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Abstract In the current contribution, plane strain deformation of the strain-gradient solids is addressed using
the finite element method. To this end, 4-node quadrilateral elements based on the Hermite shape functions
explicitly are developed for predicting the response of two-dimensional solids in small scales. The principle of
virtual work is applied to derive the weak form of the equilibrium static equations. In addition, the geometry
and variables are interpolated adopting different shape functions resulting in the subparametric elements. For
showing the performance and accuracy of the novel elements, some known problems in plane strain elasticity
are solved, and there is a comparison between the classical and strain-gradient solutions.

1 Introduction

The displacement field in the classical, static analyses of solids and structures at small scales is larger than
the empirical evidences [1]. That is, the experimental results are stiffer than predictions associated with the
classical relations. The fact vividly indicates drawbacks of the classical mechanics in fine sizes. In order to
solve the problem, Mindlin [2] and Mindlin and Eshel [3] elaborated some gradient theories, Form I, Form II,
and Form III, in which the energy density is a function of the strain and the gradient of a kinematic variable.
The fact leads to a constitutive equation in which besides the classical material constants there exist some
unconventional material parameters. The advantage of the gradient theories may be attributed to these novel
material constants. Specifying the new constants is not a straightforward operation experimentally. However,
Aifantis [4] proposed the simple, robust strain-gradient model, which is a derivative of Mindlin’s Form II [2],
and includes one non-classical material constant widely called the length scale parameter.

By deeming the fact that the gradient of kinematic tensors is incorporated in the strain-gradient theory,
solving a differential equation is more elaborate in the theory than in classical mechanics. Accordingly, a
numerical scheme may be adopted to solve the complex differential equations [5,6], as the analytical solutions
are available to us for simple problems only [7–10]. For keen readers, a comprehensive review of both BEMand
FEM for static and dynamic gradient elastic problems is presented by Tsinopoulos et al. [11]. In the following
two paragraphs, it is aimed at providing some relevant information concerning the finite element method and
its application to the gradient theories. The former addresses the C1-continuous elements for solids, and the
latter is concerned with the mixed finite element method in which C0-continuous elements are developed.

Even though the idea of using C1-continuous elements is simple in nature, compared with the mixed finite
element scheme, developing some elements which are convergent and accurate is complex, as defining the
high-order DOF in every node does not guarantee the continuity of variables and their derivates in the element
boundaries. As an evidence, the elements developed for the analysis of Kirchhoff–Love plates can be taken
into account [12]. Akarapu and Zbib [13] analyzed a crack tip problem adopting a 36-DOF triangular element,
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originally elaborated by Dasgupta and Sengupta [14] for plate bending, which is C1-continuous on the basis
of simplified strain-gradient elasticity developed by Aifantis [4]. A C1 hexahedral element was devised by
Papanicolopulos et al. [15] in order to predict the response of three-dimensional solids in small scales. Zervos
et al. [16] took advantage of triangular and quadrilateral elements provided by Argyris et al. [17] and Petera
and Pittman [18], respectively, for solving boundary value problems in gradient elasticity. It is worthy of note
that in addition to [15] Zervos [19] presented some three-dimensional isoparametric elements based on the
general Mindlin’s theory [2].

By applying the mixed finite element formulation, the need for constructing higher-order elements in the
gradient elasticity can be bypassed. However, the scheme has its own complexities. In this area, Shu et al.
[20] considered the Fleck–Hutchinson strain gradient theory [21] which is an extension of the original work
of Mindlin [2], and by using the mixed finite element method they produced some finite elements for two-
dimensional analyses. Amanatidou and Aravas [22] analyzed strain-gradient elasticity problems using mixed
finite element formulations. In the work, all three forms of Mindlin’s theory [2] were considered, and the
performance of C0-continuous elements was investigated in plane strain problems along with mode-III crack
analysis. By adopting the Hu–Washizu principle and consequently the mixed FEM, Imatani et al. [23] analyzed
some problems in the two-dimensional strain-gradient elasticity. Askes and Gutiérrez [24] reformulated the
gradient elasticity in which finite elements may be constructed by satisfying C0-continuity only. The finite
element methodwas a tool for Askes et al. [25] to survey the size-dependent behavior of solids. In this work, for
producing C0-continuous elements, the original fourth-order equations of gradient elasticity were divided up
into two second-order equations. Following presentingmixed FE formulations analytically [26,27],Markolefas
et al. [28] solved some 2D problems in the gradient elasticity.

Besides the conventional finite element method dealt with in detail above, other numerical schemes, such as
meshless method, isogeometric analysis, and boundary element method, have been adopted to solve problems
in the gradient elasticity. It is not the aim of the current contribution to review associated articles; however,
interested researchers are highly recommended to study these works [11,29–32].

In this article, the basis is on the subparametric C1-continuous quadrilateral elements for the plane strain
solid in the strain-gradient medium. Accordingly, the work has nothing in common with the works based on
the mixed finite element method mentioned above. For constructing the shape functions, the explicit form of
the Hermite polynomials is applied to the FE formulation. It must be emphasized that the elements developed
herein are completely novel and somehow very close to the rectangular elements presented by Bogner et al.
[33] that two of those are the most accurate elements for an analysis of classical plates. While higher-order
quadrilateral elements used by Zervos et al. [16] and Zervos [19] are isoparametric, they consequently need
more geometrical data or adopt just Hermite functions implicitly.

As mentioned above, the major focus of this work is producing 4-node quadrilateral elements given the
Hermite shape functions for the plane strain analyses of the strain-gradient solids. A review in the literature
indicates that the class of elements is novel not only in the gradient mechanics, but also in the classical mechan-
ics. Section 2 that is concerned with basics of the strain-gradient elasticity is followed by Sect. 3 including
some data regarding plane strain deformation in the strain-gradient medium. Following the introduction of
the principle of virtual work for the current study in Sect. 4, the formulation of the finite element method is
presented in Sect. 5. In addition, some numerical examples are solved in Sect. 6. Finally, a conclusion is drawn
in Sect. 7.

2 Basics of the strain-gradient theory

Mindlin [2] proposed a model for the deformation of elastic solids in which a so-called micro volume element
was embedded in the conventional volume element in order to predict the response of solids in small scales.
Furthermore, some assumptions were carried out for simplifying the initially derived model, which may be
called elasticity with microstructure. These suppositions lead to three separate models, including Form I, Form
II and Form III, for small elastic deformations. Among these forms, Form II in which the gradient of the strain
tensor plays a key role is widely used in the literature. In addition, the components of strain tensor ε and
strain-gradient tensor κ = ∇ε may be given as

ε jk = εk j = 1

2

(
∂u j

∂xk
+ ∂uk

∂x j

)
, (1)

κi jk = κik j = ∂ε jk

∂xi
= 1

2

(
∂2u j

∂xk∂xi
+ ∂2uk

∂x j∂xi

)
, (2)
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Furthermore, the constitutive equations in the strain-gradient theory may be defined as [2,3]

σi j = σ j i = ∂W

∂εi j
= λεkkδi j + 2μεi j , (3)

τi jk = τik j = ∂W

∂κi jk
= 1

2
a1
(
δi jκkpp + 2δk jκppi + δikκ j pp

)+ 2a2δ jkκi pp

+ a3
(
δi jκppk + δikκppj

)+ 2a4κi jk + a5
(
κ jki + κk ji

)
. (4)

In the above relations, λ and μ can be called the Lamé’s constants. In addition, there exist five non-classical
material unknowns, a1 − a5, in Eq. (4) which may be regarded as the constitutive equation for higher-order
quantities. TheAifantis’ model [4] for the strain-gradient elasticity may be obtained by supposing that relations
a1 = a3 = a5 = 0, a2 = 1

2 l
2λ and a4 = l2μ hold. Furthermore, Lazar and Maugin [34] explained how

requiring that the stress–strain symmetry of the elastic energy is also valid for the gradient terms leads to
the simple, robust strain-gradient elasticity offered by Aifantis [4]. As may be seen, the effects of the five
non-classical parameters are replaced with the parameter l that is called the material length scale constant. It
will be shown in the numerical samples that the length scale features prominently in the strain-gradient theory.
Accordingly, the double stresses have the following simplified form:

τi jk = τik j = l2(λκi ppδ jk + 2μκi jk). (5)

3 Plane strain model

In this Section, initially the strain field for the plane strain condition are presented. Subsequently, the stress
field is computed using the derived strains together with the constitutive relation presented in the preceding
Section.

3.1 Strain components

In the plane strain analyses, it is supposed that there is no displacement along the axis perpendicular to the
deformation plane. In the current investigation, the x1x2-plane is the plane of interest and the x3-axis is the
restricted axis. The proposed assumption reduces a three-dimensional problem to a plane two-dimensional
one. In other words, the equations are based on the coordinates x1 and x2. The specified displacement field
has practical uses. For the analyses in which the body is long enough in a special direction and tractions
have no components along the axis, it is feasible to approximate the solution of a three-dimensional problem
by a two-dimensional one. Another practical application of the plane strain problems is the case in which a
specimen is totally restricted between two rigid walls constricting the movement of particles in the direction
which is normal the walls. Considering all the above-mentioned information, the following displacement field
may be proposed for this group of problems [35,36]:

u1 = u1(x1, x2), u2 = u2(x1, x2), u3 = 0. (6)

As mentioned in the previous Section, in the Form II, both the strain tensor and its gradient are present in the
energy-density. Upon inserting Eq. (6) in Eqs. (1) and (2), the following strain–displacement relations may be
obtained:

ε11 = ∂u1
∂x1

, ε22 = ∂u2
∂x2

, ε12 = 1

2

(
∂u1
∂x2

+ ∂u2
∂x1

)
, (7)

κ111 = ∂2u1
∂x21

, κ211 = ∂2u1
∂x1∂x2

, κ122 = ∂2u2
∂x1∂x2

, κ222 = ∂2u2
∂x22

,

κ112 = 1

2

(
∂2u1

∂x1∂x2
+ ∂2u2

∂x21

)
, κ212 = 1

2

(
∂2u1
∂x22

+ ∂2u2
∂x1∂x2

)
, (8)

with

ε33 = ε13 = ε23 = 0, (9)

κi33 = κi13 = κi23 = κ311 = κ322 = κ312 = 0, i ∈ {1, 2, 3}. (10)
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3.2 Stress components

In the preceding Subsection, all components of the strain and strain-gradient tensors were computed in the
semi-inverse scheme. Now, the focus is on the computation of the stress and double-stress tensors. Accordingly,
by deeming Eqs. (3) and (5), the non-zero stresses and double stresses may be expressed as follows:

σ11 = (λ + 2μ)ε11 + λε22, σ22 = λε11 + (λ + 2μ)ε22, σ12 = 2με12, (11)

τ111 = l2(λ + 2μ)κ111 + l2λκ122, τ112 = 2l2μκ112, τ122 = l2λκ111 + l2(λ + 2μ)κ122,

τ211 = l2λκ222 + l2(λ + 2μ)κ211, τ212 = 2l2μκ212, τ222 = l2λκ211 + l2(λ + 2μ)κ222. (12)

It isworthy of note that the above-mentioned relations are constitutive equations for the plane strain deformation
in the strain-gradient elasticity.

4 Variational formulation

The principle of virtual work for the Form II ofMindlin’s theory in infinitesimal deformation may be expressed
as follows [2,3]:

∫
V

(
σi jδεi j + τi jkδκi jk

)
dV

︸ ︷︷ ︸
δU

−
{∫

V
FkδukdV +

∫
S

(
P̂kδuk + R̂k Dδuk

)
dS

}
︸ ︷︷ ︸

δW ext

= 0 (13)

where δU and δW ext are variation of the potential energy and the variation of work done by external forces,
respectively. In addition, Fk is the body force per unit volume, and P̂k and R̂k are the generalized surface
tractions [3]. Furthermore, it is supposed that R̂k = 0 on external surfaces in this work.

It should be noted that, in the plane strain problems, some components of stress, double-stress, strain and
strain-gradient tensors disappear; hence, the simplified version of the variation of the potential energy may be
given by

δU =
∫
V

(σ11δε11 + σ22δε22 + 2σ12δε12

+τ111δκ111 + τ211δκ211 + τ122δκ122 + τ222δκ222 + 2τ112δκ112 + 2τ212δκ212)dV . (14)

In the finite element method, researchers are interested in a classification of relations in matrix form.
The strategy alleviates the process of writing a finite element code considerably. Hence, for the later
use, the stress and strain vectors are defined as σ̃ = {σ11, σ22, σ12, τ111, τ211, τ122, τ222, τ112, τ212}T and
ε̃ = {ε11, ε22, 2ε12, κ111, κ211, κ122, κ222, 2κ112, 2κ212}T, respectively. Additionally, using Eqs. (11) and (12),
the following relation between the two vectors is presented:

σ̃ = Dε̃ (15)

where non-zero components of the symmetric material matrix D are as below:

D11 = D22 = λ + 2μ, D12 = λ, D33 = μ, D44 = l2(λ + 2μ), D46 = l2λ,

D55 = l2(λ + 2μ), D57 = l2λ, D66 = l2(λ + 2μ),

D77 = l2(λ + 2μ), D88 = l2μ, D99 = l2μ. (16)

5 Finite element formulation

In the finite element method, the body is divided into some smaller parts called elements.Within every element,
some nodes may be distributed in order to approximate not only the variables but also the geometry of the
domain. It is worth noting that in the subparametric concept applied to the current study the variables and
geometry are interpolated using different shape functions. That is, in the subparametric elements, the order of
shape functions applied to the geometry is lower than those used to interpolate the variables [37]. The finite
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element approximation for the typical domain of a plane strain problem 	 is defined by 	h . Additionally,
considering 	e as a typical element, the approximated region may be expressed as 	h = Ane

e=1	e.
In the gradient theory, higher-order derivates of the displacement field are present in the equations. Accord-

ingly, in order to produce conforming elements, higher-order derivates of variables must be defined as degrees
of freedom. In this contribution, the novel conforming finite elements fulfill the C1-continuity on the domain,
while the geometry is approximated according to the classical plane problems. It is worthy of note that both
elements are classified as the subparametric elements, as the order of shape functions for interpolating the
geometry is lower than that of the variables. The plane strain elements developed herein have both 4 nodes,
but 6 DoF and 12 DoF per node, respectively. The former is abbreviated to PS6, and the latter is shortened
to PS12. It must be mentioned that the PS12 is more accurate than PS6. The reason is explained in the next
Sections.

5.1 Transformation of derivatives of a function

It is essential to transform derivatives of a function with respect to x1 and x2 coordinates to the derivatives
with respect to the natural coordinates, i.e., ξ and η. The procedure is a fundamental step for producing the
plane strain elements. Using the chain rule and conducting some straightforward mathematical operations, the
following relation may be extracted for the transformation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ f
∂ξ

∂ f
∂η

∂2 f
∂ξ2

∂2 f
∂η2

∂2 f
∂ξ∂η

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x1
∂ξ

∂x2
∂ξ

0 0 0

∂x1
∂η

∂x2
∂η

0 0 0

∂2x1
∂ξ2

∂2x2
∂ξ2

(
∂x1
∂ξ

)2 (
∂x2
∂ξ

)2
2 ∂x1

∂ξ
∂x2
∂ξ

∂2x1
∂η2

∂2x2
∂η2

(
∂x1
∂η

)2 (
∂x2
∂η

)2
2 ∂x1

∂η
∂x2
∂η

∂2x1
∂ξ∂η

∂2x2
∂ξ∂η

∂x1
∂ξ

∂x1
∂η

∂x2
∂ξ

∂x2
∂η

∂x1
∂ξ

∂x2
∂η

+ ∂x1
∂η

∂x2
∂ξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
J̃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ f
∂x1
∂ f
∂x2

∂2 f
∂x21
∂2 f
∂x22
∂2 f

∂x1∂x2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

where f is an arbitrary function and J̃ is the transformationmatrix. Reversely, the inverse of thematrix J̃ shown
by Ĵ may be used to find derivatives of the function f with respect to x1 and x2 coordinates when initially
derivatives with respect to ξ and η are available. These transformations matter enormously in the current finite
element formulation.

5.2 Finite element formulation with PS6

In this Subsection, some information concerning the formulation of the 4-node quadrilateral element with
6 degrees of freedom per every node is presented. The technique relatively eases the construction of ele-
ments; however, the convergence of elements must be examined in order to achieve more reliable results [38].
Accordingly, the following vector may be considered as nodal displacement in every node:

d̂I =
{
u1|I , ∂u1

∂x1
|I , ∂u1

∂x2
|I , u2|I , ∂u2

∂x1
|I , ∂u2

∂x2
|I
}T

. (18)

Here, the geometry of an element may be approximated by

xe =
4∑

I=1

NI (ξ, η)xI (19)

where xI are the nodal coordinate vectors.
For interpolating the variables, i.e., displacements, different interpolation functions from the geometry are

chosen, since derivates appear in the nodal displacement. The strategy applied herein is so close to the scheme
which is used for producing beam elements based on the Euler–Bernoulli model at small deformations. In
Euler–Bernoulli beam finite elements, different shape functions are considered for geometry and variables.
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Additionally, in the strain-gradient context, the Timoshenko beam model has also the same trend as conducted
in [39] for producing conforming beam elements. Since defining shape functionswith respect to the coordinates
in the parent element is so beneficial, initially higher-order derivatives are deemed with respect to the parent
coordinates, and then by taking the advantage of Eq. (17) all the derivatives are converted to the original space.
To this end, we have

S|e =
4∑

I=1

{
H (3)
I (ξ, η)S|I + H̄ (3)

I (ξ, η)
∂S

∂ξ
|I + H̃ (3)

I (ξ, η)
∂S

∂η
|I
}

(20)

where S plays the role of u1, u2, δu1, and δu2.
Subsequently, Eq. (17) can be used to define the degrees of freedomwith respect to the x1 and x2 coordinates.

By applying the transformation, the following form of the field S may be achieved:

S|e =
4∑

I=1

{
T (3)
I (ξ, η)S|I + T̄ (3)

I (ξ, η)
∂S

∂x1
|I + T̃ (3)

I (ξ, η)
∂S

∂x2
|I
}

(21)

with

T (3)
I (ξ, η) = H (3)

I (ξ, η), (22)

T̄ (3)
I (ξ, η) = J̃11|I H̄

(3)
I (ξ, η) + J̃21|I H̃

(3)
I (ξ, η), (23)

T̃ (3)
I (ξ, η) = J̃12|I H̄

(3)
I (ξ, η) + J̃22|I H̃

(3)
I (ξ, η). (24)

After defining the field in the finite element method, the focus is on the stiffness matrix and the external force
vector. Upon inserting the approximated displacement fields into Eqs. (7) and (8), and subsequently using the
chain rule, i.e., Eq. (17), a finite element approximation of the strain vector may be arranged in the following
form:

ε̃e = A
{

∂u1|e
∂ξ

,
∂u1|e
∂η

,
∂2u1|e
∂ξ2

,
∂2u1|e
∂η2

,
∂2u1|e
∂ξ∂η

,
∂u2|e
∂ξ

,
∂u2|e
∂η

,
∂2u2|e
∂ξ2

,
∂2u2|e
∂η2

,
∂2u2|e
∂ξ∂η

}T
(25)

with

A =
[
r̂T1 0T r̂T2 r̂T3 r̂T5 0T 0T r̂T5 r̂T4

0T r̂T2 r̂T1 0T 0T r̂T5 r̂T4 r̂T3 r̂T5

]T
(26)

where r̂1, r̂2, r̂3, r̂4, and r̂5 are the first to the last rows of the matrix Ĵ, respectively. Furthermore, the second
term in the right-hand side of Eq. (25) may be given as

{
∂u1|e
∂ξ

,
∂u1|e
∂η

,
∂2u1|e
∂ξ2

,
∂2u1|e
∂η2

,
∂2u1|e
∂ξ∂η

,
∂u2|e
∂ξ

,
∂u2|e
∂η

,
∂2u2|e
∂ξ2

,
∂2u2|e
∂η2

,
∂2u2|e
∂ξ∂η

}T
= Gde (27)

with

de =
{
d̂T1 , d̂T2 , d̂T3 , d̂T4

}T
(28)

where de denotes the element displacement vector.
Upon combining Eqs. (25) and (27), the approximated strain vector of an element may be expressed as

ε̃e = Bde, with B = AG. (29)

Additionally, by inserting Eq. (29) into Eq. (15), the element stress vector may be expressed by

σ̃e = DBde. (30)

It is worthy of note that in the variational formulation the variation of the strain tensor appears in the equations;
hence, the same procedure may be carried out in order to produce the final variational displacement vector for
each node or element. Since the procedure is repetitious, the detailed explorations are not presented for the
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variational forms. Simply, thosemay be achieved by adding the variation symbol before kinematical quantities.
Finally, the element variational strain vector is as below:

δε̃e = Bδde. (31)

After preparing the introductory information regarding the various fields on an element, it is time to focus
on the variation of the potential energy. Since the depth of the body is constant in the plane strain analysis
and there is no dependence on the longitudinal axis, one may plainly replace the volume element with the
surface element in the integrals. Thus, Eq. (14) may be written in the following form using the finite element
discretization:

δU = Ane
e=1δd

T
e kede = δdTKd with ke =

∫
	e

BTDBd	 (32)

where d and K are the global displacement vector and global stiffness matrix, respectively.
Let us focus on the variation of the work done by external forces in the absence of the body forces. By

defining the external force vector in each element fexte and using the last integral in Eq. (13), the following
relation is obtained:

δW ext = Ane
e=1δd

T
e fe = δdTF. (33)

In the above term, F stands for the global load vector.
Finally, considering Eqs. (13), (32), and (33), the following linear algebraic equations can be derived:

Kd = F. (34)

Solving Eq. (34) after applying the boundary conditions leads to the result of the problem.

5.2.1 Shape functions for PS6

In the previous Section, there is no data regarding the precise form of the shape functions for the geometry and
variables. For the interpolation of the geometry, the same shape functions as the classical plane strain problem
which are the Lagrange shape functions for a 4-node element may be applied. Those read [40]:

NI (ξ, η) = 1

4
(1 + ξI ξ)(1 + ηIη), I ∈ {1, 2, 3, 4} (35)

with

{ξ1, ξ2, ξ3, ξ4} = {−1, 1, 1, −1}, {η1, η2, η3, η4} = {−1,−1, 1, 1} (36)

where the subscript I refers to the node number, see Fig. 1.
The challenging phase is finding the shape functions for variables. The prominent step in specifying the

shape functionswhich are two-variable is to suppose that those aremade from themultiplication of one-variable
functions of ξ or η. The third-order Hermite polynomial of one variable can be used for constructing final
shape functions. Additionally, unknowns of the Hermite functions can be found by applying the following
conditions:

H (3)
2I−1(ξJ ) = δI J ,

dH (3)
2I (ξJ )

dξ
= δI J . (37)

In the above relation, δI J is the Kronecker delta, and I and J take the values 1 and 2. In addition, the relations
ξ1 = −1 and ξ2 = 1 hold.

Accordingly, the final forms of the third-degree Hermite polynomials are

{
H (3)

1 (ξ) = 1
4 (2 − 3ξ + ξ3), H (3)

2 (ξ) = 1
4 (1 − ξ − ξ2 + ξ3)

H (3)
3 (ξ) = 1

4 (2 + 3ξ − ξ3), H (3)
4 (ξ) = 1

4 (−1 − ξ + ξ2 + ξ3).
(38)
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34

1 2

3

4

ξ

η

ξ

η

Ωe

Ω0

+1

+1

Fig. 1 A typical map from the physical element to the parent element

Subsequently, by deeming similar conditions as presented in Eq. (37), the following newly developed shape
functions may be presented for 4-node elements with 6 degrees of freedom per node:{

H (3)
I = H (3)

r (ξ)H (3)
s (η), H̄ (3)

I = H (3)
r+1(ξ)H (3)

s (η), H̃ (3)
I = H (3)

r (ξ)H (3)
s+1(η),

{I, r, s} ∈ {{1, 1, 1}, {2, 3, 1}, {3, 3, 3}, {4, 1, 3}}.
(39)

Expanding the above polynomials reveals that the displacement field in Eqs. (20) and (21) does not satisfy a
special mode. Accordingly, the result of the element, PS6, is not totally accurate [33], say three per cent error.

Another important matrix for 4-node elements is G expressed in Eq. (27). This matrix has the following
form:

G =
[
TA
1 0 TA

2 0 TA
3 0 TA

4 0

0 TA
1 0 TA

2 0 TA
3 0 TA

4

]
(40)

with

TA
I =

⎧⎨
⎩

∂T
T

I

∂ξ
,
∂T

T

I

∂η
,
∂2T

T

I

∂ξ2
,
∂2T

T

I

∂η2
,
∂2T

T

I

∂ξ∂η

⎫⎬
⎭

T

, TI =
{
T (3)
I , T̄ (3)

I , T̃ (3)
I

}T
. (41)

The above information can be used to derive the global stiffness matrix and the force vector.

5.3 Finite element formulation with PS12

In the strain-gradient theory, due to the existence of the gradient of the strain tensor in the equations, one must
consider the first and the second derivatives of displacements with respect to the in-plane Cartesian coordinates,
i.e., x1 and x2, in order to fulfill continuity. It is a critical phase for producing compatible elements. Accordingly,
the following vector must be considered as nodal displacement in the finite element method:

d̂I =
{
u1|I ,

∂u1
∂x1

|I ,
∂u1
∂x2

|I ,
∂2u1
∂x21

|I ,
∂2u1
∂x22

|I ,
∂2u1

∂x1∂x2
|I , u2|I ,

∂u2
∂x1

|I ,
∂u2
∂x2

|I ,
∂2u2
∂x21

|I ,
∂2u2
∂x22

|I ,
∂2u2

∂x1∂x2
|I

}T

.

(42)

Deem S to be a variable, for instance, the vertical displacement or its variation, for an element. It is approximated
by

S|e =
4∑

I=1

{
H (5)
I (ξ, η)S|I + H̄ (5)

I (ξ, η)
∂S

∂ξ
|I + Ĥ (5)

I (ξ, η)
∂S

∂η
|I + H̃ (5)

I (ξ, η)
∂2S

∂ξ2
|I

+ �

H
(5)

I (ξ, η)
∂2S

∂η2
|I + 

H
(5)

I (ξ, η)
∂2S

∂ξ∂η
|I

}
. (43)
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Subsequently, Eq. (17) can be used to define the derivatives available above with respect to the x1 and x2
coordinates. By applying the transformation and some arrangements, the following form of the field S may be
achieved:

S|e =
4∑

I=1

{
T (5)
I S|I + T̄ (5)

I
∂S

∂x1
|I + T̂ (5)

I
∂S

∂x2
|I + T̃ (5)

I
∂2S

∂x21
|I + �

T
(5)

I
∂2S

∂x22
|I

+

T
(5)

I
∂2S

∂x1∂x2
|I

}
(44)

with

T (5)
I = H (5)

I (ξ, η), (45)

T̄ (5)
I = J̃11|I H̄

(5)
I (ξ, η) + J̃21|I Ĥ

(5)
I (ξ, η) + J̃31|I H̃

(5)
I (ξ, η)

+ J̃41|I
�

H
(5)

I (ξ, η) + J̃51|I


H
(5)

I (ξ, η), (46)

T̂ (5)
I = J̃12|I H̄

(5)
I (ξ, η) + J̃22|I Ĥ

(5)
I (ξ, η) + J̃32|I H̃

(5)
I (ξ, η)

+ J̃42|I
�

H
(5)

I (ξ, η) + J̃52|I


H
(5)

I (ξ, η), (47)

T̃ (5)
I = J̃33|I H̃

(5)
I (ξ, η) + J̃43|I

�

H
(5)

I (ξ, η) + J̃53|I


H
(5)

I (ξ, η), (48)
�

T
(5)

I = J̃34|I H̃
(5)
I (ξ, η) + J̃44|I

�

H
(5)

I (ξ, η) + J̃54|I


H
(5)

I (ξ, η), (49)


T
(5)

I = J̃35|I H̃
(5)
I (ξ, η) + J̃45|I

�

H
(5)

I (ξ, η) + J̃55|I


H
(5)

I (ξ, η). (50)

With the knowledge of the approximated field for the 12-DoF quadrilateral element developed in this Section,
the same procedures conducted for the PS6 should be followed in order to obtain the global stiffness matrix
and the external force, i.e., Eqs. (25)–(34).

5.3.1 Shape functions for PS12

Herein, the same shape functions as the 6-DoF one are used to interpolate geometric properties, i.e., Eq. (35).
To specify shape functions for this element based on the Hermite polynomials, similar to the PS6, shape
functions presented in Eq. (43) must be decomposed into two one-variable fifth-order Hermite polynomials.
To this end, it is essential to investigate functions satisfying the following conditions:

H (5)
3I−2(ξJ ) = δI J ,

dH (5)
3I−1(ξJ )

dξ
= δI J ,

d2H (5)
3I (ξJ )

dξ2
= δI J . (51)

Similar to the previous case, i.e., Eq. (37), I and J must be chosen from the set {1, 2} and ξ1 = −1 and ξ2 = 1.
By applying the above-mentioned conditions to the fifth-order Hermite polynomials, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H (5)
1 = 1

16 (8 − 15ξ + 10ξ3 − 3ξ5),

H (5)
2 = 1

16 (5 − 7ξ − 6ξ2 + 10ξ3 + ξ4 − 3ξ5),

H (5)
3 = 1

16 (1 − ξ − 2ξ2 + 2ξ3 + ξ4 − ξ5),

H (5)
4 = 1

16 (8 + 15ξ − 10ξ3 + 3ξ5),

H (5)
5 = 1

16 (−5 − 7ξ + 6ξ2 + 10ξ3 − ξ4 − 3ξ5),

H (5)
6 = 1

16 (1 + ξ − 2ξ2 − 2ξ3 + ξ4 + ξ5).

(52)

The above functions may be used to construct shape functions provided in Eq. (43).
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Similar to the scheme applied for the 4-node element with six degrees of freedom, the shape functions for
interpolation of the variables may be given as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

H (5)
I = H (5)

r (ξ)H (5)
s (η), H̄ (5)

I = H (5)
r+1(ξ)H (5)

s (η), Ĥ (5)
I = H (5)

r (ξ)H (5)
s+1(η),

H̃ (5)
I = H (5)

r+2(ξ)H (5)
s (η),

�

H
(5)

I = H (5)
r (ξ)H (5)

s+2(η),


H
(5)

I = H (5)
r+1(ξ)H (5)

s+1(η),

{I, r, s} ∈ {{1, 1, 1}, {2, 4, 1}, {3, 4, 4}, {4, 1, 4}}.
(53)

For extracting the above relations, the same idea used in Eq. (51) needs to be applied. That is to say, the
two-variable shape functions may be chosen by considering Eq. (43) along with the fulfillment of each DoF
at nodes. The point which must be taken into account here is that the displacement field based on the above
functions includes suitable terms for approximating the variables. That is to say, the displacement field meets
the special mode proposed by Bogner et al. [33] for the deformation of rectangular plates. Consequently, PS12
provides us with the accurate results.

Now, it is feasible to specify the precise form of the approximated variables based on Eq. (44). Furthermore,
differentiation of Eq. (44) with respect to the parent coordinates, i.e., ξ and η, enables one to compute the
matrix G firstly built in Eq. (27) for the 12-DoF element. It is

G =
[
TB
1 0 TB

2 0 TB
3 0 TB

4 0

0 TB
1 0 TB

2 0 TB
3 0 TB

4

]
(54)

with

(55)

Finally, all details about the finite element formulation have been supplied in the Section. Those may be plainly
applied to the FE code in order to obtain the results of plane strain problems in the strain-gradient continuum
mechanics.

6 Numerical examples

In this Section, some examples are solved in order to show the accuracy and validity of the elements developed
in the current study. In all cases, the values of external loading are set in a way that not only the strains are small
but also the magnitudes of the displacements are limited compared to the sides, so that the undeformed and
deformed shapes are approximately equal. These considerations are the basis for the small deformation which
is taken into account herein. All integrals in the current work are calculated using the Gaussian quadrature.
In what follows, the superscripts C and SG refer to the classical and strain-gradient theories, respectively.
Additionally, in all cases the depth of the body is ten times the largest side of a two-dimensional shape in
the deformation plane in order to fulfill the plane strain situation. The point which must deemed herein is
that generally the classical solution to the plane stress problems is more dominant than the plane strain ones,
however as has been shown in [36], a plane strain response may be obtained from the corresponding plane
stress solution by replacing E and ν with E/(1−ν2) and ν/1−ν, respectively. Another important point which
must be considered is that the PS12 is more accurate than PS6.

6.1 Uniaxial tension of a bar

In the current problem, extension of bar is dealt with. It is anticipated that the gradient effects are not active,
since the deformation is homogenous [41]. Accordingly, it may be said that the strain-gradient and classical
theories must have the same results. To examine the fact, let us study the deformation of a bar under extensional
tractions at two ends, see Fig. 2. Taking account of the symmetry in the geometry and loading, one quarter
of the whole region is modeled. Then, the symmetric boundary conditions at the central vertical line are
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Fig. 2 The ratio of strain-gradient to classical predictions versus the various values of H /2l

u1 = ∂u1/∂x2 = ∂2u1/∂x22 = ∂u2/∂x1 = ∂2u2/∂x1∂x2 = 0, and the central horizontal line is u2 =
∂u2/∂x1 = ∂2u2/∂x21 = ∂u1/∂x2 = ∂2u1/∂x1∂x2 = 0. The classical solution to the problem is available to
us as follows [36]:

uC1 = (1 − ν2)T

E
x1 (56)

where T is the applied traction.
Deem the length of the rectangle, 2L , to be eight times the height, H , i.e., 2L = 8H . Thematerial properties

of the body are supposed to be E = 200 GPa, ν = 0.3, and l = 0.1 mm [42]. In addition, it is assumed that one
half of the height of the solid is available in the various multiples of the material length scale l, i.e., H /2 = nl,
so that the integer n varies from 1 to 20. To solve the problem using the finite element method, the geometry
is discretized using 4 × 32 4-node plane strain elements. Also, Fig. 2 provides a comparison between the
classical and strain-gradient solutions. In the Figure, the ratio of the strain-gradient and classical horizontal
displacement of the tip is depicted versus the ratio of H /2l. The Figure indicates that the initial estimation
was valid, as the strain-gradient and classical results have approximately the same results, the ratio uSG1 /uC1 is
about one.

6.2 Cantilever beam under a transverse resultant

The second example is concerned with the flexure of a beam under a transverse loading, P , see Fig. 4. This was
solved by Askes and Aifantis [29] and Fischer et al. [30] using the meshless method and isogeometric analysis,
respectively. Following the references, for all cases analyzed herein the major assumption is that the length
of the beam is thrice the height and the relation H = nl holds where n changes from 1 to 20, see Fig. 4, and
E = 1000 MPa, ν = 0.25, and l = 0.1 mm. Following [29], the solutions to the problem are compared with
the classical solution provided by Gere and Timoshenko [43]. Thus, the classical and strain-gradient stiffness
read

kC = EH3

4L3 , kSG = P

δti p
. (57)

For this case, the whole geometry is divided into 8 × 24 4-node quadrilateral elements. Additionally, the
boundary conditions at the constrained edge are

u1 = ∂u2
∂x2

= ∂2u2
∂x22

= 0, u2 = ∂u2
∂x1

= ∂u2
∂x2

= ∂2u2
∂x22

= ∂2u2
∂x1∂x2

= 0. (58)
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Fig. 3 The logarithm of the ratio of stiffness versus the logarithm of H /l

To compare the classical and strain-gradient solutions, Fig. 3 has been presented in which the natural logarithm
of kC/kSG is depicted versus the logarithm of H /l in the base of Napier’s constant. As may be verified from
the figure, for small values of H /l, say 1, the difference is significant, but for the large values of H /l, say 20,
the distinction is indistinguishable. In addition, PS12 has the same result as the data reported by Fischer et al.
[30], and the PS6 element provides an approximation.

The problem may be addressed in a different way given the classical response of the rectangle subjected
to vertical end resultant in the plane strain deformation. The vertical deflection of the tip is PL3(1− ν2)/3E I
[44]. It must be emphasized that the boundary condition used in the classical analysis is a little bit different
from that used in the example due to Saint Venant approximation in loading; however, the classics provides
us with an acceptable approximation. More precisely, the boundary condition just applies to the center of the
constrained edge in the classics. As can be seen from Fig. 4, the curves regarding the central deflection of the
tip normalized by the corresponding classical solution for various sizes have the same conclusion as Fig. 3.

6.3 Pure bending of a beam

The deformation of a beam under terminal resultant moments in the plane strain status is addressed in the
current sample, see Fig. 5. To this end, H , 2L , and M denote the thickness, length of the beam, and the applied
external torque at the end given the Saint Venant principle. In addition, the geometric relations H = nl and
L/H = 6 are used in the analysis where n is a typical figure greater than one. Young’s modulus, Poisson’s
ratio, and the material length scale parameter are E = 200 Gpa, ν = 0.3, and l = 0.1 mm, respectively. Due
to symmetry, just one half of the whole system is modeled using 8 × 48 finite elements. Additionally, the
boundary conditions are as follows:

u1 = ∂u1
∂x2

= ∂2u1
∂x22

= ∂u2
∂x1

= ∂2u2
∂x2∂x1

= 0, x1 = 0. (59)

Besides, the vertical displacement of the center of the coordinate system {x1, x2} is supposed to be zero in
order to prevent the rigid-body motions.

From the textbooks in elasticity, the classical solution to the problem is available to us. Accordingly, the
central vertical deflection reads [44]

uC2 = (1 − ν2)ML2

2E I
. (60)
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Fig. 4 Non-dimensional vertical deflection of the tip for various values of H /l

H/l

2SG
/
2C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

PS12
PS6

u
u

Mx1

x2

H O

2L

Fig. 5 Normalized deflection of the tip of the beam in different sizes

Figure 5 provides a comparison between the strain-gradient and classical responses for us. More precisely,
in the Figure the non-dimensional parameter uSG2 /uC2 for the end is depicted versus the parameter H /l. As
may be verified from Fig. 5, by growing the ratio H /l, hence the size of the beam, the considerable difference
between the strain-gradient and classical predictions reduces and finally disappears. In other words, the ratio
of deflections changes from a value which is lower than 0.1 to approximately one.

6.4 Bending of a beam under distributed loading

The focus in the example is on the analysis of a beam which is simply supported at two ends, and a transverse
uniform loading which is defined per unit length is imposed on the top surface as has been shown in Fig. 6.
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Fig. 6 The non-dimensional deflection versus the various values of H /l

Additionally, all geometric features have been included in the Figure. Also, it is assumed that the thickness is
produced by multiplying the integer, n, and the material length scale parameter, l, and the half of the length,
L , is five times the height, H . The material data are E = 200 Gpa, ν = 0.3, and l = 0.1 mm.

Here, it is beneficial to take advantage of the symmetry condition which is u1 = ∂u1/∂x2 = ∂2u1/∂x22 =
∂u2/∂x1 = ∂2u2/∂x1∂x2 = 0 for x1 = 0. Furthermore, the boundary conditions at the end read

u2 = ∂u2/∂x2 = ∂2u2/∂x
2
2 = 0, x1 = L . (61)

To continue analyzing the problem, it is worthy presenting the classical answer for the problem. What is of
great importance to us is the maximum vertical deflection, hence it is

uC2 |MAX = 5(1 − ν2)wL4

24E I

[
1 + 3

5

(
4

5
+ ν

2(1 − ν)

)
H2

L2

]
(62)

for the classical mechanics [44].
To analyze the sample numerically, the number of elements in the horizontal and vertical axes for the half of

the beam is 50 and 10, respectively, for producing square elements. Now, let us compare the strain-gradient and
classical predictions. To this aim, Fig. 6 in which the parameter uSG2 /uC2 for the origin is illustrated versus the
parameter H /l has been presented. Clearly, increasing the size of the beam, i.e., H /l, diminishes the distinction
between the strain-gradient and classical theories.

6.5 A thick hollow cylinder under pressure

The aim of this example is the investigation of the deformation of a hollow cylinder under the external pressure
shown in Fig. 7. The effort for solving the problem numerically and analytically in the strain-gradient media
was done by Zervos et al. [16]. To compare the current results which are on the basis of the conforming 4-node
elements with the response obtained in [16], it is supposed that the radii of the internal and external circles are
R1 = 0.05 and R2 = 0.5, respectively, and the material properties are λ = 7000, μ = 3000, and l = 0.01.
Due to the symmetry in the loading and geometry, only one quarter of the original model is modeled using
18× 18 4-node elements. In addition, the following boundary conditions must be prescribed on the symmetry
axes:

u2 = ∂u2/∂x1 = ∂2u2/∂x
2
1 = ∂u1/∂x2 = ∂2u1/∂x1∂x2 = 0, x2 = 0, (63)

u1 = ∂u1/∂x2 = ∂2u1/∂x
2
2 = ∂u2/∂x1 = ∂2u2/∂x1∂x2 = 0, x1 = 0. (64)
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Fig. 7 The whole geometry and meshed region of the thick hollow cylinder
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Fig. 8 Non-dimensional displacements and strains for points along the radius

The above boundary conditions are the direct results of an application of the symmetric deformed shape with
respect to the axes x1 and x2. For more information on the application of the symmetric boundaries, Ref. [45]
incorporates some invaluable data.

In addition, the non-dimensional displacement and strain along the radius which is normalized with respect
to the quantities in the inner radius are shown in Fig. 8. As may be clearly seen from the Figure, there is a good
agreement between current simulations and those reported in [16].

7 Conclusions

The conclusions and main focus of the current article can be listed as follows:

(i) The finite element analysis of the plane strain solids in strain-gradient elasticity was conducted in this
work.

(ii) Following presenting the strains and strain-gradients in the plane deformation, the constitutive relations
were used to find the corresponding stresses and double stresses.



3558 A. Beheshti

(iii) Then, by applying the principle of virtual work, the weak form of the static stationary equation which is a
key relation in FEM was obtained.

(iv) Due to presence of higher-order derivatives in the relations, higher-order DoF were included in the dis-
placement vector. In such way, strain-gradient plane strain solid elements with 6 and 12 degrees of freedom
per node were developed. Those are in the class of subparametric elements.

(v) Finally, some problems were analyzed to show the size-dependent behavior of solids in the small sizes,
while in the large scale the difference is indistinguishable.
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