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Abstract In this paper, the application of themeshless finite point method (FPM) to solve elastodynamic prob-
lems through an explicit velocity–Verlet time integration method is investigated. Strong form-based methods,
such as the FPM, are generally less stable and accurate in terms of satisfaction of Neumann boundary condi-
tions than weak form-based methods. This is due to the fact that in such types of methods, Neumann boundary
conditions must be imposed by a series of equations which are different from the governing equations in the
problem domain. In this paper, keeping all the advantages of FPM in terms of simplicity and efficiency, a new
simple strategy for proper satisfaction of Neumann boundary conditions in time for elastodynamic problems
is investigated. The method is described in detail, and several numerical examples are presented. Moreover,
the accuracy of the method with reference to the solution of some 3D problems is discussed.

1 Introduction

During the past few decades, the computational mechanics community has given specific attention to so-
called mesh reduction methods. Thereupon, there is a fast growing interest in developing meshless (or
mesh-free) methods as an alternative to conventional mesh-based methods such as the finite element method
(FEM). Although FEM has been developed thoroughly and applied successfully to a variety of engineer-
ing problems, the task of mesh generation can be very costly and burdensome for three-dimensional prob-
lems especially those with complicated domains. The key idea of meshless methods is to provide numer-
ical solutions on a set of arbitrarily distributed nodes instead of elements, and replacing meshing or re-
meshing procedures with adding or eliminating nodes at desired parts. The reader may refer to [14,17] for
development history of meshless methods. Depending on how equations are discretized, meshless meth-
ods can be classified into two major categories. The first category constitutes meshless methods based on
weak form such as the element-free Galerkin method [3]. Most of them are only meshless in terms of the
numerical approximation of field variables, and they are involved with numerical integration using a back-
ground mesh over the problem domain, which makes them computationally expensive and not “truly” mesh-
less.

The second category is meshless methods based on the strong form such as the finite point method (FPM)
[19]. These methods often use the point collocation method to satisfy the governing differential equations such
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as in [8], or they do the approximation using base functions which satisfy the governing differential equation
as in [16,24,25]. Since they do not need any background mesh, they are truly meshless, simpler to implement,
and computationally less expensive than meshless methods based on weak form.

FPM proposed by Oñate et al. [19] is a notable method within the context of truly meshless methods. The
extension of the method to the solution of static elasticity problems can be found in [20]. FPM uses a weighted
least squares (WLS) scheme for approximating the unknown field function. The approximation can be easily
constructed to have a consistency of a desired order, and by adopting the point collocation method the discrete
equations can be obtained. FPM has received considerable attention in different studies and applications; see
for example [2,4,7,9,21,28,30].

However, strong form-based methods such as FPM, in comparison with weak form-based methods, are
most often less stable and accurate for problems governed by partial differential equations with Neumann
(derivative) boundary conditions such as solid mechanics problems with stress (natural) boundary conditions.
These methods fall within a category of methods called direct meshless collocation methods [23]. In such
type of methods, Neumann boundary conditions should be imposed directly through a series of independent
equations, which are different from the governing equations in the problem domain. This contributes to a
poor accuracy on Neumann boundaries, and it may be taken as the main source of instability for collocation
methods [11,31]. In this regard, several studies by different researchers have been proposed to circumvent
this deficiency. Oñate [18] and Oñate et al. [20] proposed a stabilized version of FPM using finite calcu-
lus (FIC). A simple modification to stabilize FPM using FIC was proposed by Boroomand et al. [5]. Shu
et al. [27] used several layers of orthogonal grids near and on the boundaries for proper satisfaction of
Neumann conditions. La Rocca and Power [10] introduced a double-boundary collocation Hermitian tech-
nique in which at the boundary collocation points the governing differential equations and the boundary
conditions are coupled and satisfied simultaneously. Lie and Gu [12] and Liu et al. [13] proposed a com-
bined formulation that benefits from both the local weak form and strong form equations. In this sense, the
strong form formulation is applied to all nodes whose local support domains do not intersect with Neu-
mann boundaries, while the application of weak form formulation is restricted to nodes on or near the Neu-
mann boundaries. Pursuing such an idea, Sadeghirad and Mohammadi [22,23] proposed the equilibrium on
line method (ELM) for imposition of Neumann boundary conditions in FPM using straight line integration
domains.

Dynamic analysis of elastic structures is an important issue in various areas of engineering. The solution
of such problems with meshless methods is still the subject of different studies in the literature as in [6,15].
In this paper, the application of FPM to elastodynamic problems is investigated. Here the main attempt is to
extend the solution of FPM in time for elasticity problems while keeping all its main advantages in terms
of efficiency and simplicity of implementation. In this way, for the nodes in the body the time marching is
performed by using and explicit velocity–Verlet time integration method. Moreover, for the nodes located
on Neumann boundaries a simple technique is introduced to update the nodal displacements of the bound-
ary nodes by the solution of a set of linear equations in time. This system of equations includes Neumann
boundary nodes as well as all their adjacent nodes that fall within their support domains. The displacements of
the nodes on Neumann boundaries are updated at each time step, simultaneously, by a set of equilibrated
equations that correspond to body nodes that are consistent with the governing equation of body itself.
This strategy makes the solution to proceed in time appropriately. The similar technique has been used by
a recent study of the authors in [26] for some 2D problems, yet a detailed formulation about the satisfac-
tion of dynamic boundary conditions was not provided. In the present paper, the formulation is thoroughly
explained; moreover, a short technical description on implementation of the work in an OpenMulti-Processing
application programming interface (OpenMP) is discussed. We shall show that the proposed technique pre-
serves the appealing features of FPM from the implementation point of view. We shall assess the accuracy
of the method through some benchmark examples including some 3D dynamic problems. To the best of the
authors’ knowledge, this is the first study on the application of FPM to the solution of 3D elastodynamic
problems.

The organization of this paper is as follows: In Sect. 2, the mathematical description of the elastodynamic
problems is provided, Sect. 3 is devoted to the explanation of the methodology applied in the present study, in
Sect. 4 the capability of the proposed method through some benchmark problems is discussed, and in Sect. 5
the conclusions are summarized.
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Fig. 1 Domain representation of a general three-dimensional problem in a meshless style

2 Problem description

Consider a linear elastic body in a three-dimensional domain Ω bounded by a boundary Γ consisting of a
Dirichlet part ΓD constrained by prescribed displacements u∗, and a Neumann part ΓN where prescribed
tractions t∗ are imposed (see Fig. 1).

In an isotropic homogenous medium for any point of the domain Ω , with coordinates X = (X, Y, Z), the
governing equations of motion, at time t , can be written in the following form:

STDSu(X, t) + b(X, t) = cu̇(X, t) + ρü(X, t), X ∈ Ω (1)

with prescribed boundary conditions:

ñDSu(X, t) + b = t∗(X, t), X ∈ ΓN , (2a)

u(X, t) = u∗(X, t), X ∈ ΓD, (2b)

and initial displacement and velocity conditions:

u(X, 0) = u0(X), X ∈ Ω, (3a)

u̇(X, 0) = v0(X), X ∈ Ω, (3b)

where u is the displacement vector with 〈u, v, w〉 components, respectively, along the X , Y and Z directions in
the global coordinate system. u̇ , ü and b are the vectors of velocity, acceleration and body forces, respectively.
ρ is the mass density, and c represents the damping coefficient. S is the well-known elasticity operator defined
as:

ST =
⎡
⎣

∂/∂X 0 0 ∂/∂Y 0 ∂/∂Z
0 ∂/∂Y 0 ∂/∂X ∂/∂Z 0
0 0 ∂/∂Z 0 ∂/∂Y ∂/∂X

⎤
⎦ (4)

and D is the matrix of material constants defined as:

D =

⎡
⎢⎢⎢⎢⎢⎣

D1 D2 D2 0 0 0
D1 D2 0 0 0

D1 0 0 0
D3 0 0

D3 0
Sym. D3

⎤
⎥⎥⎥⎥⎥⎦

(5)

and the parameters in the above equation are defined as:

〈D1, D2, D3〉 = E

(1 + ν)(1 − 2ν)
〈1 − ν, ν, (1 − 2ν)/2〉, (6)
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where ν is Poisson’s ratio and E is Young’s modulus. ñ is a matrix containing nX , nY and nZ which are the
components of the outward unit vector normal to the boundary, defined as:

ñ =
⎛
⎝
nX 0 0 nY 0 nZ
0 nY 0 nX nZ 0
0 0 nZ 0 nY nX

⎞
⎠ . (7)

3 The solution strategy

3.1 Approximation scheme

Here, we recall the weighted least square (WLS) approximation scheme employed for FPM, and one may
consult [20] to get more insight into the details of the formulation. Let Xi ∈ Ω, i = 1, 2, . . . be a collection
of nodes scattered within the solution domain and on the boundaries (see Fig. 1). Accordingly, the time is
discretized into stances as t1, t2, . . . , tn, tn+1, . . .. Around each of the nodes, a sub-domainΩi , so-called cloud,
is considered. Each sub-domain Ωi has a local coordinate system, with origin on the node and parallel to the
global coordinate system. Ωi contains the neighboring nodes of Xi as x j , j = 1, 2, . . . , ni over which a
displacement variable, to exemplify u at time step tn , could be approximated by ûn locally as:

ûn(x) =
m∑
j=1

p j (x)αn
j = pT (x)αn, x ∈ Ωi , (8)

where x = (x, y, z) stands for the local coordinate system, p(x) indicates a vector consisting of monomial
bases and α is a vector of unknown coefficients to be found in terms of nodal values. Considering a complete
set of monomials, for a 3D problem one can specify p; for instance,

p = 〈1, x, y, z, x2, xy, y2, yz, zx, z2〉T , m = 10. (9)

To proceed with the approximation, u can be sampled at the ni nodes of Ωi as:

ūn =

⎧⎪⎪⎨
⎪⎪⎩

ūn1
ūn2
...

ūnni

⎫⎪⎪⎬
⎪⎪⎭

≈

⎧⎪⎪⎨
⎪⎪⎩

ûn1
ûn2
...

ûnni

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎣

pT (x1)
pT (x2)

...

pT (xni )

⎤
⎥⎥⎥⎦ αn = Cαn . (10)

C is regarded as the moment matrix associated with the local approximation within Ωi . Assuming ni > m,
then C is not a square matrix; in turn, the approximation cannot fit to all the values of ūn . Likewise, the
approximation entails a WLS procedure that results in a minimization of a norm J as follows:

J =
ni∑
j=1

w(r j )
(
ūnj − û(xnj )

)2 =
ni∑
j=1

w(x j )
(
ūnj − pT (x j )α

n
)2

, (11)

where r j = ∣∣x j
∣∣ and w is a weight function that should be taken suitably for Ωi . In this work, we take as

suggested in [5]:

w(r j ) = 1 − exp(64 − 16r2j /δ
2)

1 − exp(64)
, (12)

where δ indicates the distance of the most remote node of the cloud from the central node. Minimization of
the norm J in Eq. (11) with respect to αn yields the following system of equations:

Aαn = Būn, (13)

where

A =
ni∑
j=1

w(r j )p(x j )pT (x j ) (14)
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and
B = [

w(r1)p(x1) w(r2)p(x2) · · · w(rni )p(xni )
]
. (15)

Solving Eq. (13) for αn results in:
αn = A−1Būn . (16)

Finally, ûn(x) can be obtained in terms of nodal values, by substitution of αn from Eq. (16) into (8) which
gives:

ûn(x) = pT (x)A−1Būn =
ni∑
j=1

N j (x)ūnj . (17)

3.2 Discretization of governing equations

The discretized system of equations in FPM can be easily obtained by substituting the approximated functions
of displacements un(x) = 〈ūn(x), v̄n(x), w̄n(x)〉T , from Eq. (17), in Eqs. (1) and (2) which results in

(STDSN)

∣∣∣
Xi

unR + bni = ρüni + cu̇ni , Xi ∈ Ω, (18)

where unR = 〈ūn1, v̄n1 , w̄n
1 , ū

n
2, v̄

n
2 , w̄

n
2 , . . . , ū

n
ni , v̄

n
ni , w̄

n
ni 〉T is the vector of nodal displacements in the cloud and

N is the matrix of shape functions as follows:

N =
⎛
⎝

N1 0 0 N2 0 0 · · ·
0 N1 0 0 N2 0 · · ·
0 0 N1 0 0 N2 · · ·

⎞
⎠ . (19)

Consequently, for the Neumann boundary nodes one can conclude:

t∗(Xi , t
n) = (ñDSNT )

∣∣∣
Xi

unR, Xi ∈ ΓN . (20)

3.3 Time integration and boundary condition satisfaction

In the present work, the time integration in Eq. (18) is carried out based on an explicit velocity–Verlet scheme:

u̇n+1/2 = u̇n + 	t

2
ün, (21a)

un+1 = un + 	t u̇n+1/2, (21b)

u̇n+1 = u̇n+1/2 + 	t

2
ün+1, (21c)

in which 	t is the constant time step which must be taken less than the critical time step 	tc:

	tc = 	min/ck, (22)

where 	min is the minimum nodal distance in the discretized domain and ck is the maximum speed of sound
in the material. In turn, 	t must be chosen within the following range:

	t ≤ 	min

√
3(1 − ν)ρ

E
. (23)

Having known the displacement and velocity vectors of each node at time step n, the displacement vector at
the next time step, on the basis of Eq. (21), can be found as:

un+1 = un + 	t u̇n + 	t2

2
ün, (24)
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Fig. 2 Boundary of a generic discretized problem domain

and hence, for the degrees of freedom (DOFs) inside the domain one may easily determine ün+1 at each time
step from Eq. (18) and find un+1. However, for nodes exposed to Neumann boundary conditions progression
in time cannot be reached by using Eq. (24). This is due to the fact that for these nodes the acceleration term in
is not appeared directly in Eq. (20); therefore, a suitable strategy to manage such a problem should be devised.

We explain the solution strategy for a general 2D problems as shown in Fig. 2. “c” and “b” are two body
nodes, and “a” and “d” are two boundary nodes with Neumann and Dirichlet condition, respectively. For the
sake of brevity, we assume that at each boundary node prescribed boundary conditions are of either Dirichlet
or Neumann type; the generalization to 3D problems as well as nodes with mixed boundary condition can
be done easily. Figure 2 represents a small portion of a generic discretized body close to its boundary. The
distributed nodes, based on their position in the solution domain, are classified into three types as I, II and II.
Type I stands for the nodes whose cloud does not contain any node with Neumann boundary condition (“c”
and “d”). Type II (“b”) represents the nodes whose clouds contain at least a node with Neumann boundary
condition, and Type III ( node “a”) are the nodes located on Neumann boundaries. It can be concluded that
Type II nodes play the role of an interface layer of nodes between Neumann boundaries and the other parts of
the body.

The displacement vectors for Types I and II nodes (excluding Dirichlet nodes) at time step n + 1 can be
found explicitly. It suffices to obtain the vector of acceleration at time step n by using Eq. (18) and advancing
to the next step using Eq. (24). To exemplify, for nodes “c” and “b” one can write:

un+1
b = unb + · · · + ψbauna + ψbbunb + ψbcunc + · · · + θnb , (25a)

un+1
c = unc + · · · + ψcbunb + ψccunc + ψcdund + · · · + θnc , (25b)

whereψi j = 	t2
2ρ (STDSNk)

∣∣∣
Xi

unj , and θni = (	t − c	t2
2ρ )u̇ni + 	t2

2ρ bni supposing thatX j is the kth family node

of Xi . Updating the displacement vector of “d,” as a node with Dirichlet condition, can be made easily as:

un+1
d = u∗(Xd , t

n+1). (26)

It can be concluded that for Type I and II nodes the solution procedure deals with an uncoupled set of equations
which can be assembled in matrix form as

Un+1
I,II = KI,IIUn + Fn

I,II (27)

in which the above equation, in the view of Fig. 2, can be derived as:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...

un+1
b
...

un+1
c

un+1
d
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...
...

...
...

· · · ψba · · · I + ψbb · · · ψbc 0 · · ·
...

...
...

...
...

...
...

...
· · · 0 · · · ψcb I + ψcc ψcd · · · · · ·
· · · 0 · · · · · · · · · 0 0 · · ·
...

...
...

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...
una
...
unb
...
unc
und
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

...
θnb
...

θnc
u∗(Xd , tn+1)

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (28)

where I stands for an identity matrix. According to Eq. (20), for “a” as a node with Neumann condition one
may conclude:

· · · + ψ̄aaun+1
a + ψ̄abu

n+1
b + · · · = t∗(Xa, t

n+1), (29)

where ψ̄i j = (ñDSNk)|Xi
unj supposing that X j is the kth family node of Xi . It is clear that for updating the

displacements of “d” the updated displacements of all its family nodes are required. Some of these nodes are
of Type II, and thus, they have so far been updated by using Eq. (27), yet for the rest family nodes (Type III
nodes) their updated displacement is not available. In a nutshell, a coupled system of equations for a narrow
layer of nodes close to the Neumann boundaries is obtained. Therefore, at each time step the solution of a
linear system of equations is required, which can be written as follows:

Un+1
II,III = K−1

II,IIIF
n+1
II,III. (30)

It is noteworthy that as the matrix KII,III is constant during the analysis, its factorization can be done once,
leading to a huge saving in computational time. In the view of Fig. 2, the above equation can be expressed as
follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

...

un+1
a
...

un+1
b
...

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...

· · · ψ̄aa · · · ψ̄ab · · ·
...

...
...

...
...

· · · 0 · · · I · · ·
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

...

t∗(Xa, tn+1)
...

un+1
b
...

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (31)

Having solved the above equation, the displacements of all the nodes with Neumann conditions can be found.
It should be pointed out that in contrary to direct imposition of Neumann boundary conditions, which is the
case for the static solution of conventional FPM, here the discretized Neumann equations, associated with Type
III nodes, at each time step are satisfied with a set of equilibrated equations, associated with Type II nodes,
consistent with equations governing the body itself. In Sect. 4, we shall show the suitability of the proposed
approach for some benchmark problems.

3.4 Implementation

The formulation presented in the previous section is implemented in a C++ program. The program was
compiled using Microsoft Visual Studio 2015. To take advantage of available multi-core CPUs, all possible
parts of the program were parallelized using the Open Multi-Processing (OpenMP) directives. OpenMP is an
open standard for shared memory parallelization adopted by a large number of C, C++ and Fortran compilers.
In this parallelization scheme, the blocks of code to be parallelized (usually for loops) are marked by special
#pragma omp directives. The compiler generates the appropriate parallel code for blocks. Special care
must be taken to avoid race conditions, i.e., where the result of an operation depends on the order execution
of different threads (which is indeterministic). OpenMP uses system threads for its parallel execution model.
Each thread is an independent path of execution, which if possible is scheduled on a separate core in multi-core
CPUs by the operating system to leverage full power of such hardware platform.

An important step in the solution procedure is solution of a linear system of equations in Eq. (30). To
this end, we employed the “AMGCL” library [1]. AMGCL is a light, header-only, templated C++ library for
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Fig. 3 Problem domain in Example 1
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Fig. 4 Variations of horizontal displacement at points A and B in Example 1; 	x = 0.125m

solution of sparse linear systems of equationswith several options for solver, pre-conditioner and parallelization
strategy. It includes implementation of algebraic multi-grid (AMG) methods which enhances the performance
of solution. As the coefficient matrix in Eq. (30) is constant during the solution, setting up the required data
structures and factorizing the matrix is done only once and the computational cost is greatly reduced.

4 Numerical examples

In this section, three numerical examples are described to illustrate the potentialities of the presented approach.
In Example 1, the results are compared with the exact solution through a norm of error defined at node Xi as

e =
√√√√

η∑
j=1

(uex(Xi , t j ) − uni )
2/

η∑
j=1

(uex(Xi , t j ))2, (32)

where uex indicates the exact solution and η stands for the number of time steps based on which the norm is
calculated.

Example 1 In this example, we consider a rectangular plate fixed rigidly at its base and subjected to an
impulsive load at the free edge, as shown in Fig. 3. The geometric, mechanical and loading parameters are:
length L = 8m, height D = 2m, E = 8× 104 Pa, ν = 0, ρ = 2450 kg/m3 , c = 0, and traction P = 200 Pa.
The exact solution of this example is given by [29]:

u(X, t) = 8PL

π2E

∞∑
j=1

(−1) j−1

(2 j − 1)2
sin

(2 j − 1)πX

2L
(1 − cosω j t) (33)

in which ω j = (2 j−1)π
2L

√
E/ρ. The solution of this example using the present approach for a time duration of

7 seconds is considered. The domain is discretized through a Cartesian uniform grid of nodes with equal nodal
spacing of 	x both in horizontal and vertical directions. To show the convergence of the solution obtained by
the present approach, we solve the problem for three different grid sizes taking 	x equal to 0.5, 0.125, and
0.03125m. Meanwhile, in all the cases	t is taken to be 0.0005 s. The horizontal displacements of node A and
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Table 1 Obtained norms of error in Example 1 at nodes A and B

	x 0.5m 0.125m 0.03125m
A 0.011934 0.004388 0.003270
B 0.015454 0.005628 0.004152
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Fig. 5 Variations of displacement error at points A and B in Example 1

B, as shown in Fig. 3, are presented in Fig. 4. As a consequence, the results obtained by FPM are in perfect
agreement with the exact solution.

The obtained norm of error, based on Eq. (32), for the horizontal displacement of nodes A and B is reported
in Table 1. The variation of displacement error at points A and B, for different nodal spacings, is shown in
Fig. 5. It can be concluded that the method performs well and its solution converges to the exact solution by
refining the solution domain. That is also true for point A where Neumann boundary conditions are applied.

Example 2 In this example, we consider a 3D cantilever beam with a rectangular cross section as shown in
Fig. 6. The beam is subjected to a periodic shear stress distribution q(t) = τ sinω f t at the free end. The basic
parameters are: length L = 48m, depth D = 12m, widthW = 6m, E = 3× 104 Pa, ν = 1/3, ρ = 1 kg/m3,
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Fig. 6 Problem domain in Example 2
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Fig. 7 Variations of horizontal displacement at points A and B in Example 2; 	x = 0.6m
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Fig. 8 Contour plot of displacement (m) along Y axis obtained by both FPM and FEM methods, at t = 0.44 s, in Example 2

and c = 0. The magnitude and frequency of the excitation are, respectively, as τ = −13.89N/m2 and
ω f = 27 rad/s.

To proceed with the solution of FPM, the domain is discretized by a Cartesian uniform grid of nodes with
a nodal spacing of 	x = 0.6m. To check the suitability of the results, the solution of a standard/explicit FEM
model using 16,000 linear cubic elements is taken into account, as well. The nodal spacing in both models
is identical which results in 18,711 number of nodes. We consider the solution for a duration of 0.5 s, and in
both models 	t is taken to be 0.00002 s. The variation of displacements along Y axis at point A at the free
end, XA = (48, 6, 3), and point B at the center of the beam, XB = (24, 6, 3), is shown in Fig. 7. The results
illustrate that the results obtained by FPM are in excellent agreement with those of FEM. The contour plot
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Fig. 9 Problem domain in Example 3
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Fig. 11 Displacement for point B in Example 3

of displacement along the Y axis (for both models), at t = 0.44 s is reported in Fig. 8. As can be seen, the
solution of FPM resembles that of FEM using the same nodal spacing.

Example 3 This example concerns the transient behavior of a prismatic bodywith a rectangular 2m×2m cross
section and with a height of 4m as shown in Fig. 9. The material properties of the body are E = 105 N/m2,
ν = 0.25, ρ = 1 kg/m3, and c = 0. The body is fixed at its end and subjected to two different impulsive
flexural and torsional loading conditions (viz. Fig. 9). For both cases, the surface traction is imposed with an
identical triangular time variation illustrated in the same figure, and the solution of the problem for a time
duration of 0.3 seconds is sought. In this example, the FPM solution is performed taking 	t = 0.00015 s
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using a uniform discretization of the domain with an average nodal spacing of 	x = 0.125m which results
in 9537 nodes. Again for the sake of verification, the solution of FEM by using linear cubic elements, and the
same discretization size which results in 8912 elements, is taken into account. The variation of displacement
along the X axis for point A, in the flexural loading case, and point B, in the torsional loading case, is shown
in Figs. 10 and 11. Comparing the obtained results to those obtained by FEM, one can conclude that the
agreement between the two numerical approaches is very good.

5 Conclusion

In this paper, the meshless finite point method (FPM) is extended and applied to elastodynamic problems. The
time integration is performed through an explicit velocity–Verlet approach. A simple technique is introduced
to satisfy Neumann type boundary conditions (tractions) in time. This technique preserves the originality and
advantages of the FPM in terms of simplicity and efficiency of the approach. The system of equations is formed
so that the major parts of the solution domain are governed by uncoupled equations; only for a layer of nodes
close to Neumann boundaries the equations become coupled. The detailed formulation for advancing in time is
presented, and the accuracy of the approach via several numerical examples, including some 3D problems, is
investigated. The obtained results show that the method is capable of yielding proper results with an excellent
agreement with those of reference solutions.
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