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Abstract In this study, the continuous and discontinuous contact problem of a functionally graded (FG) layer
resting on a rigid foundation is considered. The top of the FG layer is subjected to normal tractions over a
finite segment. The graded layer is modeled as a non-homogenous medium with a constant Poissons’ ratio and
exponentially varying shear modules and density. For continuous contact, the problem was solved analytically
using plane elasticity and integral transform techniques. The critical load that causes first separation and contact
pressures is investigated for various material properties and loadings. The problem reduced to a singular
integral equation using plane elasticity and integral transform techniques in case of discontinuous contact.
The obtained singular integral equation is solved numerically using Gauss–Jacobi integral formulation, and
an iterative scheme is employed to obtain the correct separation distance. The separation distance and contact
pressures between the FG layer and the foundation are analyzed for various material properties and loading.
The results are shown in Tables and Figures. It is seen that decreasing stiffness and density at the top of the
layer result in an increment in both critical load in case of continuous contact and separation distance in case
of discontinuous contact.

1 Introduction

In problems in which body forces are neglected, after the application of the load, the contact area between the
layer and the substrate diminish to a finite size independent of the magnitude of the applied load. However, in
reality, it is expected that the separation depends on the applied load and the layer will remain in contact with
the substrate at some point because of gravity.

Civelek and Erdogan [1] studied the frictionless contact problem of an elastic layer under gravity. Civelek et
al.[2] studied the interface separation for an elastic layer loaded by a rigid stamp. Continuous and discontinuous
contact problems for strips on an elastic semi-infinite plane were investigated by Cakiroglu and Cakiroglu [3].
Birinci and Erdol [4] studied a frictionless contact problem for two elastic layers with vertical body forces
supported by aWinkler foundation. Oner and Birinci [5] studied the continuous contact problem for two elastic
layers resting on an elastic half-infinite plane. An analysis of continuous and discontinuous cases of a contact
problem using analytical method and FEM was performed by Birinci et al [6].

Parallel to developments in sciences, newmaterials such as functionally graded materials (FGMs) in which
material properties vary smoothly along a spatial direction are developed as an alternative to homogeneous
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materials. These materials are used in various applications, including ball and roller bearings, gears, cutting
edges, gas turbines, electromagnetic engineering and space vehicles, mostly to provide abrasion resistance and
high-temperature endurance. Such a wide range of applications has resulted in the inevitable use of FGMs in
contact mechanics. Several studies have examined the contact problems of layers made from FGMs.

Giannakopoulos and Pallot [7] examined the two-dimensional contact of a rigid cylinder on an elastic
graded substrate. Guler and Erdogan [8,9] studied the fracture initiation in graded coatings under sliding
contact loading and the contact problem for two deformable solids with FGM coatings. A multilayered model
for sliding frictional contact analysis of functionally graded materials (FGMs) with arbitrarily varying shear
modulus under plane strain-state deformation has been developed by Ke and Wang [10]. Barik et al. [11]
studied the stationary plane contact of a functionally graded heat conducting punch and a rigid insulated
half-space. The frictionless contact problem of a functionally graded piezoelectric layered half-plane in plane
strain state under the action of a rigid flat or cylindrical punch was examined by Ke et al. [12]. Sliding
frictional contact between a rigid punch and a laterally graded elastic medium was studied by Dag et al. [13].
Comez [14] considered a contact problem for a functionally graded layer loaded by means of a rigid stamp
and supported by a Winkler foundation. Çömez [15] also solved a contact problem for a functionally graded
layer indented by a moving punch. The axisymmetric contact problem on the indentation of a hot circular
punch into an arbitrarily nonhomogeneous half-space was considered by Krenev et al. [16]. Wang et al. [17]
investigated an efficientmethod for solving three-dimensional fretting contact problems involvingmultilayered
or functionally graded materials. Frictional receding contact analysis of a layer on a half-plane subjected to
semi-infinite surface pressure was studied by Parel and Hills [18]. Ma et al. [19] investigated the frictional
contact problem between a functionally graded magnetoelectroelastic layer and a rigid conducting flat punch
with frictional heat generation.

A receding contact plane problem for a functionally graded layer pressed against a homogeneous half-
space was analyzed by El-Borgi et al. [20]. Rhimi et al. [21,22] considered the axisymmetric problem of a
frictionless receding contact between an elastic functionally graded layer and a homogeneous half-space when
the two bodies were pressed together, and double receding contact between a rigid stamp of axisymmetric
profile, an elastic functionally graded layer and a homogeneous half-space. The two-dimensional frictionless
contact problem of a coating structure consisting of a surface coating, a functionally graded layer and a
substrate under a rigid cylindrical punch was investigated by Yang and Ke [23]. Chen and Chen [24] studied
the contact behaviors of a graded layer resting on a homogeneous half-space and pressed by a rigid stamp.
The plane problem of a frictional receding contact formed between an elastic functionally graded layer and a
homogeneous half-space, when they were pressed against each other, was investigated by El-Borgi et al. [25].
Yan and Li [26] considered the double receding contact plane problem between a functionally graded layer and
an elastic layer. A three-dimensional problem of elasticity of normal and tangential loading of the surface of
the functionally graded coated half-space was examined by Kulchytsky-Zhyhailo and Bajkowski [27]. Alinia
et al. [28] considered the fully coupled contact problem between a rigid cylinder and a functionally graded
coating bonded to a homogeneous substrate system under plane strain and generalized plane stress sliding
conditions.

An examination of the related literature shows that studies involving layers or coatings with body forces
have consisted of homogeneous materials, whereas studies involving FG layers or coating have neglected body
forces. Therefore, this study aims to solve the continuous and discontinuous contact problem of an FG layer
resting on a rigid foundation by taking into account the body force of the FG layer. Further, the calculations are
made under the assumption that the FG layer is isotropic and the shear modulus andmass density exponentially
vary along the direction of the layer’s thickness.

2 Formulation of the problem

As shown in Fig. 1, consider the symmetric plane strain problem consisting of an infinitely long functionally
graded (FG) layer of thickness h resting on a rigid foundation. Poisson’s ratio ν is taken as constant; the shear
modulus μ and the density ρ depend on the y-coordinate only as follows:

μ(y) = μ0 exp(βy), 0 ≤ y ≤ h, (1.1)
ρ(y) = ρ0 exp(αy), 0 ≤ y ≤ h, (1.2)

where μ0 and ρ0 are the shear modulus and the density of the graded layer at y = 0; β and α are the non-
homogeneity parameters controlling the variation of the shear moduli and the density in the graded layer,
respectively.
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Fig. 1 Geometry and loading of the contact problem

The top of the layer is subjected to a distributed load q(x) over the segment |x | ≤ a. It is assumed that the
contact surfaces are frictionless and x = 0 is the plane of symmetry with respect to external loads as well as
geometry, for simplicity. Clearly, it is sufficient to consider one half (i.e., x ≥ 0) of the medium only.

Assuming that the FG layer is isotropic at every point, equilibrium equations, the strain-displacement
relationships, and the linear elastic stress–strain law, respectively, are given by:

∂σx

∂x
+ τxy

∂y
= 0,

∂τxy

∂x
+ ∂σy

∂y
− ρg = 0, (2.1,2)

εxx = ∂u

∂x
, εyy = ∂v

∂y
, εxy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
, (3.1–3)

σx = μ1

κ − 1

[
(1 + κ)εxx + (3 − κ)εyy

]
, (4.1)

σy = μ1

κ − 1

[
(3 − κ)εxx + (1 + κ)εyy

]
, (4.2)

τxy = 2μεxy (4.3)

where u and v are the x and y components of the displacement field, respectively; σx , σy and τxy are the
components of the stress field in the same coordinate system; εx , εy , and εxy are the corresponding components
of the strain field; κ is a material property defined as κ = 3−4ν for plane strain problems; and g is gravitational
acceleration. Combining Eqs. (1)–(4), the following two-dimensional Navier’s equations are obtained:

(κ + 1)
∂2u

∂x2
+ (κ − 1)

∂2u

∂y2
+ 2

∂2v

∂x∂y
+ β(κ − 1)

∂u

∂y
+ B(κ − 1)

∂v

∂x
= 0, (5.1)

(κ − 1)
∂2v

∂x2
+ (κ + 1)

∂2v

∂y2
+ 2

∂2u

∂x∂y
+ β(3 − κ)

∂u

∂x
+ β(κ + 1)

∂v

∂y
= ρme

(β−α)y . (5.2)

in which ρm is defined as follows:

ρm = κ − 1

μ0
ρ0g.

The solution of (5) can be given as

u = u p + uh, (6.1)

v = vp + vh (6.2)

where subscripts p and h represent the particular and homogeneous solution, respectively.
For the particular solution, assuming displacement components u p = u p(x) and vp = vp(y), Eq. (5)

yields

(κ + 1)
∂2u

∂x2
= 0, (7.1)
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(κ + 1)
∂2v

∂y2
+ β(3 − κ)

∂u

∂x
+ β(κ + 1)

∂v

∂y
= ρme

(β−α)y, (7.2)

and the displacements may be expressed as

u p = A1x + A2, (8.1)

vp = C1e
−βy + ρme(α−β)y

α(α − β)(κ + 1)
+ (1 − βy)(3 − κ)A1 − C2

β(κ + 1)
(8.2)

in which Ai and Ci (i = 1, 2) are unknown constants and can be found applying the following boundary
conditions (given in “Appendix A”):

u p(0, y) = 0, vp(x, 0) = 0, (9.1,2)

σyp (x, 0) = −ρ0g

α

(
eαh − 1

)
,

h∫
0

σxpdy = 0. (9.3,4)

The particular part of the stress component σyp is obtained as follows:

σyp (y) = −ρ0g

α

(
eαh − eαy

)
. (10)

In case of homogeneous solution, using symmetry considerations and Fourier transforms, the displacement
components for the FG layer may be written as:

uh(x, y) = 2

π

∞∫
0

φ(ξ, y) sin (ξ x)dξ, vh(x, y) = 2

π

∞∫
0

ψ(ξ, y) cos (ξ x)dξ (11.1,2)

where φ(ξ, y) and ψ(ξ, y) are the Fourier sine and Fourier cosine transforms of u and v with respect to
the x-coordinate, respectively. Substituting Eqs. (11.1,2) into Navier’s equations (5), the following ordinary
differential equations are obtained:

− (κ1 + 1)ξ2φ + (κ1 − 1)
d2φ

d2
− 2ξ

dψ

dy
+ β(κ1 − 1)

[
dφ

dy
− ξψ

]
= 0, (12.1)

− (κ1 − 1)ξ2ψ + (κ1 + 1)
d2ψ

dy2
+ 2ξ

dφ

dy
+ β

[
(3 − κ1)ξφ + (κ1 + 1)

dψ

dy

]
= 0 (12.2)

where

φ =
4∑
j=1

Fj exp
(
n j y
)
, ψ =

4∑
j=1

Fjm j exp
(
n j y
)
. (13.1,2)

The unknown functions Fj ( j = 1, 2, 3, 4) are determined from the boundary conditions, and n1, . . . , n4
are the four complex roots of the characteristic equation associated with Eqs. (12.1,2), which may be written
as:

n4j + 2βn3j + (β2 − 2ξ2)n2j − 2ξ2βn j + ξ2
(

ξ2 + β2 3 − κ1

κ1 + 1

)
= 0. (14)

The roots of Eq. (14) are obtained:

n1 = −1

2

⎛
⎜⎝β +

√√√√4ξ2 + β2 − 4ξβi

√
3 − κ1

κ1 + 1

⎞
⎟⎠ , n2 = −1

2

⎛
⎜⎝β −

√√√√4ξ2 + β2 − 4ξβi

√
3 − κ1

κ1 + 1

⎞
⎟⎠ , (15.1,2)
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n3 = −1

2

⎛
⎜⎝β +

√√√√4ξ2 + β2 + 4ξβi

√
3 − κ1

κ1 + 1

⎞
⎟⎠ , n4 = −1

2

⎛
⎜⎝β −

√√√√4ξ2 + β2 + 4ξβi

√
3 − κ1

κ1 + 1

⎞
⎟⎠ , (15.3,4)

The known function m j in Eq. (13.2) may be expressed as follows:

m j =
(
3β + 2n j − βκ1

) [
n j
(
β + n j

)
(κ1 + 1) − ξ2 (κ1 + 3)

]
ξ
[
4ξ2 − β2 (κ1 − 3) (κ1 + 1)

] , ( j = 1, 2, 3, 4). (16)

Substituting Eqs. (11.1,2) and (13.1,2) into Eqs. (4), the stress and displacement fields of interest for the
graded layer are obtained:

σyh = 2μ0 exp (βy)

π (κ1 − 1)

∞∫
0

4∑
j=1

Fj S j exp
(
n j y
)
cos (ξ x) dξ, (17.1)

τxyh = 2μ0 exp (βy)

π

∞∫
0

4∑
j=1

Fj Tj exp
(
n j y
)
sin (ξ x) dξ, (17.2)

vh = 2

π

∞∫
0

4∑
j=1

Fjm j exp
(
n j y
)
cos (ξ x) dξ, (18)

in which the known functions S j and Tj ( j = 1, 2, 3, 4) are given by:

S j = (3 − κ1) ξ + (κ1 + 1)m jn j , Tj = n j − ξm j . (19.1,2)

3 Solution of the problem

The solution of the problem is carried out in case of continuous contact and discontinuous contact separately.

3.1 In case of continuous contact

If the load is sufficiently small, then the contact between the FG layer and the rigid foundation becomes
continuous, and the boundary conditions can be defined as follows:

σy(x, h) = q(x)H(a − |x |), τxy(x, h) = 0, 0 ≤ x < ∞, (19.1,2)

v(x, 0) = 0, τxy(x, 0) = 0, 0 ≤ x < ∞ (19.3,4)

where H is the Heaviside function.
Applying boundary conditions (19.1–4) to stress and displacement fields (17,18), the following linear

algebraic system of equations is obtained:
⎡
⎢⎣
S1 exp (n1h) S2 exp (n2h) S3 exp (n3h) S4 exp (n4h)
T1 exp (n1h) T1 exp (n1h) T1 exp (n1h) T1 exp (n1h)

T1 T2 T3 T4
m1 m2 m3 m4

⎤
⎥⎦
⎧⎪⎨
⎪⎩

F1
F2
F3
F4

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

Q
0
0
0

⎫⎪⎬
⎪⎭ (20)

where Q is a known function defined as:

Q = κ − 1

μ0 exp(βh)

∞∫
0

q(x)H(a − x) cos ξ xdx . (21)
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The unknown functions Fj ( j = 1, 2, 3, 4) may be obtained in terms of Q solving Eq. (20) analytically
and can be expressed as:

Fj = Fj1

�F
Q (22)

where Fj1 ( j = 1, 2, 3, 4) and �F are shown in “Appendix A.” Assuming q(x) as a uniformly distributed
load,

q(x) = q0, (23)

Q becomes as follows:

Q = κ − 1

μ0 exp(βh)
q0

sin ξa

ξ
. (24)

Substituting Eqs. (10, 17.1, 22, 24) into the stress field of interest, the following expression is obtained:

σy

ρ0gh
= 2 exp (β(y − h))

π (a/h)
λ

∞∫
0

1

ξ�F

4∑
1

[
Fj1S1 exp(n j y)

]
sin ξa cos ξ xdξ − exp(αh) − exp(αy)

αh
(25)

in which λ is a dimensionless load factor parameter defined as

λ = P

ρ0gh2
(26)

where P is the resultant force of the distributed load in case of uniformly distributed load,

P =
a∫

−a

q(x)dx = 2q0a. (27)

The separation of the FG layer occurs at x = 0, the symmetry axis, and the critical load, λcr , that cause
first separation can be found equating Eq. (25) to zero at y = 0,

1

λcr
= αh

exp(αh) − 1

2 exp(−βh)

π (a/h)

∞∫
0

1

ξ�F

4∑
1

[
Fj1S1 exp(n j y)

]
sin ξa cos ξ xdξ. (28)

3.2 In case of discontinuous contact

Since the contact surface cannot carry tensile tractions for λ > λcr , there occurs a separation between the
FG layer and the rigid foundation in the neighborhood of x = 0 symmetry axis at y = 0. Assuming that the
separation region is described by −b < x < b, the boundary conditions can be defined as follows:

σy(x, h) = q(x)H(a − |x |), τxy(x, h) = 0, 0 ≤ x < ∞, (29.1,2)

∂v(x, 0)

∂x
= f (x), τxy(x, 0) = 0, 0 ≤ x < ∞, (29.3,4)

σy(x, 0) = 0 − b < x < b (29.5)

in which f (x) is the derivative of the separation distance between the layer and the rigid foundation with
respect to x , and single-valuedness for vertical displacement v(x, 0) requires that f (x) satisfies the following
condition:

b∫
−b

f (x)dx = 0. (30)
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Applying boundary conditions (29.1–4) to stress and displacement fields (17, 18), the following linear
algebraic system of equations is obtained:⎡

⎢⎣
S1 exp (n1h) S2 exp (n2h) S3 exp (n3h) S4 exp (n4h)
T1 exp (n1h) T1 exp (n1h) T1 exp (n1h) T1 exp (n1h)
T1 T2 T3 T4
−ξm1 −ξm2 −ξm3 −ξm4

⎤
⎥⎦
⎧⎪⎨
⎪⎩

F1
F2
F3
F4

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

Q
0
0
F

⎫⎪⎬
⎪⎭ (31)

where F is a known function defined as:

F =
∞∫
0

f (x) sin ξ xdx =
b∫
0

f (t) sin ξ tdt . (32)

The new values for the unknown functions Fj ( j = 1, 2, 3, 4)may be obtained in terms of Q and F solving
Eq. (31) analytically and can be expressed as:

Fj = Fj1

�F
F + Fj2

�F
ξQ (33)

where Fj1, Fj2 ( j = 1, 2, 3, 4) and �F are shown in “Appendix A.” Substituting (10, 17.1, 33) into the stress
field of interest, the following expression is obtained:

σy = 2μ0 exp (βy)

π (κ − 1)

∞∫
0

1

�F

4∑
1

[
Fj1F + Fj2ξQ

]
S j exp(n j y) cos ξ xdξ − ρ0g

[
exp(αh) − exp(αy)

]
α

. (34)

Applying the unused boundary condition (29.5), substituting F and Q, and using the anti-symmetry con-
dition f (x) = − f (x), the following singular integral equation is obtained assuming that the load is uniformly
distributed:

4μ0

κ + 1

⎡
⎣ 1

π

b∫
−b

f (t)
1

t − x
dt + 1

π

b∫
−b

f (t)K1dt

⎤
⎦+ ρ0gh

[
1

a/h exp(βh)

λ

π
K2 − exp(αh) − 1

αh

]
= 0 (35)

in which K1 and K2 are described in “Appendix A.”

4 Numerical solution

Using the following dimensionless quantities, the numerical solution of the continuous and discontinuous
problem can be simplified,

t = sb, dt = bds, x = rb, w = ξh, dw = hdξ, (36,1–5)

φ(s) = 4μ0

(κ + 1)
f (t). (37)

The expressions for the critical load factor (28), the singular integral equation (35), and the single-valuedness
condition (30) become:

1

λcr
= αh

exp(αh) − 1

2 exp(−βh)

π (a/h)

∞∫
0

1

w�F

4∑
1

[
Fj1S1 exp(n j y)

]
sin
(
w
a

h

)
cos
(
w
x

d

)
dw, (38)

1

π

1∫
−1

φ(s)

[
1

t − x
+ b

h
k1

]
ds + 1

a/h exp(βh)

λ

π
k2 − exp(αh) − 1

αh
= 0, (39)

k1(r, s) = hK1(r, s), k2(r, s) = hK2(r, s), (40.1,2)

b

h

1∫
−1

φ(s)ds = 0. (41)
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initial estimation 
of b

solve (43) for 1,..., NG G using N equations 

(except the (N/2+1)th equation) from (43)

verify
b

using (N/2+1)th
equation of (43)

assume a new 
value for b

false

solution done  

true

Fig. 2 Flowchart of the iterative algorithm

Since f (t) or φ(s) is an odd function, i.e., f (t) = − f (t), (41) is automatically satisfied. In addition, one
may notice that because of the smooth contact at the points s = −1 and s = 1, the function φ(s) in Eq. (39)
equals zero at both ends. Hence, the index of the integral equation is −1, and the solution may be sought as
described by Erdogan et al. [29]:

φ(s) = (1 − s2)1/2G(s), W (s) = 1 − s2

N + 1
, −1 ≤ s ≤ 1. (42.1,2)

Using appropriate Gauss–Jacobi integration formulas, the solution of Eq. (39)may be expressed as a system
of algebraic equations as given below,

N∑
j=1

1 − s2j
N + 1

G(s j )

[
1

s j − rİ
+ b

h
k1(rİ , s j )

]
= exp(αh) − 1

αh
− 1

a/h exp(βh)

λ

πh
k2(ri ), (i = 1, ..., N + 1),

(43)
where ri and sk are shown in “Appendix A.”

The system of algebraic equations (43) consists of (N + 1) equations with (N + 1) unknowns, namely
G1, . . . ,GN , and b. When analyzed, it is observed that the system of equations given by (43) is nonlinear
in terms of the variable b, and an iterative procedure given as a flowchart in Fig. 2 can be used to find the
unknowns. As it is seen from Fig. 2, firstly an initial estimate of the variable b is assumed, and choosing (N )
equations (except the (N/2+ 1)th equation) from (43), the solution is found for the unknowns G1, . . . ,GN .
The unused equation of (43), i.e., (N/2 + 1)th equation, b should be verified using calculated G1, ... ,GN
values. If the assumed variable b satisfies this equation within an acceptable error, i.e., accuracy which is
the difference between the left-hand side and right-hand side of the (N/2 + 1)th equation, it is assumed that
the correct values of G1, ... ,GN , and b are obtained. Otherwise, a new value for b is assigned for the next
iteration, and the procedure continues.

5 Numerical results

The geometry and loading of the problem are given in Fig. 1. The load applied on the FG layer, i.e., q(x), is
a uniformly distributed load with a/h = 0.01, 0.5, 1.0, 2.0. The load can be considered as concentrated
force for a/h = 0.01.
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Table 1 The comparison of λcr in case of continuous contact and b/h in case of the discontinuous case (a/h = 0.01)

Study Continuous contact, λcr Discontinuous, b/h∗

λ = 1.2 λ = 2.0 λ = 4.0

Civelek and Erdogan [1] 1.088 0.28 0.96 2.35
This study 1.088625 0.287155 0.970928 2.387936
∗ b/h values are read from the enlarged figures

Table 2 The variation of λcr for the various β and α in case of continuous contact (a/h = 0.01, κ = 2.0)

Parameters α = −1.0 α = −0.5 α = 0.001 α = 0.5 α = 1.0

β = −1.0 0.660946 0.822824 1.046125 1.356608 1.796639
β = −0.5 0.672888 0.837691 1.065026 1.381119 1.829100
β = 0.001 0.687798 0.856253 1.088625 1.411723 1.869630
β = 0.5 0.705887 0.878772 1.117255 1.448850 1.918800
β = 1.0 0.727571 0.905767 1.151576 1.493357 1.977743

Table 3 The variation of the λcr for the various a/h, β and α in case of continuous contact (κ = 2.0)

Parameters β = −1.0 β = −1.0 β = 0.001 β = 1.0 β = 1.0
α = −1.0 α = 1.0 α = 0.001 α = −1.0 α = 1.0

a/h = 0.01 0.660946 1.796639 1.088625 0.727571 1.977743
a/h = 0.1 0.667269 1.813826 1.097933 0.732991 1.992477
a/h = 0.5 0.817603 2.222475 1.318949 0.861385 2.341488
a/h = 1.0 1.248453 3.393648 1.958586 1.234958 3.356964

As it is seen from Eq. (1.1), the top of the layer becomes stiffer if the non-homogeneity parameter β
increases or vice versa. Similarly, it can be observed from Eq. (1.2) that the top of the layer becomes heavier
if the non-homogeneity parameter α increases. In addition, the layer can be assumed as homogenous for the
non-homogeneity parameters β = 0.001 and α = 0.001.

Note that all quantities are normalized. The height of the graded layer h is taken as 1, whereas Poisson’s
ratio of the graded layer is taken as 0.25. In addition, the iterations are continued until the accuracy is less than
10−6 for N = 20.

Table 1 shows the comparison of the critical load factor λcr in case of continuous contact and half separation
distance b/h in case of discontinuous contact for a homogenous layer, i.e. β = 0.001 and α = 0.001, between
the values reported in Civelek and Erdogan [1] and obtained in this study. It can be seen that the λcr and b/h
values of this study are approximately the same values as given by Civelek and Erdogan [1].

Tables 2 and 3 show the variation of the critical load factor λcr for various non-homogeneity parameters
β, α, and uniformly distributed load amplitude a/h in case of continuous contact. It is seen from these Tables
that λcr increases for increasing α if others are fixed. Similarly, increasing β results in an increment of the
load factor λcr . In addition, λcr increases for increasing a/h. The smallest critical load needed to separate the
FG layer from the rigid foundation is obtained in case of a concentrated load, i.e., a/h = 0.01.

The effect of the load factor λ, non-homogeneity parameters β and α, and uniformly distributed load
magnitude a/h on the contact pressure in case of continuous contact are shown in Figs. 3, 4, and 5, respectively.
It can be seen from these Figures that the lowest pressure occurs on the symmetry axis and pressure becomes
zero for the critical load factor. In addition, the effect of the loading decreases moving away from the symmetry
axis and goes to a definite value that represents the particular solution of stress given in (10) and changes with
mass density, i.e., ρ0 and α.

In case of discontinuous contact, the comparison of the half separation distance b/h and the accuracy, i.e.,
the difference between the left-hand side and right-hand side of the (N/2+ 1)th equation of (43), in each step
of the iterative procedure described at the end of Sect. 4 for various non-homogeneity parameters α and β is
given in Table 4. As it is seen from the Table, iterations are continued until the absolute value of accuracy is
less than 10−6, and at most 17 iterations are required to solve the problem.

Tables 5 and 6 show the variation of half contact distance b/h between the FG layer and the rigid foun-
dation for various non-homogeneity parameters β,α and uniformly distributed load amplitude a/h in case of
discontinuous contact for a constant load factor, λ. It can be seen from the Tables that b/h decreases with
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(a)      (b)

Fig. 3 The effect of λ on the contact pressure for various β and α in case of continuous contact (a/h = 0.01, κ = 2.0)

(a)      (b)

Fig. 4 The effect of β and α on the contact pressure for λ = λcr in case of continuous contact (a/h = 0.01, κ = 2.0)

(a)      (b)

Fig. 5 The effect of a/h on the contact pressure for various β and α in case of continuous contact (κ = 2.0)

increasing β for a fixed value of α. Similarly, increasing α results in a reduction of the half separation distance.
In addition, b/h decreases with increasing a/h, and the largest separation distance is obtained in case of
concentrated load, i.e., a/h = 0.01 independent of β and α.

The effect of the load factor λ, non-homogeneity parameters β and α, and uniformly distributed load
magnitude a/h on the contact pressure in case of discontinuous contact are shown in Figs. 7 and 8, respectively.
Similar to the continuous contact case, the effect of the loading decreases moving away from the symmetry
axis and goes to a definite value that represents the particular solution of stress given in (10) and changes with
mass density, i.e. ρ0 and α. It can be seen from these Figures that the largest pressures occur near the end of
the separation. Moreover, they increase for increasing α, β, and λ while decrease for increasing a/h.
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Table 4 The variation of b/h and accuracy at each iteration for various non-homogeneity parameters β and α in case of
discontinuous contact (a/h = 0.01)

β = −1.0, α = −1.0 β = 0.001, α = 1.0 β = 1.0, α = 0.001

Iter. no. b/h Accuracy Iter. no. b/h Accuracy Iter. no. b/h Accuracy

1 0.200000 56.256269 1 0.200000 35.835082 1 0.200000 50.680951
2 1.055712 16.615551 2 0.941528 4.177409 2 1.306197 7.551998
3 1.853711 7.009563 3 1.136343 0.65902 3 1.882285 2.337714
4 2.888897 2.545519 4 1.180796 0.01923 4 2.260852 0.385044
5 3.839936 0.731954 5 1.182199 −0.000069 5 2.351033 0.013114
6 4.415509 0.171781 6 1.182194 −0.000085 6 2.354353 0.010459
7 4.670349 0.031045 … …… …… 7 2.356450 −0.008331
8 4.744432 0.002647 14 1.182189 −0.000008 8 2.354332 0.000032
9 4.751762 −0.000035 15 1.182189 0.000067 9 2.354342 0.000005
10 4.751655 0.000004 16 1.182194 −0.000109 10 2.354344 0.000000
11 4.751669 0.000000 17 1.182186 0.000000

Table 5 The variation of b/h for the various non-homogeneity parameters β and α in case of discontinuous contact (a/h = 0.01,
λ = 4)

Parameters α = −1.0 α = −0.5 α = 0.001 α = 0.5 α = 1.0

β = −1.0 4.751669 3.308814 2.436338 1.751601 1.208481
β = −0.5 4.238259 3.226682 2.406783 1.735233 1.195486
β = 0.001 4.115861 3.186628 2.387936 1.721536 1.182186
β = 0.5 4.042882 3.156730 2.371358 1.707880 1.167690
β = 1.0 3.985572 3.129293 2.354350 1.693083 1.151203

Table 6 The variation of b/h for various a/h, non-homogeneity parameters β and α in case of discontinuous contact (λ = 4)

Parameters β = −1.0 β = −1.0 β = 0.001 β = 1.0 β = 1.0
α = −1.0 α = 1.0 α = 0.001 α = −1.0 α = 1.0

a/h = 0.01 4.751669 1.208481 2.387936 3.988572 1.167690
a/h = 0.1 4.733200 1.206925 2.386910 3.984403 1.149657
a/h = 0.5 4.578875 1.165827 2.362005 3.967299 1.108694
a/h = 1.0 4.454754 0.926750 2.278638 3.924370 0.877039

(a)      (b)

Fig. 6 The effect of λ on the contact pressure for various β and α in case of discontinuous contact (a/h = 0.01, κ = 2.0)
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(a)      (b)

Fig. 7 The effect of β and α on the contact pressure in case of discontinuous contact (a/h = 0.01, κ = 2.0)

(a)      (b)

Fig. 8 The effect of a/h on the contact pressure for various β and α in case of discontinuous contact (λ = 4.0, κ = 2.0)

6 Conclusions

In this paper, the continuous and discontinuous contact problem of a functionally graded (FG) layer resting
on a rigid foundation was considered. The top of the FG layer is subjected to normal tractions over a finite
segment. The calculations weremade under the assumption that the FG layer is isotropic and the shear modulus
and mass density vary exponentially along the direction of the layer’s thickness.

For continuous contact, the problem was solved analytically using plane elasticity and integral transform
techniques. The critical load that causes first separation and contact pressures was investigated for various
material properties and loadings. It was seen that the critical load increased with increasing non-homogeneity
parameters β, α, and distributed load amplitude a/h. In addition, the lowest pressure occurred on the symmetry
axis.

For discontinuous contact, the problem reduced to a singular integral equation using plane elasticity and
integral transform techniques. The obtained singular integral equation was solved numerically using Gauss–
Jacobi integration formulation, and an iterative scheme was employed to obtain the correct separation distance.
The effect of the non-homogeneity parameters β, α, and loading on the separation distance and on the contact
pressure were investigated using a parametric study. It was seen that the separation distance decreased with
increasing non-homogeneity parameters β, α, and distributed load amplitude. In addition, the largest pressures
occur near the end of the separation and increase for increasing α while decrease for increasing β.

It was also seen that the effect of the loading decreased moving away from the symmetry axis and went to
a definite value that represents the particular solution of stress given in (10) and changes with mass density,
i.e, ρ0 and α.
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Appendix A

Fj1 ( j = 1, . . . , 4) and �F in case of continuous contact are defined as follows:

F11 = exp(n2h) (T2T3m4 − T2T4m3) + exp(n3h) (−T2T3m4 + T3T4m2) + exp(n4h) (T2T4m3 − T3T4m2) ,

(A1)

F21 = − exp(n1h) (T1T3m4 − T1T4m3) − exp(n3h) (−T1T3m4 + T3T4m1) − exp(n4h) (T1T4m3−T3T4m1) ,

(A2)

F31 = exp(n1h) (T1T2m4 − T1T4m2) + exp(n2h) (−T1T2m4 + T2T4m4) + exp(n4h) (T1T4m2 − T2T4m1) ,

(A3)

F41 = − exp(n1h) (T1T2m3 − T1T3m2) − exp(n2h) (−T1T2m3 + T2T3m1) − exp(n3h) (T1T3m2−T2T3m1) ,

(A4)

�F = exp ((n1 + n2)h) ( S1T2T3m4 − S1T2T4m3 − S2T1T3m4 + S2T1T4m3)

exp ((n1 + n3)h) (−S1T2T3m4 + S1T3T4m2 + S3T1T2m4 − S3T1T4m2)

exp ((n1 + n4)h) ( S1T2T4m3 − S1T3T4m2 − S4T1T3m2 + S4T1T3m2)

exp ((n2 + n3)h) ( S2T1T3m4 − S2T3T4m1 − S3T1T2m4 + S3T2T4m1)

exp ((n2 + n4)h) (−S1T2T4m3 + S2T3T4m1 + S4T1T2m3 − S4T2T3m1)

exp ((n3 + n4)h) ( S3T1T2m4 − S3T2T4m1 − S4T1T3m2 + S4T2T3m1) . (A5)

Fj1, Fj2 ( j = 1, . . . , 4) and �F in case of discontinuous contact are defined as follows:

F11 = exp ((n2 + n3)h) (S2T3T4 − S3T2T4) + exp ((n2 + n4)h) (−S2T3T4 + S4T2T3)

+ exp ((n3 + n4)h) ( S3T2T4 − S4T2T3) , (A6)

F21 = exp ((n1 + n3)h) (S3T1T4 − S1T3T4) + exp ((n1 + n4)h) (S1T3T4 − S4T1T3)

+ exp ((n3 + n4)h) (−S3T1T4 − S4T1T3) , (A7)

F31 = exp ((n1 + n2)h) (S1T2T4 − S2T1T4) + exp ((n1 + n4)h) (−S1T2T4 + S4T1T2)

+ exp ((n2 + n4)h) (S2T1T4 − S4T1T2) , (A8)

F41 = exp ((n1 + n2)h) (S2T1T3 − S1T2T3) + exp ((n1 + n3)h) (S1T2T3 − S3T1T2)

+ exp ((n2 + n3)h) (−S2T1T3 + S3T1T2) , (A9)

F12 = exp (n2h) (T1T3m4 − T2T4m3) + exp (n3h) (−T2T3m4 + T3T4m2)

+exp (n4h) (T2T4m3 − T3T4m2) , (A10)

F22 = exp (n1h) (T2T3m4 − T2T4m3) + exp (n3h) (−T2T3m4 + T3T4m2)

+exp (n4h) (T2T4m3 − T3T4m2) , (A11)

F32 = exp (n1h) (T1T2m4 − T1T4m2) + exp (n2h) (−T1T2m3 + T2T4m1)

+exp (n4h) (T1T4m2 − T2T4m1) , (A12)

F42 = exp (n4h) (T1T3m2 − T1T2m3) + exp (n2h) (T1T2m3 − T2T3m1)

+exp (n3h) (−T1T3m2 + T2T3m1) , (A13)

�F = exp ((n1 + n2)h) ξ ( S1T2T3m4 − S1T2T4m3 − S2T1T3m4 + S2T1T4m3)

exp ((n1 + n3)h) ξ (−S1T2T3m4 + S1T3T4m2 + S3T1T2m4 − S3T1T4m2)

exp ((n1 + n4)h) ξ ( S1T2T4m3 − S1T3T4m2 − S4T1T2m3 + S4T1T3m2)

exp ((n2 + n3)h) ξ ( S2T1T3m4 − S2T3T4m1 − S3T1T2m4 + S3T2T4m1)

exp ((n2 + n4)h) ξ (−S2T1T4m3 + S2T3T4m1 + S4T1T2m3 − S4T2T3m1)

exp ((n3 + n4)h) ξ ( S3T1T4m2 − S3T2T4m1 − S4T1T3m2 + S4T2T3m1) . (A14)

K1 and K2 in (35) are defined as follows:

K1 =
∞∫
0

κ + 1

4

[
K ∗
1 − K1s

]
sin ξ (t − x) dξ, (A15.1)
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K2 =
∞∫
0

4∑
j=1

1

�F
Fj2S j sin ξa cos ξ xdξ (A15.2)

in which K1s represents the first asymptotic term of K ∗
1 , and they are defined as follows:

K ∗
1 = 1

κ − 1

4∑
j=1

1

�F
Fj1S j , (A16.1)

K1s = 4

κ + 1
, (A16.2)

ri and sk in (43) are defined as follows:

s j = cos
jπ

N + 1
, j = 1, . . . , N , (A17)

ri = cos
(2i − 1)π

2(N + 1)
, i = 1, . . . , N + 1. (A18)
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