a procedure
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to derive approximate explicit expressions of the interval displacement components as functions of the EUIs
is presented.

Let us assume that the j th interval displacement, U I
j , can be approximated as sum of the nominal value,

U0, j , plus an interval deviation, i.e.:

U I
j = U0, j +

M∑

i=1

U I
i, j . (34)

The interval deviation is given by the superposition of the contributions,U I
i, j , i = 1, 2, . . . , M , associated with

the terms of the KL-like decomposition (8) of the interval Young’s modulus field, i.e., to the EUIs, separately
taken.

Let us approximate the i th interval deviation U I
i, j by a rational function of the EUIs, so that Eq. (34) can

be recast as:

U I
j = U0, j +

M∑

i=1

U I
i, j = U0, j +

M∑

i=1

ê Ii
Ai, j + Bi, j ê Ii

≡ Uj (ê
I
1, ê

I
2, . . . , ê

I
M ) (35)

where Ai, j and Bi, j are 2M unknown coefficients. Following the philosophy of the response surface method
[24], such coefficients can be estimated by selecting an appropriate design of experiments. A saturated design is
herein applied which requires the evaluation of the exact implicit responseU I

j at 2M sampling points selected

as follows: ê Ii = +1, ê Ij = 0, i �= j = 1, 2, . . . , M ; ê Ii = −1, ê Ij = 0, i �= j = 1, 2, . . . , M . Thus, taking into
account Eq. (35), the coefficients Ai, j and Bi, j can be obtained as solution of the following set of 2M linear
algebraic equations:

Uj (0, . . . , ê
I
i = +1, . . . , 0) ≡ U (i)+

j = U0, j + 1

Ai, j + Bi, j
; (36.1)

Uj (0, . . . , ê
I
i = −1, . . . , 0) ≡ U (i)−

j = U0, j + −1

Ai, j − Bi, j
, i = 1, 2, . . . , M (36.2)

where U0, j , U
(i)+
j and U (i)−

j are the j th components of the following vectors, respectively:

U0 = K−1
0 F; (37.1)

U(i)+ = (K0 + Ki )
−1F; (37.2)

U(i)− = (K0 − Ki )
−1F, i = 1, 2, . . . , M. (37.3)

In the previous equations, K0 is the nominal stiffness matrix (31), while Ki is the matrix defined by Eq. (32);
U0 denotes the nominal displacement vector (ê Ii = 0, i = 1, 2, . . . , M); U(i)+ and U(i)− are the deterministic
displacement vectors obtained setting all the EUIs in the KL-like decomposition of the interval Young’s
modulus equal to zero except the i th which is set to ê Ii = +1 and ê Ii = −1, respectively. Notice that 2M + 1
deterministic analyses are required.

By solving the set of equations (36.1,2), the following expressions of the unknown coefficients are derived:

Ai, j = U (i)−
j −U (i)+

j

2
(
U0, j −U (i)−

j

) (
U0, j −U (i)+

j

) ; Bi, j = U (i)−
j +U (i)+

j − 2U0, j

2
(
U0, j −U (i)−

j

) (
U0, j −U (i)+

j

) ,

j = 1, 2, . . . , n; i = 1, 2, . . . , M.

(38.1,2)

Once the coefficients Ai, j and Bi, j are known, Eq. (35) provides an approximate explicit relationship between
the interval displacements and the EUIs.

In order to evaluate the bounds of the interval response, Eq. (35) is herein rewritten in the following affine
form:

U I
j = U0, j +

M∑

i=1

U I
i, j = U0, j +

M∑

i=1

(
a0i, j + �ai, j ê

I
i

)
(39)
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where a0i, j and �ai, j are the midpoint and deviation amplitude of the i th series term, i.e.:

a0i, j = Ūi, j +Ui, j

2
; �ai, j = Ūi, j −Ui, j

2
> 0 (40.1,2)

with

Ui, j = min

{ −1

Ai, j − Bi, j
,

1

Ai, j + Bi, j

}
; Ūi, j = max

{ −1

Ai, j − Bi, j
,

1

Ai, j + Bi, j

}
. (41.1,2)

Then, the LB and UB of the j th displacement component can be evaluated as follows:

U j = mid
{
U I

j

}
−

M∑

i=1

�ai, j ; Ū j = mid
{
U I

j

}
+

M∑

i=1

�ai, j (42.1,2)

where

mid
{
U I

j

}
= U0, j +

M∑

i=1

a0i, j (43)

is the midpoint value.
The bounds of the displacement field within the generic FE can be derived by applying the standard

post-processing rules, i.e.:

w(h)(x) = min
d(h)∈d(h)I

{N(h)(x)d(h)} = min
U∈UI

{N(h)(x)L(h)U}; (44.1)

w̄(h)(x) = max
d(h)∈d(h)I

{N(h)(x)d(h)} = max
U∈UI

{N(h)(x)L(h)U}. (44.2)

Since N (h)
2 (x) < 0 and N (h)

j (x) > 0 with j �= 2, the previous relationships yield:

w(h)(x) = N (h)
1 (x)w(h)

1 + N (h)
2 (x)θ̄ (h)

1 + N (h)
3 (x)w(h)

2 + N (h)
4 (x)θ(h)

2 ; (45.1)

w̄(h)(x) = N (h)
1 (x)w̄(h)

1 + N (h)
2 (x)θ(h)

1 + N (h)
3 (x)w̄(h)

2 + N (h)
4 (x)θ̄ (h)

2 (45.2)

where the bounds of the element nodal displacements, w(h)
j and w̄

(h)
j ( j = 1, 2), and rotations, θ(h)

j and θ̄
(h)
j

( j = 1, 2), are given by:

d(h) =
[
w

(h)
1 θ

(h)
1 w

(h)
2 θ

(h)
2

]T = L(h)U; (46.1)

d̄(h) =
[
w̄

(h)
1 θ̄

(h)
1 w̄

(h)
2 θ̄

(h)
2

]T = L(h)Ū (46.2)

with U and Ū collecting the LB and UB of the interval global displacements defined by Eq. (42.1,2).

5 Approximate explicit bounds of the interval bending moment

One of the main challenges to be faced in the context of interval finite element analysis is the evaluation of
sharp bounds of the secondary variables which are more affected by the dependency phenomenon than the
primary ones due to multiple occurrences of the interval variables describing the uncertain properties. In this
section, attention is focused on the evaluation of the bounds of the interval bending moment M (h)I (x) at the
generic abscissa x within the hth FE, defined as follows:

M (h)I (x) = E I (x)J0(x)χ
(h)I (x) = E I (x)J0(x)B(h)(x)d(h)I . (47)



3780 A. Sofi

Taking into account Eq. (35) and replacing Eqs. (8) and (27) into Eq. (47), the following approximate explicit
expression of the interval bending moment M (h)I (x) in terms of the EUIs is obtained:

M (h)(x; ê I1, ê I2, . . . , ê IM ) = E0 J0(x)

[

1 +
M∑

i=1

√
λi ψi (x)ê

I
i

]

B(h)(x)L(h)U(ê I1, ê
I
2, . . . , ê

I
M ) (48)

where UI = U(ê I1, ê
I
2, . . . , ê

I
M ) is the interval vector collecting the approximate interval global displacements

defined in Eq. (35). By inspection of the previous relationship, it can be readily inferred that the interval
bending moment M (h)I (x) depends on the EUIs both through the uncertain Young’s modulus and the interval
displacements. For this reason, the bounds of the interval bending moment could be highly overestimated
unless a suitable approach, able to keep track of the dependencies between the EUIs, is applied. In view of
the knowledge of the explicit relationship (48) and taking into account that at any abscissa x the output is a
monotonic function of the EUIs, a sensitivity-based procedure can be conveniently adopted. To this aim, the
EUIs are treated as variable parameters êi ∈ ê Ii = [−1,+1] collected into the vector ê, and the sensitivities of
the bending moment to these parameters are evaluated analytically by direct differentiation, i.e.:

sM(h),i (x) = ∂M (h)(x; ê1, ê2, . . . , êM )

∂ êi

∣∣
∣∣
∣
ê=0

. (49)

Equation (49) provides information on the change of the bending moment at a prescribed abscissa x due to
a change of the i th EUI, ê Ii , within the range [−1, +1]. Specifically, M (h)(x; ê) is an increasing or decreasing
function of êi ∈ ê Ii = [−1, +1] depending on whether sM(h),i (x) > 0 or sM(h),i (x) < 0, respectively. Then,
based on the knowledge of the sensitivities sM(h),i (x), i = 1, 2, . . . , M , the combinations of the endpoints of

the EUIs providing the LB and UB of the interval bending moment M (h)I (x), denoted by ê(LB)
i and ê(UB)

i ,
respectively, can be determined as follows:

if sM(h),i (x) > 0, then ê(UB)
i = +1, ê(LB)

i = −1; (50.1)

if sM(h),i (x) < 0, then ê(UB)
i = −1, ê(LB)

i = +1, i = 1, 2, . . . , M. (50.2)

Then, the LB and UB of the interval bending moment M (h)I (x) can be evaluated in approximate explicit
form by replacing the above defined combinations of the endpoints of the EUIs into Eq. (48), i.e.:

M (h)(x) = M (h)(x; ê(LB)
1 , ê(LB)

2 , . . . , ê(LB)
M ); M̄ (h)(x) = M (h)(x; ê(UB)

1 , ê(UB)
2 , . . . , ê(UB)

M ). (51.1,2)

The previous relationships provide approximate explicit expressions of the bounds of the interval bending
moment at the abscissa x within the hth FE.

6 Numerical applications

To validate the proposed IFE formulation, a cantilever beam and a fixed-simply supported beamwith uncertain
Young’s modulus are selected as case studies. Both beams are characterized by the following geometrical and
mechanical properties: length L = 5 m; midpoint or nominal Young’s modulus E0 = 3.85741 × 108 N/m2;
nominal moment of inertia J0 = 0.0054 m4. The uncertain Young’s modulus is modeled as an interval field
with exponential spatial dependency function (11). Different values of the parametersCB and lB are considered
in order to analyze their effects on the bounds of the response. Decomposition (4) of the function ΓB(x, ξ) is
performed retaining M = 20 terms. For illustration purpose, Fig. 2 displays the LB and UB along with some
samples of the interval Young’s modulus over the domain of the beam for CB = 0.05 and two different values
of the parameter lB , say lB = 0.5L and lB = 5L . Notice that as lB increases, the samples of the uncertain
material property become more regular so as to approach the condition of total spatial dependency where the
interval field reduces to a single interval variable over the beam domain.
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Fig. 2 LB and UB of the interval Young’s modulus along with some samples E (r) for CB = 0.05: a lB = 0.5L and b lB = 5L
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Fig. 3 Cantilever beam under uniformly distributed load with interval Young’s modulus

6.1 Cantilever beam

The first example concerns a cantilever beamwith interval Young’s modulus subjected to a uniform transversal
load per unit length pz = 103 N/m (see Fig. 3). The beam is discretized into N = 10 IFEs of length lh =
L/N = 0.5 m.

For validation purpose, the proposed bounds of the interval displacement field are contrasted with those
evaluated analytically by applying the procedure described in Ref. [27] for statically determinate beams with
interval flexibility. Figure4 shows a very good agreement between the LB and UB of the normalized deflection
w I (x)E0 J0/(pzL4) of the cantilever beam provided by the proposed IFE approach and the analytical bounds
for lB = 0.5L and two different values of the parameter CB , say CB = 0.05 and CB = 0.1.
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Fig. 4 LB and UB of the normalized deflection of the cantilever beam with interval Young’s modulus: comparison between the
analytical and IFEM solutions for lB = 0.5L , a CB = 0.05 and b CB = 0.1

In order to investigate the influence of spatial dependency on the region of the interval response of the
cantilever beam, the proposed bounds are compared with those obtained by applying the vertex method (VM)
under the assumption of total spatial independency (TI) and total spatial dependency (TD). In the first case,
Young’s moduli of the FEs are modeled as independent interval variables E I

i = E0(1+ α I
i ), i = 1, 2, . . . , N ,

where α I
i = [−�α,�α] are symmetric interval variables and �α is consistently set equal to CB . In the

second case, the uncertain Young’s modulus is modeled as an interval variable over the whole domain, i.e.,
E I = E0(1 + CBêI ). It is recalled that, for a problem involving N interval variables, the VM requires to
perform 2N deterministic analyses, as many as are the possible combinations of the endpoints of uncertainties,
and then to evaluate the LB and UB of the response as the minimum and maximum among the solutions so
obtained. Figure5 shows that, for lB = 0.5L and two different values of CB , the region predicted by using the
proposed interval Euler–Bernoulli FE, incorporating the interval field representation of the uncertain Young’s
modulus, is larger than that pertaining to the limit cases of TI and TD uncertainty. In particular, the bounds
obtained under the assumptions of TI and TD interval Young’s modulus are the same for the selected example
since they are achieved when all the interval variables are set simultaneously at their LB or UB. Of course,
this is not generally the case.

Once the accuracy and consistency of the proposed IFE formulation have been assessed, attention is focused
on the convergence rate of the solution (35) with the number M of terms of the KL-like decomposition of
the interval Young’s modulus as well as on the influence of the spatial dependency on the response. Figure6
displays the LB andUB of the interval tip displacement versus the numberM of series terms forCB = 0.05 and
different values of the parameter lB governing the spatial dependency. It is observed that, as the parameter lB
increases, the series convergesmore quickly so that a smaller number of terms is required. Furthermore, it can be
seen that, when larger values of lB are considered, the UB and LB of the tip displacement decrease and increase,
respectively, and in the limit, as lB → ∞, the bounds pertaining to the case of a totally spatially dependent
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Fig. 5 Comparison between the bounds of the normalized deflection of the cantilever beam obtained by applying the proposed
IFEM with lB = 0.5L and by the VM under the assumption of total spatial independency (TI) and total spatial dependency (TD)
of the interval Young’s modulus for a CB = 0.05 and b CB = 0.1

Young’s modulus are approached. In order to further scrutinize the influence of the spatial dependency on the
response, the so-called coefficient of interval uncertainty (c.i.u.) of the tip displacement is evaluated. Such a
coefficient, defined as c.i.u.[w I (L)] = �w(L)/

∣∣mid{w I (L)}∣∣, provides a measure of the dispersion of the
response around the midpoint value. Figure7 shows the c.i.u. of the tip displacement versus the number M
of series terms for CB = 0.05 and different values of the parameter lB with 0.5L ≤ lB ≤ 10L . Obviously,
also in this case, the convergence rate increases with lB . Furthermore, as the parameter lB decreases within
the considered range, a larger dispersion of the response around the midpoint value is detected. Conversely, as
the parameter lB increases the c.i.u. tends to the value CB = 0.05 pertaining to the case of a totally spatially
dependent Young’s modulus [21,22,27].

6.2 Fixed-simply supported beam

As second example, let us consider a fixed-simply supported beam with uncertain Young’s modulus subjected
to a uniform transversal load per unit length pz = 2 × 104 N/m and a concentrated moment M = 105Nm
at x = L (see Fig. 8). The beam is discretized into N = 10 Euler–Bernoulli IFEs of length lh = L/N =
0.5 m.

The accuracy of the proposed bounds of the interval displacement field is assessed by comparison with
those obtained by applying a recently proposed FD scheme based on the use of the IRSE [21] and with the
exact bounds provided by the VM. The latter requires 2M deterministic FE analyses of the beam, as many as
are the possible combinations of the endpoints of the EUIs appearing in the definition of the interval Young’s
modulus (8) and consequently in the approximate explicit expression (35) of the interval global displacements.
Figure9 shows that the proposed bounds of the normalized deflection w I (x)E0 J0/(pzL4) are in very good
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Fig. 6 a UB and b LB of the normalized tip deflection of the cantilever beam with interval Young’s modulus versus the number
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2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M

0.056

0.06

0.064

0.068

0.072

c.
i.u

.[ w
I (

L)
] lB = 0.5L

lB = L
lB =5 L
lB =10 L

CB = 0.05

Fig. 7 Coefficient of interval uncertainty of the normalized tip deflection of the cantilever beam with interval Young’s modulus
versus the number M of terms of the KL-like decomposition for different values of the parameter lB (CB = 0.05)

agreement with both the exact ones and those predicted by the FD scheme for lB = 0.5L and two different
values of the parameter CB , say CB = 0.05 and CB = 0.1. Furthermore, it is observed that IFE and FD
solutions exhibit the same degree of accuracy as the uncertainty level increases (see Fig. 9b). In Fig. 10, the
region of the interval displacement along the beam provided by the proposed IFE formulation is compared with
that obtained under the assumptions of TI and TD interval Young’s modulus. As in the previous example, it is
observed that the interval field model, with lB = 0.5L and two different values of CB , yields a wider region
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Fig. 9 LB and UB of the normalized deflection of the fixed-simply supported beam with interval Young’s modulus: comparison
between the solutions provided by the proposed IFEM, the VM and an FD scheme for lB = 0.5L , a CB = 0.05 and b CB = 0.1

of the response, thus demonstrating the key role played by the spatial dependency of the uncertain material
property.

Table1 lists the LB and UB of the interval bending moment, MI
1 = MI (x)

∣
∣
x=0, at the abscissa x = 0 of

the beam with the interval Young’s modulus evaluated by applying the sensitivity-based procedure proposed
in Sect. 5 and the VM, for lB = 0.5L and two different values of the parameter CB , say CB = 0.05 and
CB = 0.1. The associated absolute percentage errors are also reported. Notice that the proposed bounds are
in very good agreement with the exact ones, even when the uncertainty level increases.
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Fig. 10 Comparison between the bounds of the normalized deflection of the fixed-simply supported beam obtained by applying
the proposed IFEM with lB = 0.5L and by the VM under the assumption of total spatial independency (TI) and total spatial
dependency (TD) of the interval Young’s modulus for a CB = 0.05 and b CB = 0.1

Table 1 LB and UB of the interval bending moment MI
1 evaluated at x = 0 by applying the proposed IFEM and the VM, along

with the associated absolute percentage errors

MI
1 (Nm) LB UB

IFEM VM εM1 (%) IFEM VM εM̄1
(%)

CB = 0.05 −12957.268 −12917.998 0.303 −11284.003 −11250.384 0.298
CB = 0.1 −13919.814 −13750.363 1.232 −10546.701 −10385.688 1.550

7 Conclusions

An interval finite element formulation incorporating spatially variable uncertainty into the traditional Euler–
Bernoulli beam element has been developed. The key idea is to integrate the concept of an interval field into the
standard finite element formulation. To this aim, a recently proposed interval field model based on the so-called
improved interval analysis via extra unitary interval has been adopted to describe the uncertain property. Then,
the propagation of the interval field has been efficiently performed assuming an appropriate response surface
to approximate the interval output.

The main features of the proposed approach may be summarized as follows: (i) the spatial dependency
of the interval uncertainty is accounted for, thus allowing to overcome the inherent limitation of traditional
interval finite element methods which assign independent interval variables to the finite elements; (ii) the num-
ber of deterministic analyses required to estimate the bounds of the interval response is drastically reduced
compared to combinatorial procedures; (iii) the main steps of the deterministic finite element method are kept
unaltered, thus allowing the integration into commercial software; (iv) very accurate estimates of the bounds
of both primary and secondary variables are obtained.



Euler–Bernoulli interval finite element 3787

Future research will focus on the extension of the proposed interval finite element formulation to the
analysis of two-dimensional problems involving spatially variable interval uncertainties.
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