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Abstract In this paper, FGMtoroidal shell segments surrounded by elastic foundation and subjected to uniform
external pressure are investigated by analytical method. A novelty of the study is that the Reddy’s third-order
shear deformation shell theory (TSDT) with von Karman geometrical nonlinearity combined with deflection
function selected with three terms is used to investigate the nonlinear stability of thicker FGM toroidal shell
segments. In addition, the thermal element in the shell is also taken into account. The FGM shell is a convex
and concave toroidal shell segment. It is a general form for a circular cylindrical shell. Closed-form expressions
for determining the static critical external pressure load and postbuckling load–deflection curves are obtained.
Effects of temperature field, foundations, material and dimensional parameters on the stability of shells are
considered. This paper also shows that the use of TSDT to analyze the nonlinear stability of thicker toroidal
shell segments is necessary and more suitable.

1 Introduction

Functionally graded material (FGM) is a material made of metal and ceramic. The highlights of FGM result
from a combination of prominent characteristics of constituents such as high elasticity modulus, low thermal
expansion and conduction coefficients of ceramic and ductility of metal. By gradually varying the volume
fractions of constituent materials, the effective properties of an FGM exhibit a smooth and continuous change
fromone surface to another, thus reducing or eliminating interface bond problems and huge stress concentration
that are inherent in laminated composites. In recent years, FGM structures are used efficiently in various
engineering applications as pressure vessels, missiles, spacecraft, submarines and nuclear reactors.

Due to the importance of FGM structures in practical applications, studies on the static and dynamic
behavior of FGM structures have attracted attention of many scientists. Many significant results have been
obtained. Batra [1] investigated the torsion of un-stiffened cylinders with material modulus varying only in
the axial direction. Wang et al. [2] presented an exact solution and transient behavior for torsional vibration
of functionally graded finite hollow cylinder. Shen [3] based on the higher-order shear deformation theory
and the singular perturbation technique obtained results on torsional loads and the postbuckling equilibrium
paths of torsion-loaded FGM shells in thermal environments. Huang and Han [4–7], with the three-term
deflection function, analyzed the buckling and postbuckling of un-stiffened FGM cylindrical shells under
axial compressive load, radial pressure and combined axial compressive load and radial pressure based on the
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Donnell shell theory with the von Karman geometrical nonlinearity and Ritz method. By the same authors,
the nonlinear dynamic buckling problems of un-stiffened functionally graded cylindrical shells subjected to
time-dependent axial load by using the one-term solution form is investigated [8]. Various effects of the
inhomogeneous parameter, loading speed, dimension parameters, environmental temperature rise and initial
geometrical imperfection on nonlinear dynamic buckling were discussed in their works.

Sofiyev and Schnack [9] investigated the stability of un-stiffened FGM cylindrical shells under linearly
increasing dynamic torsional loading. The modified Donnell-type dynamic stability equation and Galerkin
method were used. However, the geometrical relation is linear and the approximate solution was chosen by
one term. Najafizadeh et al. [10] with the linear stability equations in terms of displacements studied buckling
of FGM cylindrical shell reinforced by FGM rings and stringers under axial compression. By homogeneous
reinforcement stiffeners, Bich et al. [11,12] have obtained the results on the nonlinear static and dynamic
analysis of stiffened FGM imperfect doubly curved thin shallow shells and stiffened FGM cylindrical shells
using the classical shell theorywith vonKarman geometrical nonlinearity and the smeared stiffeners technique.
The nonlinear critical dynamic buckling load is found according to the Budiansky–Roth criterion. Dung and
Hoa [13,14] obtained the results on the nonlinear static buckling and postbuckling analysis of eccentrically
stiffened FGMcircular cylindrical shells under torsional and external loads without taking into account thermal
elements.

For shells resting on elastic foundations,many investigations have focused on the buckling and postbuckling
analysis of un-stiffened shells. Sheng andWang [15] considered the effect of thermal load on buckling, vibration
and dynamic buckling of un-stiffened FGMcylindrical shells embedded in a linear elastic medium based on the
first-order shear deformation theory (FSDT) taking into account the rotary inertia and transverse shear strains.
Shen [16] and Shen et al. [17] presented the postbuckling analysis of FGM cylindrical shells surrounded
by an elastic medium under the lateral pressure and axial load by using the singular perturbation technique
and the higher-order shear deformation shell theory (HDST). Sofiyev and Avcar [18] studied the stability of
cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation by the Galerkin
method. By the same method, Sofiyev and Kuruoglu [19] analyzed the torsional vibration and buckling of the
un-stiffened cylindrical shell with functionally graded coatings surrounded by an elastic medium. Najafov et
al. [20] studied torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic
foundation using the classical shell theory and Galerkin method. Bagherizadeh et al. [21] based on the higher-
order shear deformation shell theory investigated themechanical buckling of FGMcylindrical shells surrounded
by a Pasternak elastic foundation. Akbari et al. [22] studied the thermal buckling of temperature-dependent
FGM conical shells with arbitrary edge supports by an iterative generalized differential quadrature method.
Bich and Tung [23] presented an analytical approach to investigate nonlinear axisymmetric responses of FGM
shallow spherical shells under uniform external pressure including temperature effects using the classical
shell theory. Dung and Nam [24], by semi-analytical approach, presented the nonlinear dynamic analysis of
eccentrically stiffened functionally graded circular cylindrical thin shells under pressure and surrounded by
an elastic medium without taking into account thermal elements.

For shells of revolution and toroidal shells, many interesting results on vibration and stability have been
obtained. Stein and McElman [25] studied static buckling of isotropic shallow segment of toroidal shell.
Hutchinson [26] analyzed initial postbuckling behavior of toroidal shell segments. Parnell [27] reported a
numerical improvement of asymptotic solutions for shells of revolution with application to toroidal shell
segments. Using the theory of thin shells for deriving inhomogeneous Heun equations in complex form,
Guodong [28] presented exact solutions of toroidal shells in pressure vessels and piping under symmetric load.
WangAnwen and ZhangWei [29], by asymptotic solution, solved the problem on the buckling of toroidal shells
subjected to hydrostatic pressure based on Sander nonlinear equations of equilibrium. Zhang [30], based on
Novozhilov thin shell equations, presented the complete asymptotic expansions of four homogeneous solutions
and a particular solution of toroidal shells under nonsymmetric loadings. Zhu [31] studied the vibration and
stability of toroidal shells conveying fluid by the use of Love general thin shell equations and the classical
flow theory. A general solution for the natural frequency is obtained in that work. Blachut and Jaiswal [32], by
numerical method, investigated the elastic and elastic-plastic buckling of geometrically perfect and imperfect
toroidal shells under uniform external pressure. The geometrically nonlinear problems of in-plane pure bending
of a toroidal shell of arbitrary cross section are considered by Kuznetsov and Levyakov [33]. A finite element
algorithm for solution of the problem is proposed in their work. The free vibrations of elastic in vacuo circular
toroidal shells under different boundary conditions are studied by Ming et al. [34] using the Sander linear thin
shell theory. Buchanan and Liu [35] investigated the free vibration of thick-walled isotropic toroidal shells
by the finite element method in which the nine-node Lagrangian finite element is formulated in the toroidal
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coordinate system. Solutions are obtained for the case where an axis of symmetry can be assumed at the
center of the torus. Asratyan and Gevorgyan[36] solved mixed boundary-value problems of thermoelasticity
for anisotropic-in-plan inhomogeneous toroidal shells by asymptotic integration of the equations of the three-
dimensional problem of the anisotropic shell theory. Using the first-order shear deformation theory, Tornabene
and Viola [37] presented the static analysis of FGM doubly curved shells and panels of revolution by the
generalized differential quadrature method. Bich et al. [38] studied the buckling of eccentrically stiffened
functionally graded toroidal shell segment surrounded by an elastic medium under external pressure based on
the classical thin shell theory.

To the best of the authors’ knowledge, there is no analytical approach on the nonlinear buckling of FGM
toroidal shell segments subjected to external pressure using TSDT. This problem has attracted the attention
of many scientists, because studies [25–27,38] using the classical theory are only suitable for thin shells.
For thicker shells, one must use the first-order shear deformation theory (FSDT) or the third-order shear
deformation theory (TSDT) for better results. However, according to TSDT, the system stable equations will
be the system of interdependent five equations, more complex than the system stable equations of the classical
theory having only three equations. In this paper, the mentioned difficulty will be over come. In addition, this
problem is complicated further if deflection function is selected with three terms. A novelty of this study is the
use of TSDT combined with deflection function selected with three terms to investigate the nonlinear stability
of FGM thicker toroidal shell segments.

In this paper, FGM thick toroidal shell segments surrounded by elastic foundation and subjected to uniform
external pressure are considered, based on the Reddy’s third-order shear deformation shell theory. The deflec-
tion function with three terms taking into account the nonlinear buckling shape is chosen more correctly and
satisfying simply supported boundary conditions at the butt-ends of the shell. By using Galerkin’s method, the
closed-form expressions to determine critical buckling load and nonlinear postbuckling load–deflection curves
are obtained. The influences of various parameters such as temperature field, radius of longitudinal curvature,
foundation, dimensional parameters and volume fraction index of materials on the nonlinear behavior of the
shell are analyzed.

2 Governing equations

2.1 Functionally graded material (FGM)

FGMs are microscopically inhomogeneous materials, in which material properties vary smoothly and contin-
uously from one surface to the other structure surface. These materials are made from a mixture of ceramic
and metal or a combination of different materials. In particular, FGM thin-walled structures with ceramic in
the inner surface and metal in the outer surface are widely used in practice. Denote by Vm and Vc volume
fractions of metal and ceramic phases, respectively, which are related by Vm + Vc = 1 and Vc is expressed
as Vc(z) = ( 2z+h

2h )k , where h is the thickness of thin-walled structure, k is the volume fraction exponent
(k ≥ 0); z is the thickness coordinate and varies from −h/2 to h/2; the subscripts m and c refer to the metal
and ceramic constituents, respectively. According to the mentioned law, the Young’s modulus E(z) and the
thermal expansion coefficient α(z) can be expressed in the form [10,13,39,40]

E(z) = EmVm + EcVc = Em + (Ec − Em)

(
2z + h

2h

)k

,

α(z) = αmVm + αcVc = αm + (αc − αm)

(
2z + h

2h

)k

.

(1)

The Poisson’s ratio ν is assumed to be constant.

2.2 Constitutive relations and governing equations

Assume there is a plane circular arc of radius a (Fig. 1a, b). Rotating this arc about an axis orthogonal to
equator line in their plane, we obtain the middle surface of a shell of revolution called a segment of toroidal
shell. If the curvature 1/a is positive, this shell is a convex shell (Fig. 1c), but if 1/a is negative, this shell is a
concave shell, if 1/a → 0, the shell becomes a cylindrical shell.
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Fig. 1 Geometry and coordinate system of a FGM toroidal shell segment

Now consider a segment of toroidal shell formed as was said above and has the thickness h, length L ,
radius of shell equator R. The geometry and coordinate system of FGM toroidal shell segments are depicted
in Fig. 1. In this paper, the FGM toroidal shell segments are free and are simply supported at two end edges
and subjected to uniform external pressure.

The shell–foundation interaction is represented by the Pasternak model as [41]

qsf = K1w − K2�w, (2)

where K1 is the Winkler foundation modulus and K2 is the shear layer foundation stiffness of the Pasternak
model, w is the deflection of the shell, and � is the Laplace operator.

According to the Reddy’s third-order shear deformation shell theory, the displacement field at a distance
z from the middle surface is as [40]

⎛
⎝ u

v
w

⎞
⎠ =

⎛
⎝ u + zφx − 4

3h2
z3(φx + w,x )

v + zφy − 4
3h2

z3(φy + w,y)

w

⎞
⎠ , (3)

where u, v and w are the displacement components at the middle surface and φx , φy are the slope rotations in
the (x, z) and (y, z) planes.

The strain components at the middle surface of toroidal shell segment are related to the displacements u,
v and w in the x , y, z coordinate directions as [25,26,40]

⎛
⎝ ε0x

ε0y
γ 0

xy

⎞
⎠ =

⎛
⎝ u,x − w

a + w2
,x/2

v,y − w
R + w2

,y/2
u,y + v,x + w,xw,y

⎞
⎠ . (4)

The strain components across the shell thickness at a distance z from the middle surface are

⎛
⎝ εx

εy
γxy

⎞
⎠ =

⎛
⎝ ε0x

ε0y
γ 0

xy

⎞
⎠ + z

⎛
⎜⎝

k(1)
x

k(1)
y

k(1)
xy

⎞
⎟⎠ + z3

⎛
⎜⎝

k(3)
x

k(3)
y

k(3)
xy

⎞
⎟⎠ ,

(
γxz
γyz

)
=

(
γ 0

xz
γ 0

yz

)
+ z2

(
k(2)

xz

k(2)
yz

)
, (5)
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where ⎛
⎜⎝

k(1)
x

k(1)
y

k(1)
xy

⎞
⎟⎠ =

⎛
⎝ φx,x

φy,y
φx,y + φy,x

⎞
⎠ ,

(
k(2)

xz

k(2)
yz

)
= −3c

(
φx + w,x
φy + w,y

)
,

⎛
⎜⎝

k(3)
x

k(3)
y

k(3)
xy

⎞
⎟⎠ = −c

⎛
⎝ φx,x + w,xx

φy,y + w,yy
φx,y + φy,x + 2w,xy

⎞
⎠ ,

(
γ 0

xz
γ 0

yz

)
=

(
φx + w,x
φy + w,y

)
, c = 4

3h2 .

(6)

From Eq. (4), the deformation compatibility equation for a toroidal shell segment is written as follows:

ε0x,yy + ε0y,xx − γ 0
xy,xy = − 1

R
w,xx − 1

a
w,yy + (w,xy)

2 − w,xxw,yy . (7)

The constitutive stress–strain equations by Hooke’s law for the shell material are given by(
σx
σy

)
= E(z)

1 − ν2

(
εx + νεy − (1 + ν)α(z)�T
εy + νεx − (1 + ν)α(z)�T

)
,

⎛
⎝σxy

σxz
σyz

⎞
⎠ = E(z)

2(1 + ν)

⎛
⎝γxy

γxz
γyz

⎞
⎠ ,

(8)

where �T is temperature rise from stress-free initial state or temperature difference between two surfaces of
the FGM shell.

The middle surface normal force intensities Ni , the bending moment intensities Mi and higher-order
bending moment intensities Pi , transverse shearing force intensities Qi and the higher-order shear force
intensities Ri of functionally graded toroidal shell segment are defined as

Ni =
h/2∫

−h/2

σidz, Mi =
h/2∫

−h/2

zσidz, Pi =
h/2∫

−h/2

z3σidz, Qi =
h/2∫

−h/2

σi zdz,

Ri =
h/2∫

−h/2

z2σi zdz, Nxy =
h/2∫

−h/2

σxydz, Mxy =
h/2∫

−h/2

zσxydz, Pxy =
h/2∫

−h/2

z3σxydz,

i = x, y.

(9)

Integrating the stress–strain equations and their moments through the thickness of the shell, the expressions
for force and moment resultants of a FGM toroidal shell segment are obtained as follows:

Nx = E1

1 − ν2

(
ε0x + νε0y

)
+ E2

1 − ν2
(φx,x + νφy,y) − cE4

1 − ν2
(φx,x + w,xx + νφy,y + νwy,y) − 	1

1 − ν
,

Ny = E1

1 − ν2

(
ε0y + νε0x

)
+ E2

1 − ν2
(φy,y + νφx,x )

− cE4

1 − ν2
(φy,y + w,yy + νφx,x + νwx,x ) − 	1

1 − ν
,

Nxy = E1

2(1 + ν)
γ 0

xy + E2

2(1 + ν)
(φx,y + φy,x ) − cE4

2(1 + ν)
(φx,y + φy,x + 2w,xy),

(10)

Mx = E2

1 − ν2

(
ε0x + νε0y

)
+ E3

1 − ν2
(φx,x + νφy,y) − cE5

1 − ν2
(φx,x + w,xx + νφy,y + νwy,y) − 	2

1 − ν
,

My = E2

1 − ν2

(
ε0y + νε0x

)
+ E3

1 − ν2
(φy,y + νφx,x )

− cE5

1 − ν2
(φy,y + w,yy + νφx,x + νwx,x ) − 	2

1 − ν
,

Mxy = E2

2(1 + ν)
γ 0

xy + E3

2(1 + ν)
(φx,y + φy,x ) − cE5

2(1 + ν)
(φx,y + φy,x + 2w,xy),

(11)
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Px = E4

1 − ν2

(
ε0x + νε0y

)
+ E5

1 − ν2
(φx,x + νφy,y) − cE7

1 − ν2
(φx,x + w,xx + νφy,y + νwy,y) − 	4

1 − ν
,

Py = E4

1 − ν2

(
ε0y + νε0x

)
+ E5

1 − ν2
(φy,y + νφx,x )

− cE7

1 − ν2
(φy,y + w,yy + νφx,x + νwx,x ) − 	4

1 − ν
,

Pxy = E4

2(1 + ν)
γ 0

xy + E5

2(1 + ν)
(φx,y + φy,x ) − cE7

2(1 + ν)
(φx,y + φy,x + 2w,xy),

(12)

Qx = E1 − 3cE3

2(1 + ν)
(φx + w,x ), Qy = E1 − 3cE3

2(1 + ν)
(φy + w,y),

Rx = E3 − 3cE5

2(1 + ν)
(φx + w,x ), Ry = E3 − 3cE5

2(1 + ν)
(φy + w,y),

(13)

where

E1 = Emh + Ecmh

k + 1
, E2 = Ecmkh2

2(k + 1)(k + 2)
, E3 = Emh3

12
+ Ecmh3

[
1

k + 3
− 1

k + 2
+ 1

4(k + 1)

]
,

E4 = Ecmh4
[

1

k + 4
− 3

2(k + 3)
+ 3

4(k + 2)
− 1

8(k + 1)

]
,

E5 = Emh5

80
+ Ecmh5

[
1

k + 5
− 2

k + 4
+ 3

2(k + 3)
− 1

2(k + 2)
+ 1

16(k + 1)

]
,

E7 = Emh7

448
+ Ecmh7

[
1

k + 7
− 3

k + 6
+ 15

4(k + 5)
− 5

2(k + 4)
+ 15

16(k + 3)
− 3

16(k + 2)
+ 1

64(k + 1)

]
,

(14)

	1 =
h/2∫

−h/2

E(z)α(z)�T (z)dz,

	2 =
h/2∫

−h/2

zE(z)α(z)�T (z)dz,

	4 =
h/2∫

−h/2

z3E(z)α(z)�T (z)dz.

(15)

If �T = const, then

	1 = 	10�T ; where 	10 =
(

Emαm + Emαcm + Ecmαm

k + 1
+ Ecmαcm

2k + 1

)
h,

	2 =
(

Emαcm + Ecmαm

k + 2
+ Ecmαcm

2k + 1

)
kh2�T

2(k + 1)
,

	4 =
[
(k2 + 3k + 8)(Emαcm + Ecmαm)

(k + 3)(k + 4)
+ (2k2 + 3k + 4)Ecmαcm

(2k + 1)(2k + 3)

]
kh4�T

8(k + 1)(k + 2)
.

(16)

According to the Reddy’s third-order shear deformation theory, the nonlinear equilibrium equations of a
toroidal shell segment under external pressure q(N/m2) surrounded by elastic foundation are of the form [40]

Nx,x + Nxy,y = 0,

Nxy,x + Ny,y = 0,
(17.1)

Qx,x + Qy,y − 3c(Rx,x + Ry,y) + c(Px,xx + 2Pxy,xy + Py,yy) + 1

R
Ny + 1

a
Nx

+Nxw,xx + 2Nxyw,xy + Nyw,yy + q − K1w + K2(w,xx + w,yy) = 0, (17.2)



Analytical investigation on buckling and postbuckling 3517

Mx,x + Mxy,y − Qx + 3cRx − c(Px,x + Pxy,y) = 0, (17.3)

My,y + Mxy,x − Qy + 3cRy − c(Py,y + Pxy,x ) = 0, (17.4)

where K1(N/m3) is the linear stiffness of the foundation, and K2(N/m) is the shear modulus of the subgrade.
By introducing a stress function F(x, y) as

Nx = F,yy, Ny = F,xx , Nxy = −F,xy, (18)

it is obvious that Eqs. (17.1) are identically satisfied.
The reverse relations are obtained from Eq. (10):

ε0x = F,yy − νF,xx

E1
− E2

E1
φx,x + cE4

E1
(φx,x + w,xx ) + 	1

E1
,

ε0y = F,xx − νF,yy

E1
− E2

E1
φy,y + cE4

E1
(φy,y + w,yy) + 	1

E1
,

γ 0
xy = −2(1 + ν)

E1
F,xy − E2

E1
(φx,y + φy,x ) + cE4

E1
(φx,y + φy,x + 2w,xy).

(19)

Substituting Eq. (19) into Eqs. (11, 12) yields

Mx = E2

E1
F,yy + E1E3 − E2

2 + c(E2E4 − E1E5)

E1(1 − ν2)
(φx,x + νφy,y)

+ c(E2E4 − E1E5)

E1(1 − ν2)
(w,xx + νwy,y) + E2	1 − E1	2

E1(1 − ν)
,

My = E2

E1
F,xx + E1E3 − E2

2 + c(E2E4 − E1E5)

E1(1 − ν2)
(φy,y + νφx,x )

+ c(E2E4 − E1E5)

E1(1 − ν2)
(w,yy + νwx,x ) + E2	1 − E1	2

E1(1 − ν)
,

Mxy = − E2

E1
F,xy + E1E3 − E2

2 + c(E2E4 − E1E5)

2E1(1 + ν)
(φx,y + φy,x )

+ c(E2E4 − E1E5)

E1(1 + ν)
w,xy,

(20)

Px = E4

E1
F,yy + E1E5 − E2E4 + c(E2

4 − E1E7)

E1(1 − ν2)
(φx,x + νφy,y)

+ c(E2
4 − E1E7)

E1(1 − ν2)
(w,xx + νwy,y) + E4	1 − E1	4

E1(1 − ν)
,

Py = E4

E1
F,xx + E1E5 − E2E4 + c(E2

4 − E1E7)

E1(1 − ν2)
(φy,y + νφx,x )

+ c(E2
4 − E1E7)

E1(1 − ν2)
(w,yy + νwx,x ) + E4	1 − E1	4

E1(1 − ν)
,

Pxy = − E4

E1
F,xy + E1E5 − E2E4 + c(E2

4 − E1E7)

2E1(1 + ν)
(φx,y + φy,x )

+ c(E2
4 − E1E7)

E1(1 + ν)
w,xy .

(21)

The substitution of Eq. (19) into the compatibility equation (7) and Eqs. (13, 20, 21) into Eqs. (17.2, 17.3,
17.4), yields a system of equations

��F = − E1

R
w,xx − E1

a
w,yy + E1(w,xy)

2 − E1w,xxw,yy, (22)
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A1�(φx,x + φy,y) + A2(��w) + F,xx

R
+ F,yy

a
+ F,yyw,xx − 2F,xyw,xy

+F,xxw,yy + q − K1w + K2�w = 0, (23)

A3(2φx,xxx + φx,xyy + φy,yxx − νφx,xyy + νφy,yxx ) + A4(w,xxxx + w,xxyy)

+A5(φx,x + w,xx ) = 0, (24)

A3(2φy,yyy + φy,yxx + φx,xyy − νφy,yxx + νφx,xyy) + A4(w,yyyy + w,xxyy)

+A5(φy,y + w,yy) = 0, (25)

where

A1 = E1E3 − E2
2 + c(E2E4 − E1E5)

E1(1 − ν2)
, A2 = c(E2E4 − E1E5)

E1(1 − ν2)
,

A3 = [
E1E3 − E2

2 + 2c(E2E4 − E1E5) − c2
(
E2
4 − E1E7

)]
,

A4 = 2c
[
E2E4 − E1E5 − c

(
E2
4 − E1E7

)]
, A5 = E1(1 − ν)(−E1 + 6cE3 − 9c2E5),

(26)

� is the Laplace operator.
Equations (22, 23, 24) and (25) are four important governing equations used to investigate the nonlinear

buckling of toroidal shells segment under external pressure surrounded by elastic foundation. Until now, there
are no analytical investigations which have been reported in the literature on the postbuckling analysis of
FGM thicker toroidal shells segment using Reddy’s TSDT. Therefore, the transformations and derivations to
Eqs. (22–25) are one of the most important results in this work.

3 Nonlinear buckling analysis

Suppose that the FGM toroidal shell segment is simply supported, freely movable (FM) in the axial direction
and subjected to external pressure uniformly distributed q on the outer surface of shell. The associated boundary
conditions are:

w = 0, Mx = 0, Nx = 0, Nxy = 0, φy = 0 at x = 0; x = L . (27)

The deflection function w satisfying above boundary conditions on the average sense is assumed to be
taken three terms as [4,42]

w = f0 + f1 sin Mx sin N y + f2 sin
2 Mx, (28)

where M = mπ
L ; N = n

R ; m is the number of half waves in axial direction, and n is the number of waves
in circumferential direction of the shell. The first term of w in Eq. (28) represents the uniform deflection of
points belonging to two butt-ends x = 0 and x = L , the second term a linear buckling shape and the third a
nonlinear buckling shape.

Substituting the expression of w from Eq. (28) into Eq. (22) yields:

��F

E1
=

[(
M2

R
+ N 2

a

)
f1 − M2N 2 f1 f2

]
sin Mx sin N y + M2N 2 f1 f2 sin 3Mx sin N y

+
(

M2N 2

2
f 21 − 2M2

R
f2

)
cos 2Mx + M2N 2

2
f 21 cos 2N y. (29)

The general solution of this equation can be found in the form

F = B1 sin Mx sin N y + B2 sin 3Mx sin N y + B3 cos 2Mx + B4 cos 2N y + σ0yh

2
x2, (30)
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where σ0y is the negative average circumferential stress and

B1 = E1

(M2 + N 2)2

(
M2

R
+ N 2

a

)
f1 − E1M2N 2

(M2 + N 2)2
f1 f2,

B2 = E1M2N 2

(9M2 + N 2)2
f1 f2,

B3 = E1N 2

32M2 f 21 − E1

8M2R
f2,

B4 = E1M2

32N 2 f 21 .

(31)

Substituting the expression of w from Eq. (28) into Eqs. (24) and (25), after some calculations, yields:

A3(2φx,xxx + φx,xyy + φy,yxx − νφx,xyy + νφy,yxx ) + A5φx,x

= [
A5 − A4(M2 + N 2)

]
M2 f1 sin Mx sin N y + (8A4M4 − 2A5M2) f2 cos 2Mx,

A3(2φy,yyy + φy,yxx + φx,xyy − νφy,yxx + νφx,xyy) + A5φy,y

= [
A5 − A4(M2 + N 2)

]
N 2 f1 sin Mx sin N y.

(32)

The general solution of this equation can be found in the form

φx,x = C1 f1 sin Mx sin N y + C2 f2 cos 2Mx,

φy,y = C3 f1 sin Mx sin N y,
(33)

where

C1 = A4(M2 + N 2) − A5

2A3(M2 + N 2) − A5
M2,

C2 =
(
8A4M4 − 2A5M2

)
A5 − 8A3M2 ,

C3 = A4(M2 + N 2) − A5

2A3(M2 + N 2) − A5
N 2.

(34)

Equations (33) and (34) are one of the novelties of this study.
In order to establish a load–defection curve, first of all, substituting Eqs. (28, 30) and (33) into Eq. (23) and

then applying the Galerkin’s method for the remaining equation in the ranges 0 ≤ y ≤ 2π R and 0 ≤ x ≤ L ,
lead to

σ0yh

R
− K1

(
f0 + 1

2
f2

)
+ q = 0, (35)

D1 f 21 + D2 f 21 f2 + D3 f2 = 0, (36)

D4 f1 − 2D1 f1 f2 − D2 f1 f 22 + D5 f 31 + σ0yhN 2 f1 = 0, (37)

where

D1 = E1M2N 2

(M2 + N 2)2

(
M2

R
+ N 2

a

)
+ E1N 2

8R
,

D2 = −E1M4N 4
(

1

(M2 + N 2)2
+ 1

(9M2 + N 2)2

)
,

D3 = −1

2
K1 − 2M2K2 + 4M2A1C2 + 8M4A2 − E1

2R2 ,

D4 = (M2 + N 2)A1(C1 + C3) − (M2 + N 2)2A2

+ E1

(M2 + N 2)2

(
M2

R
+ N 2

a

)2

+ K1 + K2(M2 + N 2),

D5 = E1(M4 + N 4)

16
.

(38)
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Furthermore, the toroidal shell segments have to also satisfy the circumferential closed condition [4–6,42]
as

2π R∫
0

L∫
0

v,ydxdy =
2π R∫
0

L∫
0

(
ε0y + w

R
− w2

,y
/2

)
dxdy = 0. (39)

Using Eqs. (19), (28), (30) and (33), this integral leads to

σ0yh

E1
− f 21 N 2

8
+ 1

R

(
f0 + 1

2
f2

)
+ 	1

E1
= 0. (40)

Solving Eqs. (35), (36) and (40) yields:

f 21 = −D3 f2
D1 + D2 f2

. (41)

f0 = −1

2
f2 + E1RN 2

8(E1 + K1R2)

( −D3 f2
D1 + D2 f2

)
+ R2

E1 + K1R2 q − R	1

E1 + K1R2 . (42)

σ0yh = − RE1

E1 + K1R2 q + K1E1R2N 2

8(E1 + K1R2)

( −D3 f2
D1 + D2 f2

)
− K1R2	1

E1 + K1R2 . (43)

Substituting Eqs. (41) and (43) into Eq. (37) leads to

q = D4

D6
− 2D1

D6
f2 − D2

D6
f 22 + 1

D6

(
D5 + K1E1R2N 4

8(E1 + K1R2)

)( −D3 f2
D1 + D2 f2

)
− K1R

E1
	1, (44)

where

D6 = RN 2E1

E1 + K1R2 . (45)

FromEq. (44), by taking f2 = 0, the upper buckling stress of FGM toroidal shell segment can be determined
by

qup = D4

D6
− K1R

E1
	1. (46)

Not to mention the influence of temperature, we have

qup = D4

D6
. (47)

Use the classical theory, with the same way as above, we obtain

qup =
(M2 + N 2)2

E1E3−E2
2

E1(1−ν2)
+

(
M2

R + N2

a

)2
E1

(M2+N2)2
+ K1 + K2(M2 + N 2)

E1RN2

E1+K1R2

. (48)

Minimizing Eqs. (46, 47 and 48) with respect to m and n, we will find the upper critical load.
If q = 0, from Eq. (44), we have

K1R

E1
	1 = D4

D6
− 2D1

D6
f2 − D2

D6
f 22 + 1

D6

(
D5 + K1E1R2N 4

8
(
E1 + K1R2

)
)( −D3 f2

D1 + D2 f2

)
. (49)

Setting Eq. (16) into Eq. (49), after some calculations, we obtain

�T = D4

D8
− 2D1

D8
f2 − D2

D8
f 22 + 1

D8

(
D5 + K1E1R2N 4

8
(
E1 + K1R2

)
)( −D3 f2

D1 + D2 f2

)
. (50)

where

D8 = K1R2N 2	10

E1 + K1R2 . (51)



Analytical investigation on buckling and postbuckling 3521

Taking f2 → 0, from Eq. (50) the thermal buckling load may be obtained as

�T = D4

D8
(52)

Minimizing Eq. (52) with respect to m and n, we will find the critical value �Tcr.
From Eq. (28), it is obvious that the maximal deflection of shells

Wmax = f0 + f1 + f2, (53)

locates at x = i L
2m , y = jπ R

2n where i, j are odd integer numbers.
From Eqs. (41 and 42), the maximal deflection of shell can be determined by

Wmax = 1

2
f2+ E1RN 2

8(E1 + K1R2)

( −D3 f2
D1 + D2 f2

)
+ R2

E1 + K1R2 q +
( −D3 f2

D1 + D2 f2

)1/2

− R	1

E1 + K1R2 . (54)

Combining Eq. (44) with Eq. (54), the static postbuckling load–maximal deflection curves of shells can be
investigated.

4 Numerical results and discussion

4.1 Validation of the present study

To verify the accuracy of the present approach, two comparisons are considered below.
First comparison: Because present results are general than the ones of circular cylindrical shells, this part

will give a comparison of the static postbuckling load–maximal deflection curve analyzed by us with results
of Huang and Han [7] using the nonlinear large deflection theory and the Ritz energy method for an FGM
cylindrical shell without foundation, under external pressure.

Figure 2, using Eqs. (44 and 54) with a → ∞, shows that good agreements are obtained in this comparison.
Second comparison: Table 1 and Fig. 3 compare, respectively, the static critical load qcr and the static

postbuckling load–maximal deflection curves of this paper with the results given by Bich et al. [38] for FGM
toroidal shell segment without foundation, under external pressure. The input parameters are taken as

Ec = 370 × 109 Pa, Em = 70 × 109 Pa, k = 1, ν = 0.3, R = 0.5m, a/R = 4, L/R = 2.

As can be seen, we also obtain good agreements in this comparison.

Fig. 2 Comparisons with results of [7]
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Table 1 Comparisons on static critical loads qcr (MPa) for FGM toroidal shell segment without foundation

R/h qcr(MPa)

Bich et al. [38] Present study % Error

80 5.7924 (1, 9)a 5.7834 (1, 9) 0.15
100 3.7635 (1, 10) 3.7591 (1, 10) 0.12
200 1.1550 (1, 14) 1.1544 (1, 14) 0.05
500 0.4493 (1, 23) 0.4492 (1, 23) 0.02
a The numbers in the parentheses denote the buckling mode (m, n)

Fig. 3 Comparison on the static postbuckling load–maximal deflection curve

4.2 Significance of the use of the Reddy third-order shear deformation theory for thicker shells

In order to demonstrate the significance of the use of TSDT, a FGM toroidal shell segments subjected to
uniform external pressure are considered with the following geometrical, material properties and foundation
parameters as

Ec = 168.08 × 109 Pa, Em = 105.69 × 109 Pa, k = 1, ν = 0.3, R = 0.5m, a/R = 4, L/R = 2,

K1 = 1.5 × 107 N/m3, K2 = 1.5 × 105 N/m.

The ratio R/h is chosen to be 10, 20, 30, 40, 50, 80, 100, 200 and 500.
Using Eqs. (47) and (48), results of upper critical loads based on the classical shell theory and Reddy’s

third-order shear deformation shell theory are given in Table 2.
As can be seen, for thin shells, the difference between the upper critical loads found from classical shell

theory and TSDT is quite small. However, for the thicker shells, the difference is quite big. For example, from
Table 2, with foundation, in comparison qcr = 0.41245 MPa (based on CST) and qcr = 0.41241 MPa (based
on TSDT) corresponding to R/h = 500 (thin shell), the percentage error is 0.01 %, but when R/h = 10
(thick shell), the corresponding percentage error is 3.64%.

4.3 Results of nonlinear buckling analysis of FGM toroidal shell segments

In subsections below, consider a shell with geometrical and material properties as follows:

Ec = 168.08 × 109 Pa, Em = 105.69 × 109 Pa, αc = 5.4 × 10−6K−1, αm = 22.2 × 10−6 K−1, k = 1,

ν = 0.3, R = 0.5m, R/h = 100, a/R = 4, L/R = 2, K1 = 1.5 × 107 N/m3, K2 = 1.5 × 105 N/m.
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Table 2 Upper critical loads found by CST and TSDT

R/h With foundation Without foundation

Be found by R-TSDT Be found by CST % Error Be found by R-TSDT Be found by CST % Error

10 355.56778 (1, 4)a 368.51030 (1, 4) 3.64 354.55806 (1, 4) 367.49349 (1, 4) 3.52
20 73.87533 (1, 5) 74.75505 (1, 5) 1.2 73.16486 (1,5) 74.04361 (1, 5) 1.19
30 30.37287 (1, 6) 30.59558 (1, 6) 0.73 29.79414 (1,6) 30.01648 (1, 6) 0.74
40 16.52688 (1, 7) 16.62021 (1, 7) 0.56 16.02258 (1,7) 16.11570 (1, 7) 0.58
50 10.361813 (1, 7) 10.39251 (1, 7) 0.3 9.86534 (1,7) 9.89595 (1, 7) 0.31
80 4.04598 (1, 9) 4.05356 (1, 9) 0.19 3.62659 (1,9) 3.63414 (1, 9) 0.21
100 2.67021 (1, 10) 2.67394 (1, 10) 0.14 2.27326 (1,10) 2.27697 (1, 13) 0.16
200 0.89560 (1, 14) 0.89603 (1, 14) 0.05 0.54300 (1,13) 0.54332 (1, 13) 0.06
500 0.41241 (1, 23) 0.41245 (1, 23) 0.01 0.08403 (1,21) 0.08405 (1, 21) 0.02
a The numbers in the parentheses denote the buckling mode (m, n)

Table 3 Effects of temperature field on critical load

�T (K) Convex shell (a/R = 4) Concave shell (a/R = −4)
qcr (MPa) qcr (MPa)

0 2.6702 (1, 10)a 1.3305 (2, 6)
300 2.6406 (1, 10) 1.3009 (2, 6)
600 2.6110 (1, 10) 1.2713 (2, 6)
900 2.5814 (1, 10) 1.2417 (2, 6)
a The numbers in the parentheses denote the buckling mode (m, n)

Fig. 4 Effects of temperature field on (q−Wmax/h) curves of FGM convex shell

4.3.1 Effect of temperature field

The effect of a uniform temperature rise on the buckling and postbuckling is considered in this section. Basing
on Eqs. (44, 46) and (54), the critical load and postbuckling paths (q−Wmax/h) may be determined. The results
are given in Table 3, Figs. 4 and 5. It can be seen that the upper critical load of shell reduces when�T increases.
For example, from Table 3, with a convex shell, the upper critical load qcr = 2.6702MPa corresponding to
�T = 0K is larger than the upper critical load qcr = 2.6406 MPa corresponding to �T = 300(K) by about
1.12%. For a concave shell, this difference is about 2.2%.
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Fig. 5 Effects of temperature field on (q−Wmax/h) curves of FGM concave shell

Table 4 Effects of volume fraction indexes on critical load and critical value �Tcr

k Convex shell (a/R = 4) Concave shell (a/R = −4)

qcr (MPa) �Tcr (K) qcr (MPa) �Tcr (K)

0 3.2158 (1, 10)a 79403 (1, 10) 1.5125 (2, 6) 37,345 (2, 6)
0.2 3.0148 (1, 10) 49822 (1, 10) 1.4411 (2,6) 23,815 (2, 6)
0.5 2.8309 (1, 10) 35593 (1, 10) 1.3793 (2,6) 17,342 (2, 6)
1 2.6702 (1, 10) 27050 (1, 10) 1.3305 (2,6) 13,478 (2, 6)
5 2.4022 (1, 10) 17009 (1, 10) 1.2628 (2,6) 8942 (2, 6)
∞ 2.1704 (1, 10) 13035 (1,10) 1.1743 (2, 6) 7053 (2, 6)
a The numbers in the parentheses denote the buckling mode (m, n)

4.3.2 Effects of material properties

Based on Eqs. (44, 46, 52) and (54), with the database given in Sect. 4.2, the effects of volume fraction
indexes on critical load, critical value �Tcr and (q−Wmax/h) curves are considered. Results are shown in
Table 4, Figs. 6 and 7. As expected, both critical load and critical value �Tcr are very much reduced as k
increases. For example, with convex shell, when k increases from 0.2 to 1, the upper critical load decreases
from 3.0148 MPa to 2.6702 MPa (about 11.4%) and the critical value �Tcr decreases from 49822 to 27050K
correspondingly (about 45.7%). This property corresponds to the real property of material, because the higher
value of k corresponds to a metal richer shell which usually has less stiffness and less thermostability than a
ceramic richer one. Moreover, the load-bearing capacity of FGM concave toroidal shells is lower than that of
FGM convex toroidal shells. For example, with k = 1, the upper critical load of a convex shell is bigger than
upper critical load of a concave shell by about 2.05 times.

4.3.3 Effects of the ratio R/h

Information in Table 5, Figs. 8 and 9 shows that both critical load and critical value �Tcr are very sensitive
with the change of the ratio R/h; buckling load and critical value �Tcr decrease markedly with the increase
of this ratio. For example, with a convex shell, the upper critical load qup = 4.0460MPa corresponding to
R/h = 80 is higher than the upper critical load corresponding to R/h = 100 by about 1.5 times. It is shown
that the similar behavior is observed for convex and concave shells.
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Fig. 6 Effects of volume fraction indexes on (q−Wmax/h) curves of FGM convex shell

Fig. 7 Effects of volume fraction indexes on (q−Wmax/h) curves of FGM concave shell

Table 5 Effects of the ratio R/h on critical load and critical value �Tcr

R/h Convex shell (a/R = 4) Concave shell (a/R = −4)

qcr (MPa) �Tcr (K) qcr (MPa) �Tcr (K)

80 4.0460 (1, 9)a 40,987 (1, 9) 1.6424 (1, 3) 16,638 (1, 3)
100 2.6702 (1, 10) 27,050 (1, 10) 1.3305 (2, 6) 13,478 (2, 6)
200 0.8956 (1, 14) 9073 (1, 14) 0.6523 (2, 7) 6608 (2, 7)
500 0.4124 (1, 23) 4178 (1, 23) 0.4097 (1, 22) 4150 (1, 22)
a The numbers in the parentheses denote the buckling mode (m, n)

4.3.4 Effects of the ratio L/R

Effects of the ratio L/R on the critical load and postbuckling curves of a shell are represented in Table 6,
Figs. 10 and 11. As can be observed, for a convex shell, both the critical load and the critical value �Tcr are
reduced with the increase of the ratio L/R, but not for a concave shell.
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Fig. 8 Effects of the ratio R/h on (q−Wmax/h) curves of FGM convex shell

Fig. 9 Effects of the ratio R/h on (q−Wmax/h) curves of FGM concave shell

Table 6 Effects of the ratio L/R on critical load and critical value �Tcr

L/R Convex shell (a/R = 4) Concave shell (a/R = −4)

qcr (MPa) �Tcr (K) qcr (MPa) �Tcr (K)

2 2.6702 (1, 10)a 27050 (1, 10) 1.3305 (2, 6) 13,478 (2, 6)
4 2.5214 (1, 10) 25543 (1,10) 1.1611 (3, 5) 11,762 (3, 5)
6 2.4871 (1, 9) 25195 (1,9) 1.2080 (5, 5) 12,238 (5, 5)
8 2.4742 (1, 9) 25065 (1,9) 1.1552 (5, 4) 11,703 (5, 4)
a The numbers in the parentheses denote the buckling mode (m, n)

4.3.5 Effects of longitudinal curvature radius a

Table 7, Figs. 12 and 13 depict the effects of the ratio a/R = (±2;±4;±6;±8) on the nonlinear behavior
of the shell, where the positive sign corresponds to a convex shell and the negative sign to a concave shell,
respectively. It is shown that the buckling load decreases markedly with an increase of the ratio a/R and the
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Fig. 10 Effects of the ratio L/R on (q−Wmax/h) curves of FGM convex shell

Fig. 11 Effects of the ratio L/R on (q−Wmax/h) curves of FGM concave shell

Table 7 Effects of the ratio a/R on critical load and critical value �Tcr

Convex shell Concave shell

a/R qcr (MPa) �Tcr (K) a/R qcr (MPa) �Tcr (K)

2 4.5901 (1, 13)a 46499 (1, 13) −2 1.6374 (2, 5) 16,588 (2, 5)
4 2.6702 (1, 10) 27050 (1, 10) −4 1.3305 (2, 6) 13,478 (2, 6)
6 2.0886 (1, 9) 21158 (1, 9) −6 1.0934 (1, 4) 11,076 (1, 4)
8 1.8178 (1, 8) 18415 (1, 9) −8 1.0381 (1, 5) 10,516 (1, 5)
a The numbers in the parentheses denote the buckling mode (m, n)

critical load is very sensitive with the change of the ratio a/R. This behavior is common to both convex and
concave shells.
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Fig. 12 Effects of the ratio a/R on (q−Wmax/h) curves of FGM convex shell

Fig. 13 Effects of the ratio a/R on (q−Wmax/h) curves of FGM concave shell

Table 8 Effects of elastic foundation parameters on critical load of FGM convex shell and concave shell

Elastic foundation parameters qcr(MPa)

Convex shell (a/R = 4) Concave shell (a/R = −4)

K1 = 0N/m3, K2 = 0N/m 2.2733 (1, 10)a 0.2346 (1, 3)
K1 = 1.5 × 107 N/m3, K2 = 0N/m 2.3611 (1, 10) 0.9462 (2, 6)
K1 = 0N/m3, K2 = 1.5 × 105 N/m 2.5806 (1, 10) 0.6168 (1, 3)
K1 = 1.5 × 107 N/m3, K2 = 1.5 × 105 N/m 2.6702 (1, 10) 1.3305 (2, 6)
a The numbers in the parentheses denote the buckling mode (m, n)

4.3.6 Effects of elastic foundation parameters

Table 8, Figs. 14 and 15 show the influence of the foundation parameters on the critical load and (q−Wmax/h)
curves of the FGM toroidal shell. As can be seen, with concave shells, the Winkler foundation modulus has
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Fig. 14 Effects of elastic foundation parameters on (q−Wmax/h) curves of FGM convex shell

Fig. 15 Effects of elastic foundation parameters on (q−Wmax/h) curves of FGM concave shell

a great influence on the critical load, but the shear layer foundation stiffness of the Pasternak model less
influential.

5 Concluding remarks

In this paper, FGM toroidal shell segments surrounded by elastic foundation and subjected to uniform external
pressure are considered.

An analytical approach to investigate the nonlinear buckling and postbuckling behavior of shells based on
the Reddy’s third-order shear deformation shell theory is presented.

An approximate three-term solution of deflection including the linear and nonlinear buckling shape is more
correctly chosen.

Closed-form expressions to determine critical buckling loads and nonlinear postbuckling load–deflection
curves are obtained using Galerkin’s method.
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For thin shells, the difference between the upper critical loads found from CST and TSDT is quite small,
so the classical shell theory can be used to study the stability of thin shells. However, for thicker shells, the
difference is quite big and the use of TSDT to analyze the nonlinear stability of toroidal shell segments is
necessary and more suitable.

Parameters as temperature, geometrical dimension, buckling modes, volume fraction index and foundation
parameters strongly affect the buckling and postbuckling of shells.
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