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Abstract A study is carried out of a thin plate of constant thickness made of linearly elastic material which is
transversally isotropic and heterogeneous in the thickness direction. Asymptotic expansions in powers of the
relative plate thickness are constructed, and the bending equation of second-order accuracy (the SA model)
is delivered. The results of the SA model are compared with the Kirchhoff–Love classical model and with
the Timoshenko–Reissner (TR) model, as well as with the exact solution. To this end, some problems for
a functionally gradient plate bending, and for a multi-layer plate bending and free vibration are solved and
analysed.The rangeof plate heterogeneity, forwhich the error of the approximatemodels is small, is established.
The TRmodel and the SAmodel are proved to yields results close to each other and the exact results for a very
broad range of heterogeneity. That is why the generalized TRmodel for one-layered homogeneous transversely
isotropic plate is proposed. Parameters of this model are chosen so that the results are close to the exact results
and the results by the SA model. For the Navier boundary conditions, the analytical solution of 3D problems
for a rectangular heterogeneous plate is constructed.

1 Introduction

The classical equation of the plate vibration was first derived byMarie-Sophie Germain in 1808 for explanation
of the Chladni figures. The equation describing plate bending as well as plate vibration can be obtained on
the basis of the Kirchhoff–Love (KL) hypotheses, cf. [1,2]. The equations accounting for the transversal shear
follow from the Timoshenko–Reissner (TR) hypotheses [3,4] and present more sophisticated and exact variant
of the plate theory.

Two-dimensional models of plates and shells are usually derived from the three-dimensional equations of
elasticity theory. The above-mentioned KL and TR models can be considered as examples of constructing 2D
models. Some other approaches are worth mentioning. The methods of expansions in series in terms of the
Legendre polynomials in the thickness direction were suggested in [5]. A number of investigations, e.g. [6–9],
are devoted to derivation of 2D equations by using asymptotic expansions in power series in terms of the small
parameterμ = h/L which is the dimensionless plate thickness (h and L are the thickness and the typical wave
length in the tangential directions, respectively). The other possibility, see, for example, [10,11], is a direct
derivation of 2D equations of plates and shells without referring to 3D media.

In the present paper, we discuss the plate models (mainly the KL and the TR models) and their accuracy
under various assumptions about material and structure of the plate. The asymptotic accuracy of the approach
will be estimated by means of comparison with the 3D test problems which have exact solutions. These
problems are equilibrium problems of infinite plates under a double periodic load. These three-dimensional
problems are reduced to one-dimensional problems in z and have closed-form simple solutions.
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The KL model is known to be asymptotically correct for an isotropic homogeneous plate, cf. [8]. This
model yields the results of first-order accuracy with respect to the small thickness parameter μ. In contrast,
the TR model turns out to be asymptotically incorrect for the isotropic homogeneous plates. This model is
not more accurate than the KL model and does not include all second-order summands. Also, the TR model
results in a differential equation of sixth order (in contrast to the differential equation of fourth order for KL
model), and their solutions also describe the boundary layer effects. In 2D model, the boundary layer is not
consistent with 3D stress–strain state (SSS). The boundary layer problem is discussed in Refs. [8,12,13] for
some assumptions.

The difference between the KL and TR models becomes essential for orthotropic plate with a small shear
stiffness, cf. [7,8,14]. If we introduce a shear parameter g = μ2E/G where E and G are the Young modulus
and the transversal shear modulus, respectively, then for g ∼ 1, the KL model is inapplicable, while the TR
model yields sufficiently accurate results.

The problem of a general anisotropy with 21 elastic moduli is essentially more challenging. As shown in
Refs. [12,15,16], the KL model and the standard TR model are inconsistent in the principal terms with respect
to μ. In this case, the generalized TR model leads to a system of differential equations of sixth order, and
the problem of excluding the boundary layer arises, see [12,15]. By using asymptotic expansions [17], one
obtains a system of fourth order (as in the KL model). Various problems for plate with a general anisotropy
are discussed in Refs. [18,19]. A benchmark of various plate models can be found in Refs. [7,20–25]. General
problems of the plate theory are described in books [18,26–29]. The heterogeneous (or functionally graded in
the thickness direction) plates and, in particular, the multi-layered and laminated plates are studied in a number
of works [5,7,21,30–35]. A number of works are devoted to the problems of plate vibration, e.g. [36–40]. The
general asymptotic theory of laminated plates with two small parameters is presented in [48].

The present paper is concerned with the study of a thin plate of constant thickness made of a linearly elastic
material which is transversally isotropic and heterogeneous in the thickness direction. For the transversally
isotropic material, it is possible to split the 3D system of sixth order of the elasticity theory into two systems
of second and fourth order, see [41]. However, this is not the case for the orthotropic plate and the plate with
general anisotropy. Asymptotic expansions in powers of the small thickness parameter μ are constructed,
and the bending equation of the second-order accuracy (the SA model, for short) is obtained. The present
paper is inspired by paper [42], in which an isotropic homogeneous plate is studied, and paper [7], in which
a heterogeneous plate is briefly examined. The results of the SA model are compared with the KL classical
model and the TR model and also with the exact numerical solution. To this end, the numerical examples for
a functionally gradient plate bending, for a multi-layer plate bending and free vibrations are studied. It allows
us to establish the range of plate heterogeneity for which the error of the approximate models is small. It is
shown that the TR model and the SA model gives results close to each other and to the exact results for a
very wide range of heterogeneity. This is a reason for applying the generalized TR model for single-layered
homogeneous transversely isotropic plate. The model parameters are chosen so that the obtained results are
close to the exact solution and to the results of the SA model. The analytical solution of 3D problems for the
rectangular heterogeneous plate is constructed for the Navier boundary conditions.

2 Equilibrium equations and the simplification

Consider the problem of bending of a thin plate made of a transversally isotropic heterogeneous material. The
3D equilibrium equations are

∂σi j

∂x j
+ fi = 0, i, j = 1, 2, 3, 0 ≤ x3 = z ≤ h, (1)

where x j are the Cartesian coordinates, fi are the projections of the external load intensity, and the summation
is carried out over repeating subscripts.

The stresses are related to the strains as follows:

σ11 = E11ε11 + E12ε22 + E13ε33, σ12 = G12ε12,

σ22 = E12ε11 + E11ε22 + E13ε33, σ13 = G13ε13,

σ33 = E13ε11 + E13ε22 + E33ε33, σ23 = G13ε23,

ε11 = ∂u1
∂x1

, ε12 = ∂u1
∂x2

+ ∂u2
∂x1

, etc., (2)
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with E11 = E12 +2G12. Here u1 and u2 denote the displacements in the corresponding directions. The elastic
moduli Ei j ,Gi j do not depend on the tangential coordinates x1, x2, but they can depend on the transversal
coordinate x3 = z. For functionally gradient materials, the moduli are continuous functions in z, while for the
multi-layered plates they are piecewise continuous functions.

For a transversally isotropic material, the moduli depend on the five elastic parameters E, E ′, G13, ν, ν′,
e.g. [5]:

E11 =
E

(
1 − ν′2

)

(1 + ν)
(
1 − ν − 2ν′2) , E12 =

E
(
ν + ν′2

)

(1 + ν)
(
1 − ν − 2ν′2) , G12 = G = E

2(1 + ν)
,

E13 = Eν′

1 − ν − 2ν′2 , E33 = E ′(1 − ν)

1 − ν − 2ν′2 , G13 = G ′. (3)

For the isotropic material, E ′ = E, ν′ = ν, where E and ν are the Young’s modulus and the Poisson ratio,
respectively.

We set the homogeneous boundary conditions on the face planes z = 0 and z = h:

σi3 = 0, i = 1, 2, 3. (4)

If the surface forces are given, then they are included in the body forces by using the Dirac’s delta function.
Let us introduce the new unknown functions u, v, σ, τ as

u = ∂u1
∂x1

+ ∂u2
∂x2

, v = ∂u1
∂x2

− ∂u2
∂x1

,

σ = ∂σ13

∂x1
+ ∂σ23

∂x2
, τ = ∂σ13

∂x2
− ∂σ23

∂x1
. (5)

For the transversally isotropic material the system (1), (2) is split into two sub-systems, cf. [42]:

∂τ

∂z
+ G12�v + m1 = 0, τ = G13

∂v

∂z
, � = ∂2

∂x21
+ ∂2

∂x22
, m1 = ∂ f1

∂x2
− ∂ f2

∂x1
. (6)

σ33 = E13u + E33
∂w

∂z
, σ = G13

(
∂u

∂z
+ �w

)
, w = u3,

∂σ

∂z
+ E0�u + E13

E33
�σ33 + m = 0,

∂σ33

∂z
+ σ + f3 = 0, m = ∂ f1

∂x1
+ ∂ f2

∂x2
, (7)

with

E0 = E11 − E2
13

E33
= E

1 − ν2
.

The system (6) of differential equations of the second order in z describes the boundary layer.
System (7) of the fourth order describes the plate bending, and the 2D plate model is obtained here by

using asymptotic expansions [7,14]. The asymptotic solution is based on the expansions in powers of the small
parameter μ = h/L .

We introduce the dimensionless variables (denoted byˆ)

{u1, u2, w, z} = h
{
û1, û2, ŵ, ẑ

}
, {x1, x2} = L

{
x̂1, x̂2

}
, u = μû, σ = E∗

L
σ̂ ,

{σi j , Ei j ,Gi j , E0} = E∗
{
σ̂i j , Êi j , Ĝi j , c0

}
, fi = E∗

h
f̂i , E∗ = 1

h

∫ h

0
E0(z)dz, (8)

and rewrite the system (7) in dimensionless form:

∂ŵ

∂ ẑ
= −μcν û + c3σ̂33,

∂ û

∂ ẑ
= −μ�̂ŵ + cgσ̂ ,

∂σ̂

∂ ẑ
= Y3(ẑ) = −μ2c0�̂û − μcν�̂σ̂33 − m̂,

∂σ̂33

∂ ẑ
= Y4(ẑ) = −μσ̂ − f̂3, 0 ≤ ẑ ≤ 1,

(9)
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with

cν = E13

E33
= ν

1 − ν
, c3 = E∗

E33
, cg = E∗

G13
,

σ̂ = ∂σ̂13

∂ x̂1
+ ∂σ̂23

∂ x̂2
, m̂ = ∂ f̂1

∂ x̂1
+ ∂ f̂2

∂ x̂2
, �̂ = ∂2

∂ x̂21
+ ∂2

∂ x̂22
. (10)

Here L is a representative wave length in the in-plane directions and E∗ is the average value of modulus E0.
The dimensionless coefficients c0, cν, cg, c3 are given functions of ẑ. The boundary conditions (4) yield

σ̂ = σ̂33 = 0 at ẑ = 0, ẑ = 1. (11)

In what follows, the hat sign will be omitted.

3 Asymptotic solution of boundary value problem (9), (11) in the static case

Assume that the dimensionless external forces f3, m are of the order of unity. Then, the orders of the plate
quantities are as follows:

σ33 = O(1), σ = O
(
μ−1) , u = O

(
μ−3) , w = O

(
μ−4) . (12)

These estimates correspond to the standard KL model, that is, which σ = μ O(σi j ) and σ33 = μ2O(σi j ),
where σi j , i, j = 1, 2, are the in-plane stresses, and σ , Eq. (5) describes the transversal shear stresses. The
stresses σi j , i, j = 1, 2, are excluded from Eqs. (1) and (2) with the help of new unknown functions (5).

The right-hand sides in Eq. (9) are small, and it allows one to apply the method of iterations [7,14]. To
construct the solution of second-order accuracy, we take

w = μ−4w0 + μ−2w2, u = μ−3u0 + μ−1u2, σ = μ−1σ0 + μσ2, σ33 = σ33,0 + μ2σ33,2. (13)

The arbitrary functions wc(x1, x2) and uc(x1, x2) appear after integration of the first two equations (9)
with respect to z. These functions are obtained from the compatibility conditions of two remaining equations
(9) and the boundary condition (11)

〈Y3(z)〉 = 0, 〈Y4(z)〉 = 0, 〈Z(z)〉 ≡
∫ 1

0
Z(z)dz. (14)

In the zero approximation, we obtain

w0 = w0(x1, x2), u0 = (a − z)�2w0, a = 〈zc0(z)〉 ,

σ0 = ϕ1(z)�
2w0, ϕ1(z) =

∫ z

0
c0(z)(z − a)dz,

D�2w0 = F3, D = 〈
(z − a)2c0(z)

〉
, F3 = 〈 f3(z)〉 ,

σ33,0 = − F3
D

ϕ2 − ϕ3, ϕ2(z) =
∫ z

0
ϕ1(z)dz, ϕ3(x1, x2, z) =

∫ z

0
f3(x1, x2, z)dz, (15)

where z = a is the position of the plate neutral layer, D is the bending stiffness of the plate with changing
elastic moduli, F3 is the overall transversal force. The equation D�2w0 = F3 corresponds to the classic KL
model. The functionw0 does not depend on z, but the small stress σ33,0 depends on the distribution of function
f3(z) in the thickness direction (σ33 = 0 for the KL model).

In the second approximation, the solution is more bulky. Here we show only functionw2 which is a function
of z. At z = 0, it satisfies the equation

D�2w2(0) = A�F3 + L(� f3) − M, (16)

where

A = Ag − Aν, L(� f3) =
∫ 1

0
cν(z)(a − z)

(∫ z

0
� f3dz1

)
dz, M =

∫ 1

0
(a − z)m(z)dz,
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Ag = 1

D

∫ 1

0
c0(z)(z − a)

∫ z

0
cg(z1)

∫ z1

0
c0(z2)(z2 − a)dz2dz1dz,

Aν = 1

D

∫ 1

0
(z−a)

(
cν(z)

∫ z

0

∫ z1

0
c0(z2)(z2−a)dz2dz1 + c0(z)

∫ z

0

∫ z1

0
cν(z2)(z2−a)dz2dz1

)
dz. (17)

The total deflection of the reference plane z = 0 satisfies the equation

Dμ4�2w(0) = F3 + μ2(A�F3 + L(� f3) − M) + O(μ4), (18)

in which the coefficients D and A depend on the elastic moduli distribution in the plate thickness, and the
summands L(� f3) and M depend on the distribution of external transversal and tangential loads, respectively.
The coefficients Ag and Aν take into account the transversal shear and the Poisson ratio, respectively.

The total deflection w(z) of the arbitrary plane z is expressed in terms of w(0) as

w(z) = w(0) + μ2�w(0)
∫ z

0
cν(z)(z − a)dz. (19)

If the plate is loaded only by an external surface normal pressure F3 acting on the plane z = 0, then
L(� f3) = 〈cν(a − z)〉�F3 and M = 0 in Eq. (18); hence, Eq. (18) takes the form

Dμ4�2w(0) = F3 + μ2A1�F3, A1 = A +
∫ 1

0
cν(z)(z − a)dz. (20)

Remark 1 If the plate is homogeneous, then the elastic moduli c0, cg, cν are constant, the integrals (17) are
calculated, and Eq. (20) yields

Dμ4�2w(0) = F3 + μ2A1�F3, A1 = 2cν − cg
10

, D = 1

12
. (21)

For a homogeneous plate a = 1/2, i.e. the neutral plane can be understood as a reference plane, and we obtain
from Eq. (19)

Dμ4�2w(1/2) = F3 + μ2A2�F3, A2 = 3cν − 4cg
40

, (22)

and for the isotropic plate we have A2 = (3ν − 8)/(40(1 − ν)). This value A2 was obtained in [46], where it
was noted that the authors of Refs. [4,20,28] also derived Eq. (22); however, they obtained the values of A2
that differ from the values presented above.

Equations (18)–(20) describe the internal solution. The boundary conditions at the plate edges and the
possible boundary layer effects near the edges are ignored. The question thus arises as to how to choose the
typical wave length L that appears in the relation μ = h/L . There is a harmonic problem in which the value
L can be defined (see Remark 2).

Remark 2 Let the external loads be the harmonic functions of x1, x2:

f3(x1, x2, z) = f 03 (z) sin(r1x1) sin(r2x2), m(x1, x2, z) = m0(z) sin(r1x1) sin(r2x2). (23)

Then, the internal solution w(x1, x2, z) = w0(z) sin(r1x1) sin(r2x2) and the other unknown functions in
Eqs. (9) are harmonic functions, too, and�w = −(r21 +r22 )w. Therefore, if we put (in the initial designations)

L = (
r21 + r22

)−1/2
, (24)

then according to the definition of small parameter μ = h/L the Laplace operator � can be replaced by −1
in all formulae in Sect. 3.

Applications of Eqs. (18)–(20) for rectangular plates are discussed in Sect. 8.
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4 Free vibrations

The equation for the low-frequency free vibrations is derived here by means of the results of Sect 3. We
augment Eqs. (1) with the inertia term

fi = ρ(x3)ω
2ui , i = 1, 2, 3, (25)

where ω is the natural frequency and ρ(x3) is the mass density. Then, in Eq. (9)

f3 = λw(x1, x2, z)ρ0(z), m = λu(x1, x2, z)ρ0(z), (26)

with

λ = ρ∗h2ω2

E∗
, ρ0(z) = ρ(z)

ρ∗
, ρ∗ = 1

h

∫ h

0
ρ(z)dz. (27)

Here λ is the frequency parameter depending on the average values of the mass density ρ∗ and elastic modulus
E∗ (see Eq. (8)).

We express all the summands of Eq. (18) in terms of w(x1, x2, 0):

F3 = λ

(
w(x1, x2, 0) + μ2�w(x1, x2, 0)

∫ 1

0

∫ z

0
cν(z)ρ0(z1)(z1 − a)dz1 dz

)
,

L(� f3) = λ�w(x1, x2, 0)
∫ 1

0
cν(z)(a − z)

∫ z

0
ρ0(z1)dz1 dz,

M = λ�w(x1, x2, 0)
∫ 1

0
(a − z)2ρ0(z)dz. (28)

Now Eq. (18) takes the form

Dμ4�2w(x1, x2, 0) = λ
(
w(x1, x2, 0) + μ2(Ag − Aν + Aρ)�w(x1, x2, 0) + O

(
μ4)) , (29)

where the summands Ag and Aν are the same as in Eq. (17) and the summand Aρ depends on the distribution
of mass density in the thickness direction

Aρ =
∫ 1

0

(
(z − a)2ρ0(z) − ρ0(z)

∫ z

0
cν(z1)(z1 − a)dz1 + cν(z)(z − a)

∫ z

0
ρ0(z1)dz1

)
dz. (30)

Let the functionw(x1, x2, 0) in Eq. (18) be harmonic. Then, according to Remark 2 the formal substitution
� = −1 yields

λ = Dμ4 (
1 − μ2(Ag − Aν − Aρ) + O

(
h4∗

))−1
. (31)

Formula (31) is valid not only for deflections w(x1, x2) = w0 sin(r1x1) sin(r2x2) with r21 + r22 = 1, but
also for any deflections satisfying Helmholtz’s equation �w + w = 0.

Remark 3 In the case of a homogeneous plate, Eq. (31) can be simplified to give

λ = μ4

12

(
1 + μ2

(
1

12
+ cg

10
+ cν

30
+ O

(
μ4)

))−1

. (32)

It follows from the latter equation that the frequency depends on the elasticity parameters cg and cν and the

thickness-wave parameter μ = h
√
r21 + r22 rather than on each of the wave numbers r1 and r2 alone.

In Sects. 5 and 6 for some partial cases, the accuracy of asymptotic formulae (18) and (31) is estimated by
comparison with the numerical solutions of Eq. (9).
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5 Deflection of a plate made of a transversely isotropic heterogeneous material

The elasticity relations (3) are not convenient for our aim because modulus G13 is independent of the other
moduli. Consider the two-parametric set of transversely isotropic materials introduced in [42]:

E0 = E

1 − ν2
, E33 = 4(1 − ν)2ηE0

(1 + η)2(1 − 2ν)
, G13 = 2(1 − ν)ηE0

(1 + η)2
, cν = ν

1 − ν
. (33)

This material can be obtained as a limit of the multi-layered material with the alternating isotropic layers with
parameters E1, ν1, h1 and E2, ν2, h2 under the assumption that

E = E1 + E2

2
, ν1 = ν2 = ν, η = E2

E1
≤ 1, h1 = h2 → 0. (34)

Here E1 and E2 are the Young’s moduli of the layers, E is the average Young’s modulus, ν is the Poisson
ratio, and η is the measure of anisotropy. The material is isotropic provided that η = 1. If η 
 1 the material
is strongly anisotropic and soft in the transversal direction because the moduli E33,G13 are small.

Assume that for the studied functionally gradientmaterial E0 = E0(z) is a prescribed function of z, whereas
the parameters η and ν do not depend on z. Similar to Eq. (8), we put E0(z) = E∗c0(z), 〈c0(z)〉 = 1; then,

E33(z) = e33c0(z), G13 = gc0(z), e33 = 4(1 − ν)2η

(1 + η)2(1 − 2ν)
, g = 2(1 − ν)η

(1 + η)2
, (35)

where the function c0(z) describes the elastic properties distribution in the thickness direction.
Let the load be a normal pressure F3 in plane z = 0. Then, the coefficients D and A1 in Eq. (20) are as

follows:

D = 〈
(z − a)2c0(z)

〉
, a = 〈zc0(z)〉 , A1 = cgψg + cνψc, cg = 1/g, (36)

ψg = 1

D

〈
(z − a)c0(z)

∫ z

0

1

c0(z1)

(∫ z1

0
(z2 − a)c0(z2)dz2

)
dz1

〉
,

ψc = 1

D

〈
(a − z)

(∫ z

0

(∫ z1

0
(z2 − a)c0(z2)dz2

)
dz1 + c0(z)

∫ z

0

(∫ z1

0
(z2 − a)dz2

)
dz1 + 1

)〉
. (37)

The constants a, D, ψg, ψc depend on heterogeneity of the elastic moduli in the thickness direction. If
c0 = 1, then

a = 1

2
, D = 1

12
, ψc = 1

5
, ψg = − 1

10
, (38)

and so we return to Eq. (21).
Consider the case c0(z) = αeαz/(eα − 1). Estimation of the integrals in Eq. (37) gives

a(α) = α − 1

α
+ 1

eα − 1
, D(α) = (eα − 1)2 − α2eα

α2(eα − 1)2
,

ψg(α) = 2(1 − e3α) + (α3 − 6)eα + (α3 + 6)e2α

α2(eα − 1)((eα − 1)2 − α2eα)
,

ψc(α) = (a(α) − 1/2)/D

+ 6α3eα(eα+1)+3α2(eα+1)2(eα−1)−6α(eα+1)(eα−1)2−α4eα(eα−1)−12(eα−1)3

6α2(eα − 1)((eα − 1)2 − α2eα)
.

(39)

The plots of the functions (39) are shown in Fig. 1. At α → 0, these functions approach the values (38).
To estimate the accuracy of the approximate models, we compare the exact value w(0) from Eqs. (9)

and approximate asymptotic values. Assume that the load F3(x1, x2) is harmonic, i.e. F3(x1, x2) =
F0
3 sin(r1x1) sin(r2x2). According to Remark 2, Eqs. (9) become ordinary differential equations with μ2 =

h2(r21 + r22 ).
For numerical work, we takeμ = 0.2, ν = 0.3, and compare the isotropic material η = 1 and the materials

with three levels of anisotropy η = 0.1, 0.01, 0.001. We study the homogeneous material (α = 0) and two
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D g c

Fig. 1 Functions D(α), ψg(α), ψc(α)

Fig. 2 Functions c0(z) at α = 1 and α = 3

Table 1 Errors of the approximate models depending on the level of the plate anisotropy (η) and heterogeneity (α)

η cg α wexact wKL eKL (%) wTR eTR (%) wSA eSA (%)

1 2.86 0 6880 6825 0.8 6903 0.3 6880 0.01
1 7215 7170 0.6 7249 0.5 7224 0.01
3 10,174 10,162 0.1 10,252 0.8 10,211 0.4

0.1 8.64 0 7038 6825 3 7061 0.3 7038 0.01
1 7385 7170 3 7410 0.5 7385 0.01
3 10,361 10,162 2 10,437 0.8 10,396 0.3

0.01 72.86 0 8782 6825 22 8814 0.3 8791 0.1
1 9107 7170 22 9200 0.4 9174 0.1
3 12,412 10,162 18 12,482 0.6 12,440 0.2

0.001 715.7 0 25,902 6825 74 26,364 1.8 26,341 1.7
1 26,563 7170 73 7107 2.1 27,082 1.9
3 31,777 10,162 64 32,953 3.7 32,912 3.6

heterogeneous materials with α = 1 and α = 3. The graphs of the function c0(z) = αeαz/(eα − 1) describing
the variation are shown in Fig. 2.

In order to compare the exact and the approximate values of deflections, it is enough to take F3 = 1 and
E∗ = 1 since the problem is linear. Table 1 displays the exact values wexact and the functions

wKL = F3
μ4D

, wTR = F3
μ4D

(
1 − μ2cgψg

)
, wSA = F3

μ4D

(
1 − μ2cgψg − μ2cνψc

)
. (40)

Here and in what follows, wTR denotes solution of the generalized TR model constructed in Sect. 7 rather
than the solution of standard TR system of equations.

Here the error of the approximate models eKL, eTR, eSA is defined as follows: ea = (wa −wexact)/wa with
a = {KL,TR,SA}.

The value wKL corresponds to the KL model and gives the acceptable accuracy only for a small level of
anisotropy. The correcting summand μ2cgψg in (40) takes into account the transversal shear deformation, and
the summandμ2cνψc involves the deformation of normal fibres relating to the Poisson’s effect. The valuewSA

is asymptotically exact with the second-order accuracy if both summands are included. This is proved by the
results shown in Table 1.
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Fig. 3 Function w(z) − w(0) for homogeneous (1) and for heterogeneous (2) materials

For small levels of anisotropy (cg ≤ 10), the Poisson effect makes the result essentially accurate (for the
small heterogeneity, the error is of the order 0.01%), and for η ∼ 0.01−0.001 the shear summand becomes
principal, the Poisson effect being relatively small.

In Table 1, the deflection of the plane z = 0 is discussed. With the relative error of the order of μ2, the
deflection of the plane z = 1 can be determined from Eq. (19):

w(1) = w(0) + μ2�w(0)
∫ 1

0
cν(z − a)dz. (41)

For more detailed discussion of this relation, we write down the expansion (13)

w(z) = μ−4w0 + μ−2w2(z) + w4(z) + O(μ2), (42)

The function w0 does not depend on z (in the most approximate models w = w(0) = const.). The function
w2 depends on z, and for a homogeneous plate this function is even with respect to the midplane z = 1/2, and
w2(1) = w2(0). In the general case, w2(1) �= w2(0).

Figure 3 displays the variable partw(z)−w0 of the functionsw(z) obtained by numerical solution of Eq. (9)
forμ = 0.2. Curve 1 is plotted for a homogeneousmaterial while curve 2 is plotted for a heterogeneousmaterial
c0(z) = αeαz/(eα − 1) with α = 1. For curve 1, we get w(0) = 6880, w2(0) = w2(1), but w(1) − w(0) =
w4(1) = −0.455 [see Eq. (42)]. For μ = 0.1, a calculation gives the same value w(1) − w(0) = −0.455 in
spite of w(0) = 6880 · 24 = 110, 080.

For a heterogeneous material (see curve 2), we have w2(0) �= w2(1) and w(1) − w(0) = −9.5. The
difference w(z) − w(0) is not symmetric with respect to z = 1/2, while for a homogeneous material it is
nearly symmetric.

6 Deflections and vibrations of a multi-layered plate

Consider a plate of thickness h consisting of n homogeneous isotropic layers with thicknesses hk, k =
1, 2, ..., n (h = ∑

hk). Let Ek, νk, ρk be the Young’s moduli, the Poisson ratios, and the mass densities of the
layers, respectively. We set

z0 = 0, zk =
k∑

i=1

hi , ek = Ek

1 − ν2k
, ck = νk

1 − νk
, gk = Ek

2(1 + νk)
. (43)

The coordinate z = a of the neutral layer, the bending stiffness D according to the KL model, and the
coefficients Ag and Aν in Eq. (17) are as follows:

a = 1

2

n∑
k=1

ek
(
z2k − z2k−1

) (
n∑

k=1

ekhk

)−1

, D = 1

3

n∑
k=1

ek
(
ẑ3k − ẑ3k−1

)
, ẑk = zk − a,



3412 P. Tovstik, T. Tovstik

Table 2 Errors of the approximate models for some values of E2

E2 w(0)exact wKL eKL (%) wTR eTR (%) w(0)SA eSA (%)

1 6290 6235 0.9 6323 0.5 6290 0.005
0.1 18,770 18015 4.0 18811 0.2 18769 0.006
0.01 31,802 23,900 24.8 31,815 0.04 31,803 0.003
0.001 103,135 24,852 75.9 104,073 0.9 104,069 0.9
0.0001 726,176 24,954 97.0 817,277 12.5 817,274 12.5

Ag = 1

D

n∑
k=1

(
ek f1k
2

(
ẑ2k − ẑ2k−1

) + f2k
3gk

(
ẑ3k − ẑ3k−1

) + ek
30gk

(
ẑ5k − ẑ5k−1

))
,

Aν = 1

D

n∑
k=1

(
ek f c3k + ck f e3k

2

(
ẑ2k − ẑ2k−1

) + (
ck f

e
4k + ek f

c
4k

) (
ẑ3k − ẑ3k−1

) + ekck
15

(
ẑ5k − ẑ5k−1

))
, (44)

where

f1k =
k−1∑
i=1

(
f2i hi
gi

+ ei
6gi

(
ẑ3i − ẑ3i−1

)) − f2khk
gk

− ek
6gk

ẑ3k, f2k = 1

2

k−1∑
i=1

ei
(
ẑ2i − ẑ2i−1

) − 1

2
ek ẑ

2
k ,

f e3k =
k−1∑
i=1

(
f e4i hi + ei

6

(
ẑ3i − ẑ3i−1

)) − f e4khk − ek
6
ẑ3k, f e4k = 1

2

k−1∑
i=1

ei
(
ẑ2i − ẑ2i−1

) − 1

2
ek ẑ

2
k , (e → c) .

Here (e → c) means that the similar formulae are valid also for moduli ck .
Consider the deflection w(0) under action of a harmonic normal pressure F3 = F0

3 sin r1x1 sin r2x2. Then,
in Eq. (20)

A1 = Ag − Aν − 1

2

n∑
k=1

ck
(
ẑ2k − ẑ2k−1

)
. (45)

According to Remark 2, we have for the second order of accuracy

w(0) = wKL (
1 − r2A1

)
, wKL = F3h

Dr4
, r2 = r21 + r22 , (46)

where wKL is deflection in the KL model. In Eqs. (43)–(46) the dimensionless variables (8) are not used and
0 ≤ z ≤ h. We rewrite Eq. (46) as follows:

w(0) = wKL
(
1 − μ2 Â1

)
, Â1 = A1

h2
, μ = rh, (47)

where the coefficient Â1 is dimensionless.
In the following examples, we put μ = 0.2. For r1 = r2, this value of μ corresponds to h/L = 0.045

where L is the length of the semi-wave in the in-plane directions.
Consider a plate (n = 4) with two hard and two soft layers with parameters:

h1 = 0.1, h2 = 0.75, h3 = 0.05, h4 = 0.1, E1 = E3 = 1, E2 = E4, ν1 = ν3 = 0.3, ν2 = ν4 = 0.45.

The Young’s modulus E2 for the soft layers varies in Table 2.
The exact value w(0)exact and approximate values wKL, wTR = wKL(1− μ2 Âg) and w(0)SA = wKL(1−

μ2 Â1) are presented in Table 2 for some values of E2.
We compare the exact and the approximate values of the frequency parameter λ (see (27)). The approximate

value is given by Eq. (31),

λ = λKL
(
1 − μ2

(
Âg − Âν − Âρ

)
+ O

(
μ4))−1

, Âg = Ag

h2
, Âν = Aν

h2
, Âρ = Aρ

h2
, (48)
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Table 3 Errors of the approximate models at the frequency parameter calculation for some values of E2

E2 λexact × 104 λKL × 104 eKL(%) λTR × 104 eTR(%) λSA × 104 eSA(%)

1 4.930 5.011 1.7 4.943 0.27 4.930 0.006
0.1 1.657 1.735 4.7 1.661 0.27 1.656 0.019
0.01 0.981 1.398 39.3 0.982 0.14 0.980 0.12
0.001 0.303 1.257 314 0.300 0.98 0.300 1.10
0.0001 0.099 1.252 1165 0.038 61.4 0.038 61.4

where for the multi-layered plate Ag and Aν are the same, cf. Eq. (44),

λKL = r4D

〈ρ(z)〉 , 〈ρ(z)〉 = 1

h

n∑
k=1

hkρk,

Aρ = 1

h

n∑
k=1

(
ρk

(
2 + ck

6

) (
ẑ3k − ẑ3k−1

) − f5kρkhk + f6kck
2

(
ẑ2k − ẑ2k−1

))
,

f5k =
k−1∑
i=1

ci
2

(
ẑ2i − ẑ2i−1

) − ck
2
ẑ2k , f6k =

k−1∑
i=1

hiρi − ρk ẑk . (49)

Let us consider a plate with the same parameters and assume additionally that ρ1 = ρ3 = 1, ρ2 =
ρ4 = 0.2. Table 3 presents the exact values λexact and the approximate values λKL for some values of E2.
λTR = λKL(1 − μ2 Âg)

−1 and λSA = λKL(1 − μ2( Âg − Âν − Âρ))−1.
The conclusions from Tables 2 and 3 are the same and presented in the following.
For the small level of heterogeneity (E2 ∼ 1–0.1), the accuracy of theKLmodel is sufficient for applications

and the SA model leads to a very small error of order 10−4–10−5. For example, such a high level of accuracy
is necessary in manufacturing of flexible telescope mirrors. The TR model is slightly more exact than the KL
model.

For a large level of heterogeneity (E2 ∼ 0.01–0.001), the KL model is unacceptable and both models (TR
and SA) lead to similar errors of the order 1% which is acceptable for practical applications. For this level of
heterogeneity, it is possible to use the generalized TRmodel for the simplification of calculations (see Sect. 7).
In this case, it is necessary to determine only coefficient Ag and avoid calculation of the bulk coefficients Aν

and Aρ .
The available 2D models are not applicable for essential heterogeneity E2 ∼ 0.0001.

7 Generalized Timoshenko–Reissner model

In contrast to the KL model, the TR model for a homogeneous transversally isotropic plate involves the
transversal shear strains [3,4]

εi3 = ∂ui
∂x3

+ ∂u3
∂xi

= 5

4

(
1 − 4z2

h2

)
γi (x1, x2) , i = 1, 2, (50)

where γi denotes the average transversal shear angle. From this assumption and the assumption that σ33 = 0,
we obtain the following relations of 2D elasticity:

M11 = D(κ1 + νκ2), M22 = D(κ2 + νκ1), M12 = (1 − ν)Dτ,

Q1 = �γ1, Q2 = �γ2, � = 5

6
G13h, D = Eh3

12
(
1 − ν2

) , (51)

where M11, M22 are the bending moments, M12 is the torque, Q1, Q2 are the transversal stress resultants and
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κ1 = ∂ϕ1

∂x1
, κ2 = ∂ϕ2

∂x2
, 2τ = ∂ϕ1

∂x2
+ ∂ϕ2

∂x1
,

ϕ1 = γ1 − ∂w

∂x1
, ϕ2 = γ2 − ∂w

∂x2
, (52)

and ϕi stands for the average angle of rotation of a normal fibre.
The 2D equilibrium equations are as follows:

∂M11

∂x1
+ ∂M12

∂x2
− Q1 − J

∂2ϕ1

∂t2
+ m1 = 0,

∂M12

∂x1
+ ∂M22

∂x2
− Q2 − J

∂2ϕ2

∂t2
+ m2 = 0, J = ρh3

12
,

∂Q1

∂x1
+ ∂Q2

∂x2
− ρh

∂2w

∂t2
+ F3 = 0. (53)

Equations (51)–(53) can be used also for heterogeneous transversally isotropic plates if we take the proper
values of the equivalent parameters

D = Deq, ρ = ρeq, J = Jeq, � = �eq. (54)

As we will show in what follows, the first three parameters (54) can be found within the framework of the KL
hypothesis about the straight normal. Also, in order to find �eq it is necessary to use asymptotic expansions of
Sect. 3.

We compare the results from Eqs. (51)–(53) with parameters (54) and the results of Sects. 3 and 4. For this
aim, we analyse Eqs. (51)–(53). In this system, the principal unknown quantities are w, γ1, γ2 or w, ϕ1, ϕ2.
Instead of ϕ1, ϕ2, we introduce the new unknown quantities � and � by the relations

ϕ1 = − ∂�

∂x1
+ ∂�

∂x2
,

ϕ2 = − ∂�

∂x2
− ∂�

∂x1
. (55)

Now, for a transversely isotropic plate, the 2D system (51) (similar to the 3D system given by Eq. (1)) is
split into the equation

1 − ν

2
D�2� − ��� − J

∂2��

∂t2
− ∂m1

∂x2
+ ∂m2

∂x1
= 0 (56)

and the system

�(�w − ��) − ρh
∂2w

∂t2
+ F3 = 0,

−D�2� − ρh
∂2w

∂t2
+ J

∂2�ψ

∂t2
+ F3 + ∂m1

∂x1
+ ∂m2

∂x2
= 0. (57)

Equation (56) describes the boundary layers and is beyond the scope of the present paper. Equation (57)
reduces to the equation of fourth order for deflection w(x1, x2)

D�2w + ρh
∂2w

∂t2
−

(
Dρh

�
+ J

)
∂2�w

∂t2
+ Jρh

�

∂4w

∂t4
− F3 + D

�
�F3 − J

�

∂F3
∂t2

− ∂m1

∂x1
− ∂m2

∂x2
= 0. (58)

We compare Eq. (58) with more exact equations in statics and in dynamics (free vibration).

Static case In the static case, Eq. (58) gives

Deq�
2w = F3 − Deq

�eq
�F3 + ∂m1

∂x1
+ ∂m2

∂x2
. (59)
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We compare this equation with Eq. (18) (in dimensionless form):

Dμ4�2w(0) = F3 + μ2Ag�F3 − μ2Aν�F3 + μ2L(� f3) − μ2M (60)

At first, we note that in the TR model w(z) = const., and Eq. (59) does not describe small Poisson effects
related to the summands−μ2Aν�F3 and L(� f3) in Eq. (60). By choosing Deq and �eq, the following relation
between the summands of Eqs. (59) and (60) can be established:

Deq = E∗
∫ h

0
(z − a)2c0(z)dz, a =

∫ h

0
c0(z)dz, E∗ = 1

h

∫ h

0
E0(z)dz, c0 = E0(z)

E∗
,

1

�eq
= E∗

D2
eq

∫ h

0
c0(z)(z − a)

∫ z

0
cg(z1)

∫ z1

0
c0(z2)(z2 − a)dz2dz1dz, cg(z) = E∗

G13(z)
. (61)

For the harmonic compression F3, the error of the generalized TR model can be estimated by comparison
with the columns wTR and wexact in Tables 1 and 2.

Free vibrationsWe consider the free vibrations of natural frequency ω and with the harmonic vibration mode
w(x1, x2) = w0 sin r1x1 sin r2x2. Equation (58) yields the quadratic equation for ω2,

Deqr
4 − ρeqhω2 −

(
Deqρeqh

�eq
+ Jeq

)
r2ω2 + �4 = 0, �4 = Jeqρeqh

�eq
ω4 = 0, r2 = r21 + r22 . (62)

We compare this equation with the asymptotic dimensionless equation (see Eq. (31)),

Dμ4 = λ
(
1 − μ2(Ag − Aν − Aρ)

)
, λ = ρ∗h2ω2

E∗
, μ = rh, (63)

with

Aρ =
∫ 1

0
(z − a)2ρ0(z)dz +

∫ 1

0

(
cν(z)(z − a)

∫ z

0
ρ0(z1)dz1 − ρ0(z)

∫ z

0
cν(z1)(z1 − a)dz1

)
dz. (64)

By means of Eq. (54), a relation between Eqs. (62) and (63) can be established.
We take the same values (61) for Deq and �eq, assume ρeq = ρ∗, and obtain

Jeq =
∫ 1

0
(z − a)2ρ(z)dzdz. (65)

As in the static case, the summands with Aν and cν(z) are not contained in Eq. (62). This equation involves
the additional summand �4 which is very small for the studied low-frequency vibration and can be omitted.
This summand describes the second (high-frequency) branch of the curve λ(μ) [8,38].

For low-frequency vibration of the multi-layered plate, the error of the generalized TR model can be
estimated by comparison with the columns λTR and λexact in Table 3.

For orthotropic beams and for transversally isotropic plates, the generalized TR model is discussed in
details in [43], and Refs. [44–47] reported some applications.

8 Deflection and free vibrations of a rectangular heterogeneous plate

Consider a rectangular plate with 0 ≤ x1 ≤ a1, 0 ≤ x2 ≤ a2, 0 ≤ z ≤ h (Fig. 4). In the previous sections, the
boundary conditions at a plate edges were not prescribed or a plate was assumed to be infinite in the in-plane
directions. Now the following variant of boundary conditions is assumed:

u2 = w = σ11 = 0 at x1 = 0, x1 = a1,

u1 = w = σ22 = 0 at x2 = 0, x2 = a2, (66)

(the so-called Navier conditions) and

σ13 = σ23 = 0, σ33 = −F0
3 at z = 0; σ13 = σ23 = σ33 = 0 at z = h. (67)
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Fig. 4 Plate under consideration

As in Sect. 2 [see Eq. (4)], we replace the condition σ33(x1, x2, 0) = −F0
3 by σ33(x1, x2, 0) = 0 and take

f3(x1, x2, z) = F0
3 δ(z), where δ(z) is the Dirac delta function.

The functions

u1(x1, x2, z) = r1m u(z) cos(r1mx1) sin(r2nx2),

u2(x1, x2, z) = r2n u(z) sin(r1mx1) cos(r2nx2), r1m = mπ

a1
, r2n = nπ

a2
, m, n = 1, 2, . . . ,

w(x1, x2, z) = w(z) sin(r1mx1) sin(r2nx2) (68)

satisfy the boundary conditions (66). The boundary layer does not appear, because v = ∂u2/∂x1−∂u1/∂x2 ≡ 0
[see Eq.(5)].

We assume the harmonic load f3(x1, x2, z) = f 03 (z) sin r1x1 sin r2x2 and follow Remark 2, that is, we
replace � by −1 and take μ = h/L , L = (r21 + r22 )−1/2); then, system (9) becomes a system of ODE which
can be solved numerically by the Runge–Kutta method.

We expand force F0
3 in a double Fourier series

F0
3 = F0

3

∑
m,n=1,3,...

16

mnπ2 sin(r1mx1) sin(r2nx2), (69)

and apply Eqs. (9) to each summand of (69) for

μ = μmn = h
(
r21m + r22n

)1/2
. (70)

We consider the multi-layered plate studied in Sect. 6. The exact solution of the studied problem can be
presented as a convergent series:

w(x1, x2, z) = F0
3

∑
m,n=1,3,...

16

mnπ2 wnm(z) sin(r1mx1) sin(r2nx2), (71)

where wmn(z) is the solution of Eq. (9) (transformed according to Remark 2) with the boundary conditions

σ33(0) = −1, σ (0) = σ(h) = σ33(h) = 0. (72)

The approximate deflection of the plane z = 0 can be found by using the results of Sect. 6, and it reads as:

w(x1, x2, 0) = F0
3

D

∑
m,n=1,3,...

Cmn sin(r1mx1) sin(r2nx2), Cmn = 16
(
1 − μ2

mn A1
)

mnπ2μ4
mn

, (73)

where D and A1 are given in Eqs. (44) and (45), respectively. The similar expression is valid for the deflection
of the face plane w(x1, x2, h). In this case, constant A1 in Eq. (70) is to be replaced by A = Ag − Aν .

The deflection of the line x2 = a2/2, z = 0 and the maximal deflection at z = 0 are, respectively,

w(x1, a2/2, 0) = F3
D

∞∑
k=0

B2k+1 sin
(
r1,2k+1x1

)
, B2k+1 =

∞∑
j=0

(−1) j C2k+1,2 j+1,
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Table 4 Coefficients C2k+1,2 j+1, B2k+1, and A0 for various values E2

E2 C11 C13 = C31 C33 C15 = C51 C35 = C53 C55 B1 B3 B5 A0

1 1594 24 3 3 1 0 1573 21 2 1555
0.1 4877 86 11 11 3 1 4802 76 9 4735
0.01 9897 343 57 68 17 7 9622 303 58 9380
0.001 45,787 2723 498 617 157 64 43,562 2383 524 41,703

Fig. 5 Deflection modes for various values of the Young moduli ratio E2

w (a1/2, a2/2, 0) = F3
D

A0, A0 =
∞∑

k, j=0

(−1)k+ jC2k+1,2 j+1. (74)

The series in Eq. (74) converge rapidly, and the summandwithC11 ismuch larger than the remaining summands
(see Table 4).

As an example, we consider a multi-layer square plate with the same values of parameters as in Sect. 6.
We additionally assume that a1 = a2 = 22.2, which corresponds to μ = 0.2. For various values E2, the first
coefficients C2k+1,2 j+1, B2k+1, and A0 are given in Table 4.

The amplitude of deflection is proportional to A0 and essentially depends on ratio E2 of the Young’s moduli
(see Table 4), but the deflection mode weakly depends on E2 and is close to function sin(πx1/a) (see Fig. 5).

The accuracy of the approximate solution (73) depends upon how exact coefficients Cmn are determined.
This can be established by a comparison with the exact solution (71). These calculations are not fulfilled, but
for free vibrations the relative errors

emn = λamn − λexactmn

λamn
· 100% (75)

of the approximate values λmn of the frequency parameter λ are given in Table 5. As it follows from a
comparison of Tables 2 and 3, the errors for the deflections and for the frequency parameters are close to each
other. Finally, we note that the error grows simultaneously with the increase in numbers m and n and with
increase in the level of heterogeneity E−1

2 .
We consider free vibrations of a rectangular plate with 0 ≤ x1 ≤ a1, 0 ≤ x2 ≤ a2, 0 ≤ z ≤ h, satisfying

the boundary conditions (66) and (4). A two-parametric set of vibration modes is given by Eqs. (68). The exact
frequency parameter λexactmn can be found numerically from Eqs. (9),(26) by taking μ2 = μ2

mn as in Eq. (70).
The approximate expression (48) for the long-wave low-frequency vibrations gives

λamn = Dμ4
mn

〈ρ〉
(
1 − μ2

mn(Ag − Aν − Aρ)
)−1

, m, n = 1, 2, . . . (76)

The results of comparison of the exact λexactmn and the approximate λamn values of the frequency parameter λ
for the plate parameters of Sect. 6 are given in Table 5. For a fixed value of E2, the error increases with numbers
m and n because the small parameter μmn grows. Therefore, only a few first values λamn can be determined by
using Eq. (76).

For the boundary conditions, different from (66), the analytical solution of the problems studied in this
Section is essentially more difficult, because solution (68) is to be changed, and additionally the edge effects
and the boundary layers can appear.
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Table 5 Relative error emn of the approximate values λmn

E2 (mn) = (11) (12) (22) (13) (23) (33) (15) (35) (55)
μmn = 0.20 0.32 0.40 0.45 0.51 0.60 0.72 0.82 1.00

e11 e12 e22 e13 e23 e33 e15 e35 e55
1 0.0 0.0 0.1 0.1 0.2 0.4 0.7 1.0 1.8
0.1 0.0 0.1 0.2 0.3 0.5 0.8 1.4 1.9 2.8
0.01 0.1 0.4 0.8 1.1 1.2 1.6 2.2 2.8 3.8
0.001 1.1 2.9 4.7 5.9 6.7 10.3 14.3 18.0 25.4

9 Conclusions

A two-dimensional linear model of second-order accuracy (SA), describing a bending of a thin plate made of
transversally isotropic heterogeneous material is considered. The suggested algorithm has been announced in
the short paper [7] for the static case. The SA model can be applied for functionally gradient materials and for
multi-layer plates. The SA model describes both the plate deflection and the lower branch of a curve λ(μ).

The range of anisotropy and variability of elastic moduli in the thickness direction (described by the shear
parameter g = μ2E/G) at which the SA model gives acceptable results is investigated. It is proved that this
range is very broad.

The accuracy of the SA model is very high for problems with small g (g 
 1), namely for sufficiently thin
plates made of materials close to isotropic homogeneous. In this case, the SA model gives essentially more
exact results than the KL and the TR models.

The accuracy of all models, namely the KL, the TR, and the SA models, decreases with increasing g.
For problems with large g, g ∼ 1, the KL model is inacceptable. The generalized TR model, in which a

multi-layer heterogeneous plate is replaced by a one-layered homogeneous transversely isotropic plate with
some equivalent parameters, is proposed. It is important to note that the accuracy of the generalized TR model
is close to the accuracy of the SA model; however, the generalized TR model is simpler for calculations than
the SA model.

For problems with very large g, g  1, the studied 2D models are inacceptable.
For the Navier boundary conditions, the deflection and free vibration of a rectangular heterogeneous plate

are studied in detail.
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