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Abstract As a first endeavor, the free vibration behavior of functionally graded carbon nanotubes-reinforced
composite (FG-CNTRC) skewed cylindrical panels, as a most general geometry of panels in practical appli-
cations, is investigated. The first-order shear deformation shell theory is used to model the kinematics of
deformations, and Hamilton’s principle is applied to drive the differential governing equations and the related
boundary conditions. An analytical transformation together with the differential quadrature method, namely
transformed differential quadrature method, is employed to discretize the governing equations subjected to
general boundary conditions. This method offers superior practicality and applicability in directly discretizing
the governing differential equations for an arbitrary physical domain. The correctness of the computational
method is investigated through several numerical examples that include FG-CNTRC skew plates, homoge-
neous skewed cylindrical panels and FG-CNTRC cylindrical panels. Eventually, the effects of geometrical
shape parameters like thickness/radius-to-length and aspect ratios, different distributions and volume fractions
of CNTs and boundary conditions on the non-dimensional frequency parameters of the FG-CNTRC skewed
cylindrical panels are studied.

1 Introduction

Skewed cylindrical composite panels as one of the important structural components have been extensively used
in different branches of modern industrials such as aerospace, automobile, marine, submarine and nuclear
technologies. On the other hand, the research to improve the material properties of reinforced composite
materials has been continued in recent years. In this regard, it has been shown that CNTs have superior
material properties over the micro-sized fibers such as glass, Kevlar and carbon fibers [1–3] and have the
potential to be used as an alternative replacement for these conventional reinforcements. For the purpose of
effective use of these reinforcements to produce the nanocomposites with the desired performances, it has been
suggested to use the engineered gradients of them in the preferred direction [4].

As an important feature of the structural elements, their vibration behavior should be studied carefully for
a high-quality design and manufacture. In recent years, the free and forced vibrations of the carbon nanotubes
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reinforced composite (CNTRC) beams, plates and shells have been investigated in-depth by some researchers;
see for examples Refs. [5–72]. However, the research works on the CNTRC shell panels (or incomplete shells)
concerned with cylindrical and spherical shell panels with regular boundaries and to the best of authors’
knowledge, the CNTRC skewed cylindrical panels have not been analyzed yet. In the following, the recent
papers relevant to the present work are reviewed.

Sobhani Aragh et al. [59] used the three-dimensional elasticity theory to study the vibrational behavior of
the FG-CNTRC cylindrical panels with two opposite edges simply supported. They provided a semi-analytical
solution procedure by employing the two-dimensional generalized differential quadrature method (GDQM)
together with the trigonometric series solution.

Shen and Xiang [60,63] presented the nonlinear vibration analysis of the FG-CNTRC cylindrical shells
without and with elastic support in thermal environments. The equations of motion were derived based on a
higher-order shear deformation theory with von Kármán-type of kinematic nonlinearity. They determined the
nonlinear frequencies of the FG-CNTRC shells by employing an improved perturbation technique.

Yas et al. [61] investigated the vibrational characteristics of the FG-CNTRC cylindrical panels with simply
supported edges based on the three-dimensional elasticity theory. They applied the trigonometric series solution
to discretize the in-plane derivatives and the GDQM to discretize the resulting ordinary equations in the panel
thickness.

Pourasghar and Kamarian [62] developed a semi-analytical solution to study the three-dimensional
free vibration behavior of the simply supported functionally graded multiwalled carbon nanotubes/phenolic
nanocomposite cylindrical panels on elastic foundation. They utilized the modified Halpin–Tasi equation to
evaluate the Young’s modulus of the MWCNT/epoxy composites by the considering an orientation and an
exponential shape factor in the corresponding equation.

Zhang et al. [64] investigated the performance of the mesh-free kp-Ritz method for bending and free
vibration analyses of the FG-CNTRC cylindrical panels. The first-order shear deformation theory of shells in
conjunction with the Eshelby–Mori–Tanaka approach was used to derive the governing equations.

Lei et al. [65,66] investigated the vibrational behavior of the single layer and laminated FG-CNTRC rotating
cylindrical panels based on Love’s thin shell theory under different boundary conditions. They evaluated the
effective material properties by using the extended rule of mixture and applied the element-free kernel particle
Ritz method to discretize the governing equations of motion.

Mirzaei and Kiani [67] proposed a Ritz formulation with Chebyshev polynomials as the basis functions
to study the free vibration characteristics of FG-CNTRC cylindrical panels. The Donnell shallow shell theory
and first shear order deformation shell theory were used to obtain the governing equations.

Tornabene et al. [69] studied the effect of the agglomeration of the reinforcing phase on the natural
frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly curved shells.
The theoretical model for shell structures was based on the so-called Carrera unified formulation, and the
derived governing equations were solved numerically by means of the GDQM.

Thomas and Roy [70] employed Koiter’s shell theory in conjunction with the finite element method to
analyze the free vibration behavior of the FG-CNTRC doubly curved shell panels. They used an eight-noded
shell element, which includes the transverse shear effect according to Mindlin’s hypothesis, to analyze the
different types of FG-CNTRC shell structures such as spherical, ellipsoidal, doubly curved and cylindrical.

Pouresmaeeli and Fazelzadeh [71] analyzed the free vibration of moderately thick doubly curved FG-
CNTRC doubly curved panels such as spherical, cylindrical and hyperbolic paraboloid panels by utilizing
Galerkin’s method. The governing differential equations were derived using the first-order shear deformation
theory of shells.

As revealed from the literature survey and to the best of authors’ knowledge, the vibrational behavior of the
FG-CNTRC skewed cylindrical panels has not been investigated yet. Therefore, in this paper, this practically
important structural problem is analyzed. For this purpose, the governing differential motion equations and the
related boundary conditions of the FG-CNTRC skewed cylindrical panels are derived based on the first-order
shear deformation theory of shells using Hamilton’s principle. Due to complexity of the governing equations
and also to investigate the influences of different types of boundary conditions, an approximate analytical
or numerical method should be adopted to solve the equations of motion. To accomplish this major task, an
analytical transformation in conjunctionwith the differential quadraturemethod, namely TDQM, is introduced.
Accordingly, the transformed weighting coefficients are obtained and used to discretize the spatial derivatives
of the governing differential equations in a systematic and orderlymanner. The accuracy, stability and reliability
features of the method are shown through different numerical examples. Then, some numerical studies are
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conducted to investigate the effects of geometrical and different material parameters on the non-dimensional
frequency parameters of the FG-CNTRC skewed cylindrical panels under different boundary conditions.

2 The geometry and material properties of the panels

In Figs. 1 and 2, the geometry of the FG-CNTRC skewed cylindrical panels under consideration is shown. The
cylindrical coordinate system with the coordinate variables x , s(=Rθ ) and z is used to label the material points
of the panel in the un-deformed reference configuration. As shown in these figures, the panel has a thickness

Fig. 1 Geometry of the FG-CNTRC skewed cylindrical panels

(a) (b)

Fig. 2 (a, b) Geometric transformation, a physical domain, b computational domain
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Fig. 3 (a)–(d) Different arrangement of CNTs distributions through the panel thickness: a UD, b FG-X, c FG-O, d FG-V

h, skew angle α, subtended angle θ0, mean radius R, length a in the x-direction and width b in the oblique
direction. The panel is made of a matrix reinforced with straight single-walled carbon nanotubes (SWCNTs)
with uniform or non-uniform distribution of CNTs in its thickness direction. The matrix is assumed to be
homogeneous and isotropic and has a linear elastic behavior.

Four types of CNTs distribution along the thickness direction are shown in Fig. 3, which are uniformly
distributed (UD), FG-X shape, FG-O shape and FG-V shape distributions (see Fig. 3). The corresponding
distributions of CNTs along the z-axis are as follows [32]:

UD: VCNT(z) = V ∗
CNT (1a)

FG-X: VCNT(z) = 2

(
2|z|
h

)
V ∗
CNT (1b)

FG-O: VCNT(z) = 2

(
1 − 2 |z|

h

)
V ∗
CNT (1c)

FG-V:VCNT(z) =
(
1 + 2z

h

)
V ∗
CNT (1d)
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where
V ∗
CNT = wCNT

wCNT +
(

ρCNT

ρm

)
−
(

ρCNT

ρm

)
wCNT

. (2)

In the above equation, wCNT is the mass fraction of nanotubes, and ρm and ρCNT are the densities of matrix
and CNTs, respectively. The equivalent Poisson’s ratio ν12 and density ρ of the panels through the thickness
are obtained using general form of the rule of mixture [11,32–36,65–68,70,71]

ν12 = VCNTνCNT12 + Vmνm, ρ = VCNTρCNT + Vmρm . (3a, b)

An equivalent continuum model based on the extended rule of mixture approach is employed to estimate
the effective Young’s modulus (E11, E22) and shear modulus (G12) of FG-CNTRC panels [11,32–36,65–
68,70,71]:

E11 = η1VCNTE
CNT
11 + VmE

m,
η2

E22
= VCNT

ECNT
22

+ Vm
Em

,
η3

G12
= VCNT

GCNT
12

+ Vm
Gm

, (4a–c)

where ECNT
11 , ECNT

22 and GCNT
12 are the Young’s and shear moduli of the carbon nanotubes corresponding to

their principal material coordinates, respectively; Em and Gm are, respectively, the Young’s and shear moduli
of the matrix; and η j ( j = 1, 2, 3) denote the efficiency parameters of CNTs. Moreover, VCNT and Vm are,
respectively, the volume fractions of the CNTs and matrix with the condition of VCNT + Vm = 1.

3 Equations of motion and boundary conditions

In this study, the thin-to-moderately thick FG-CNTRC skewed cylindrical panels are considered. In order to
include the influences of the transverse shear deformation and rotary inertia, the first-order shear deformation
theory of shells is used to model the variation of the displacement components along the panel thickness.
Accordingly, the displacement components û, v̂ and ŵ of an arbitrary material point (x, s, z) along the x-, s-
and z-directions can be approximated as follows:

û(x, s, z, t) = u(x, s, t) + zφx (x, s, t), v̂(x, s, z, t) = v(x, s, t) + zφs(x, s, t), (5a–c)

ŵ(x, s, z, t) = w(x, s, t).

In the above relations, u, v and w represent the displacement components of a material point (x ,s) on the mid-
plane of the panel along the x-,s- and z-directions, respectively; also, φx and φs are the rotation components
of the transverse normal at the material point (x, s) on the mid-plane of the panel about the s- and x-axes,
respectively.

Based on the linear elasticity theory, the nonzero linear strain components (εxx , εss , γxs , γsz , γxz) in terms
of the displacement components can be written as [73,74]

εxx = ∂ û

∂x
, εss = ∂v̂

∂s
+ ŵ

R
, γxs = ∂v̂

∂x
+ ∂ û

∂s
, γsz = ∂v̂

∂z
+ ∂ŵ

∂s
− v̂

R
, γxz = ∂ û

∂z
+ ∂ŵ

∂x
. (6a–e)

Also, according to the FSDT of shells, the constitutive relations of the FG-CNTRC cylindrical panels can be
stated as [74,75] ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

σxx
σss
σxs
σxz
σsz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣
Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q55 0
0 0 0 0 Q44

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx
εss
γxs
γxz
γsz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (7)

where (σxx , σyy , σxy , σxz , σsz) are the stress tensor components and Qi j ’s are the elastic constants, which for an
orthotropic material are related to Young’s modulus Ei j (i, j = 1, 2), Poisson’s ratio νi j (z)(i, j = 1, 2, i �= j)
and shear modulus Gi j (z)(i, j = 1, 2, 3, i �= j) as follows:

Q11 = E11 (z)

1 − ν12 (z) ν21 (z)
, Q12 = E12 (z) ν12 (z)

1 − ν12 (z) ν21 (z)
, Q22 = E22 (z)

1 − ν12 (z) ν21 (z)
, Q44 = ksG23 (z) ,

(8a–f)

Q55 = ksG13 (z) , Q66 = G12 (z) ,
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where ks is the shear correction factor.
The governing differential equations of motion together with the related boundary conditions are derived

by using Hamilton’s principle, which in the case of free vibration analysis takes the following form:∫ t2

t1
(δU − δT )dt = 0, (9)

where the symbol δ is the variational operator; t is the temporal variable; t1 and t2 are two arbitrary times; δU
and δT are the variations of the strain potential energy and kinetic energy of the FG-CNTRCpanel, respectively.
Based on the FSDT of shells, the variation of the strain energy over the volume V of the panel can be stated as

δU =
∫
V

(σxxδεxx + σssδεss + σxsδγxs + σxzδγxz + σszδγsz) dV . (10)

Also, the variation of the kinetic energy is given by

δT =
∫
V

ρ

[
∂ û

∂t

∂
(
δû
)

∂t
+ ∂v̂

∂t

∂
(
δv̂
)

∂t
+ ∂w

∂t

∂ (δw)

∂t

]
dV . (11)

Using Eqs. (5)–(11), the governing differential equations of motion can be expressed by doing some mathe-
matical manipulations as follows:

δu: A11
∂2u

∂x2
+ A66

∂2u

∂s2
+ (A12 + A66)

∂2v

∂s∂x
+ A12

R

∂w

∂x
+ B11

∂2ϕx

∂x2

+B66
∂2ϕx

∂s2
+ (B12 + B66)

∂2ϕs

∂s∂x
= Î0

∂2u

∂t2
+ Î1

∂2ϕx

∂t2
(12)

δv: (A12 + A66)
∂2u

∂x∂s
+ A22

∂2v

∂s2
+ A66

∂2v

∂x2
− A44

R2 v + 1

R
(A22 + A44)

∂w

∂s

+ (B12 + B66)
∂2ϕx

∂x∂s
+ B22

∂2ϕs

∂s2
+ B66

∂2ϕs

∂x2
+ A44

R
ϕs = Î0

∂2v

∂t2
+ Î1

∂2ϕs

∂t2
(13)

δw: − A12

R

∂u

∂x
− 1

R
(A22 + A44)

∂v

∂s
+ A55

∂2w

∂x2
+ A44

∂2w

∂s2
− A22

R2 w

+
(
A55 − B12

R

)
∂ϕx

∂x
+
(
A44 − B22

R

)
∂ϕs

∂s
= Î0

∂2w

∂t2
(14)

δϕx : B11
∂2u

∂x2
+ B66

∂2u

∂s2
+ (B12 + B66)

∂2v

∂s∂x
−
(
A55 − B66

R

)
∂w

∂x
+ D11

∂2ϕx

∂x2

+D66
∂2ϕx

∂s2
− A55ϕ

x + (D66 + D12)
∂2ϕs

∂s∂x
= Î1

∂2u

∂t2
+ Î2

∂2ϕx

∂t2
(15)

δϕs : (B12 + B66)
∂2u

∂x∂s
+ B66

∂2v

∂x2
+ B22

∂2v

∂s2
+ A44

R
v −
(
A44 − B22

R

)
∂w

∂s

+ (D12 + D66)
∂2ϕx

∂x∂s
+ D22

∂2ϕs

∂s2
+ D66

∂2ϕs

∂x2
− A44ϕ

s = Î1
∂2v

∂t2
+ Î2

∂2ϕs

∂t2
(16)

where

[
Ai j Bi j Di j

] =
∫ h

2

− h
2

Qi j
[
1 z z2

]
dz for (i, j = 1, 2, 6), Ai j = κs

∫ h
2

− h
2

Qi jdz for (i, j = 4, 5),

(17a, b)

[
Î0 Î1 Î2

] =
∫ h

2

− h
2

ρ
[
1 z z2

]
dz. (18)

Different types of the classical boundary conditions can be considered for the vibration of the FG-CNTRC
skewed panels. The most common ones that are considered in the literature are in the following forms:
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In-plane immovable or hard simply supported (S):

w = 0, u = 0, v = 0, −nsϕ
x + nxϕ

s = 0, Mnn = n2x Mxx + 2nxnsMxs + n2s Mss = 0 (19a–e)

In-plane movable or soft simply supported (S∗):

w = 0, −nsu + nxv = 0, −nsϕ
x + nxϕ

s = 0, Nnn = n2x Nxx + 2nxns Nxs + n2s Nss = 0, (20a–e)

Mnn = n2x Mxx + 2nxnsMxs + n2s Mss = 0

Clamped (C):

w = 0, u = 0, v = 0, ϕx = 0, ϕs = 0 (21a–e)

Free (F):

Nnn = n2x Nxx + 2nxns Nxs + n2s Nss = 0, Nns = (n2x − n2s
)
Nxs + nxns (Nxx − Nss) = 0, (22a–e)

Mnn = n2x Mxx + 2nxnsMxs + n2s Mss = 0, Mns = (n2x − n2s
)
Mxs + nxns (Mxx − Mss) = 0,

Qnz = nx Qxz + nsQsz = 0

where ⎡
⎣ Nxx Mxx

Nss Mss
Nxs Mxs

⎤
⎦ =
∫ h

2

− h
2

⎧⎨
⎩

σxx
σss
σxs

⎫⎬
⎭
[
1 z
]
dz,

[
Qxz
Qsz

]
=
∫ h

2

− h
2

{
σxz
σsz

}
dz, (23a, b)

where nx and ns are the x and s components of the unit normal to the skewed panel boundaries, respectively.
In this study, the skewed panels with these types of boundary conditions and some combinations of them are
analyzed.

4 The TDQM discretization algorithm

Recently, approximate numerical methods such as improved moving least squares-Ritz method [76,77], finite
element method (FEM) [78] and mixed finite element-differential quadrature method [79] are used to solve
the different complicated structural problems. On the other hand, it is necessary to develop a solution method
with low computational cost and high accuracy for the case of skewed panels. The DQM as an efficient and
accurate numerical tool has been used to study the skew and quadrilateral CNTRC plates in the past [35,42–
46]. However, to the best of authors’ knowledge, neither non-homogeneous nor homogeneous skewed panels
have been analyzed by employing this method. Hence, in this work the applicability of the method is further
demonstrated by solving the governing differential equations subjected to the related boundary conditions
of the FG-CNTRC skewed cylindrical panels. In this regard, a new transformed weighting coefficients are
introduced to make the discretization procedure of the governing equations more systematic for the case of
the skewed cylindrical panels. For this purpose, firstly, a two-dimensional geometric transformation technique
is applied between the skewed physical domain and the square computational domain to achieve the Jacobian
transformation matrix of the skewed panels (see Fig. 2). Then, a systematic approach is constructed to express
the derivatives in the physical domain (x, s) in term of the derivatives in the computational domain (ξ, η). The
advantage of this procedure is the use of the transformed weighting coefficients in the physical domain (x, s)
to discretize the differential equations without necessity to transform the governing differentials equations to
the computational domain. The mapping between the physical and computational domains is expressed as
follows (see Fig. 2):

x = aξ + (Rθ0 tan α) η, s = Rθ0η. (24a, b)

Thefirst-order global derivatives relation between the physical and computational domains can be expressed
by using Eq. (24) in conjunction with the chain rules for an arbitrary function in terms of ξ and η coordinate
variables as {

∂μ
∂x
∂μ
∂s

}
= [T ]

{
∂μ
∂ξ
∂μ
∂η

}
, (25)
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where μ = (u, v, w, ϕx , ϕs) and

[T ] =
[
T11 T12
T21 T22

]
=
[

∂x
∂ξ

∂s
∂ξ

∂x
∂η

∂s
∂η

]−1

=
[

a 0
Rθ0 tan α Rθ0

]
. (26)

On the other hand, the derivatives of a function with respect to a space variable are approximated by the
GDQ method. Accordingly, the first-order derivatives of a function μ at a given grid point (ξi , η j ) can be
approximated as [80–82]

(
∂μ

∂ξ

)
(ξi ,η j)

=
Nξ∑
p=1

Nη∑
q=1

Aξ
i p I

η
jqμ
(
ξp, ηq
) =

Nξ∑
p=1

Nη∑
q=1

Aξ
i p I

η
jqμpq ,

(
∂μ

∂η

)
(ξi ,η j)

=
Nξ∑
p=1

Nη∑
q=1

I ξ
i p A

η
jqμpq

(27a, b)

for i = 1, . . . , Nξ and j = 1, . . . , Nη,

where Aα
i j (α = ξ, η) are the weighting coefficients of the first-order derivative in the computational domain

corresponding to the coordinate variable α(= ξ, η); Nξ and Nη denote the number of grid points along the ξ

and η directions, respectively; also, I ξ
i j and I η

i j are the elements of the identity matrices of order Nξ and Nη,
respectively.

Substituting Eq. (27) into Eq. (25) one obtains

(
∂μ

∂x

)
i j

=
Nx=Nξ∑
p=1

Nsy=Nη∑
q=1

[
(T11)i j A

ξ
i p I

η
jq + (T12)i j I

ξ
i p A

η
jq

]
μpq , (28a, b)

(
∂μ

∂s

)
i j

=
Nx=Nξ∑
p=1

Nsy=Nη∑
q=1

[
(T21)i j A

ξ
i p I

η
jq + (T22)i j I

ξ
i p A

η
jq

]
μpq .

On the other hand,

(
∂μ

∂x

)
i j

=
Nx=Nξ∑
p=1

Nsy=Nη∑
q=1

Ãx
ipjqμpq ,

(
∂μ

∂s

)
i j

=
Nx=Nξ∑
p=1

Nsy=Nη∑
q=1

Ãs
ipjqμpq . (29a, b)

By comparing Eqs. (28) and (29), the transformed weighting coefficients of the TDQM for the first-order
derivatives are obtained as

Ãx
ipjq = (T11)i j A

ξ
i p I

η
jq + (T12)i j I

ξ
i p A

η
jq , Ãs

ipjq = (T21)i j A
ξ
i p I

η
jq + (T22)i j I

ξ
i p A

η
jq . (30a, b)

Also, according to the TDQM, the second-order derivatives can be written as

(
∂2μ

∂x2

)
i j

=
Nx=Nξ∑
p=1

Nsy=Nη∑
q=1

B̃x
ipjqμpq ,

(
∂2μ

∂s2

)
i j

=
Nx=Nξ∑
p=1

Nsy=Nη∑
q=1

B̃s
ipjqμpq , (31a–c)

(
∂2μ

∂x∂s

)
i j

=
Nx=Nξ∑
p=1

Nsy=Nη∑
q=1

B̃xs
ipjqμpq .

By using Eq. (30), it can be easily shown that the transformed weighing coefficients for the second-order
derivatives can be expressed as

B̃x
ipjq =

Nx∑
k=1

Ns∑
l=1

Ãx
ik jl Ã

x
kplq , B̃xs

ipjq =
Nx∑
k=1

Ns∑
l=1

Ãx
ik jl Ã

s
kplq , B̃s

ipjq =
Nx∑
k=1

Ns∑
l=1

Ãs
ik jl Ã

s
kplq . (32a–c)

Using the above-mentioned rule of derivative discretization of the present transformed differential quadrature
(TDQ) method, the equations of motion at an arbitrary domain grid point (xi , s j ) can be discretized as follows:
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Equation (12):

Nξ∑
p=1

Nη∑
q=1

[(
A11 B̃

x
ipjq + A66 B̃

s
ipjq

)
u pq +
(
(A12 + A66)B̃

xs
ipjq

)
vpq + A12

R
Ãx
ipjqwpq

+
(
B11 B̃

x
ipjq + B66 B̃

s
ipjq

)
ϕx
pq +
(
(B12 + B66)B̃

xs
ipjq

)
ϕs
pq

]
= Î0

(
d2u

dt2

)
i j

+ Î1

(
d2ϕx

dt2

)
i j

(33)

Equation (13):

Nξ∑
p=1

Nη∑
q=1

[(
(A12 + A66)B̃

xs
ipjq

)
u pq +
(
A22 B̃

x
ipjq + A66 B̃

s
ipjq − A44

R2 Iipjq

)
vpq + 1

R
(A22 + A44) Ã

s
ipjqwpq

+
(
(B12 + B66)B̃

xs
ipjq

)
ϕx
pq +
(
B22 B̃

s
ipjq + B66 B̃

x
ipjq + A44

R
Iipjq

)
ϕs
pq

]
= Î0

(
d2v

dt2

)
i j

+ Î1

(
d2ϕs

dt2

)
i j

(34)

Equation (14):

Nξ∑
p=1

Nη∑
q=1

[
− A12

R
Ãx
ipjqu pq − 1

R
(A22 + A44) Ã

s
ipjqvpq +

(
A55 B̃

x
ipjq + A44 B̃

s
ipjq − A22

R2 Iipjq

)
wpq

+
(
A55 − B12

R

)
Ãx
ipjqϕ

x
pq +
(
A44 − B22

R

)
Ãs
ipjqϕ

s
pq

]
= Î0

(
d2w

dt2

)
i j

(35)

Equation (15):

Nξ∑
p=1

Nη∑
q=1

[(
B11 B̃

x
ipjq + B66 B̃

s
ipjq

)
u pq +
(
(B12 + B66)B̃

xs
ipjq

)
vpq +
(
A55 − B66

R

)
Ãx
ipjqwpq

+
(
D11 B̃

x
ipjq + D66 B̃

s
ipjq − A55 Iipjq

)
ϕx
pq +
(
(D12 + D66)B̃

xs
ipjq

)
ϕs
pq

]
= Î1

(
d2u

dt2

)
i j

+ Î2

(
d2ϕx

dt2

)
i j

(36)

Equation (16):

Nξ∑
p=1

Nη∑
q=1

[(
(B12 + B66)B̃

xs
ipjq

)
u pq +
(
B22 B̃

s
ipjq + B66 B̃

x
ipjq + A44

R
Iipjq

)
vpq −
(
A44 − B22

R

)
Ãs
ipjqwpq

+
(
(D12 + D66)B̃

xs
ipjq

)
ϕx
pq +
(
D22 B̃

s
ipjq + D66 B̃

x
ipjq − A44 Iipjq

)
ϕs
pq

]
= Î1

(
d2v

dt2

)
i j

+ Î2

(
d2ϕs

dt2

)
i j

(37)

where Iipjq = I ξ
i p I

η
jq . In a similar manner, the related boundary conditions can be discretized at the boundary

grid points (xi , s j ). Here, for brevity, the discretized form of the immoveable simply supported and free
boundary conditions along the edges ξ = 0 and 1 are presented and the other types of boundary conditions
can be discretized in a similar manner.
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Immoveable simply supported boundary conditions (S):

wbξ j = 0, ubξ j = 0, vbξ j = 0, −nsϕ
x
bξ j + nxϕ

s
bξ j = 0,

Mnn =
Nξ∑
p=1

Nη∑
q=1

[
n2x
(
B11 Ã

x
bξ pjq u pq + D11 Ã

x
bξ pjqϕ

x
pq

+ B12 Ã
s
bξ pjqvpq + D12 Ã

s
bξ pjqϕ

s
pq + B12

R
Ibξ pjqwpq

)
+ n2s
(
B12 Ã

x
bξ pjqu pq + D12 Ã

x
bξ pjqϕ

x
pq

+ B22 Ã
s
bξ pjqvpq + D22 Ã

s
bξ pjqϕ

s
pq + B22

R
Ibξ pjqwpq

)
+ 2nxns

(
B66 Ã

s
bξ pjqu pq+ D66 Ã

s
bξ pjqϕ

x
pq

+ B66 Ã
x
bξ pjqvpq +D66 Ã

x
bξ pjqϕ

s
pq

) ]
= 0 for j = 2, 3, . . . , Nη − 1 and bξ = 1 or Nξ (38a–e)

Free boundary conditions (F):

Mnn =
Nξ∑
p=1

Nη∑
q=1

[
n2x
(
B11 Ã

x
bξ pjq u pq + D11 Ã

x
bξ pjqϕ

x
pq+ B12 Ã

s
bξ pjqvpq + D12 Ã

s
bξ pjqϕ

s
pq + B12

R
Ibξ pjqwpq

)

+n2s
(
B12 Ã

x
bξ pjqu pq + D12 Ã

x
bξ pjqϕ

x
pq + B22 Ã

s
bξ pjqvpq + D22 Ã

s
bξ pjqϕ

s
pq + B22

R
Ibξ pjqwpq

)

+2nxns
(
A66 Ã

s
bξ pjqu pq+ B66 Ã

s
bξ pjqϕ

x
pq + A66 Ã

x
bξ pjqvpq + B66 Ã

x
bξ pjqϕ

s
pq

) ]
= 0 (39a)

Mns =
Nξ∑
p=1

Nη∑
q=1

[
nxns
(
B11 Ã

x
bξ pjq u pq + D11 Ã

x
bξ pjqϕ

x
pq+ B12 Ã

s
bξ pjqvpq + D12 Ã

s
bξ pjqϕ

s
pq + B12

R
Ibξ pjqwpq

)

−nxns

(
B12 Ã

x
bξ pjqu pq + D12 Ã

x
bξ pjqϕ

x
pq + B22 Ã

s
bξ pjqvpq + D22 Ã

s
bξ pjqϕ

s
pq + B22

R
Ibξ pjqwpq

)

+ (n2x − n2s
) (

B66 Ã
s
bξ pjqu pq+ D66 Ã

s
bξ pjqϕ

x
pq + B66 Ã

x
bξ pjqvpq + D66 Ã

x
bξ pjqϕ

s
pq

) ]
= 0 (39b)

Nnn =
Nξ∑
p=1

Nη∑
q=1

[
n2x
(
A11 Ã

x
bξ pjq u pq + B11 Ã

x
bξ pjqϕ

x
pq+ A12 Ã

s
bξ pjqvpq + B12 Ã

s
bξ pjqϕ

s
pq + A12

R
Ibξ pjqwpq

)

+n2s

(
A12 Ã

x
bξ pjqu pq + B12 Ã

x
bξ pjqϕ

x
pq + A22 Ã

s
bξ pjqvpq + B22 Ã

s
bξ pjqϕ

s
pq + A22

R
Ibξ pjqwpq

)

+2nxns
(
A66 Ã

s
bξ pjqu pq+ A66 Ã

s
bξ pjqϕ

x
pq + A66 Ã

x
bξ pjqvpq + A66 Ã

x
bξ pjqϕ

s
pq

) ]
= 0 (39c)

Nns =
Nξ∑
p=1

Nη∑
q=1

[
nxns
(
A11 Ã

x
bξ pjq u pq + B11 Ã

x
bξ pjqϕ

x
pq+ A12 Ã

s
bξ pjqvpq + B12 Ã

s
bξ pjqϕ

s
pq + A12

R
Ibξ pjqwpq

)

−nxns
(
A12 Ã

x
bξ pjqu pq + B12 Ã

x
bξ pjqϕ

x
pq + A22 Ã

s
bξ pjqvpq + B22 Ã

s
bξ pjqϕ

s
pq + A22

R
Ibξ pjqwpq

)

+ (n2x − n2s
) (

A66 Ã
s
bξ pjqu pq+ A66 Ã

s
bξ pjqϕ

x
pq + A66 Ã

x
bξ pjqvpq + A66 Ã

x
bξ pjqϕ

s
pq

) ]
= 0 (39d)

Qnz =
Nξ∑
p=1

Nη∑
q=1

[
nx A55

(
Ãx
bξ pjqwpq + Ĩbξ pjqϕ

x
pq

)
+ ns A44

(
Ãs
bξ pjqwpq − 1

R
Ĩbξ pjqvpq + Ĩbξ pjqϕ

s
pq

)]
= 0

(39e)

The discretized equations of motion and the related boundary conditions in the matrix form can be written as:
Equations of motion:

[Kdb] {Ub} + [Kdd ] {Ud} + [M]
{
Üd
} = {0} (40)

Boundary conditions:
[Kbb] {Ub} + [Kbd ] {Ud} = {0} (41)
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where {Ui } = [ {ui }T {vi }T {wi }T {ϕx
i }T {ϕs

i }T ]T with (i = b, d) are the domain (d) and the boundary (b)
degrees of freedom, respectively; [Ki j ] and [Mi j ] with (i, j = b, d) are, respectively, the stiffness and mass
matrices, and the dot means the derivative with respect to time t . Eliminating the boundary degrees of freedom
from the system of Eq. (40) by using Eq. (41) and also considering the harmonic nature of the motion, one
obtains a system of algebraic eigenvalue equations as

(
[K ] − ω2 [M]

) {
Ûd

}
= {0} , (42)

where [K ] = [Kdd ] − [Kdb][Kbb]−1[Kbd ], [M] = [Mdd ] − [Mdb][Kbb]−1[Kbd ]. Also, ω denotes the natural
frequency of the panel and {Ûd} represents the amplitude of motion. By solving the system of algebraic
eigenvalue equations (42), the natural frequencies together with the corresponding mode shapes of the FG-
CNTRC skewed cylindrical panels under different boundary conditions are obtained.

5 Numerical results

In this section, first of all, the convergence behavior of the presented formulation and the TDQM for the free
vibration analysis of FG-CNTRC skewed cylindrical panels is studied. Then, a convergence and comparison
study is carried out for FG-CNTRC skew plates (skew panel with large mean radius R) to establish the
applicability and reliability of the approach. The accuracy of the numerical solution is further investigated by
comparing the numerical results through two cases of the homogeneous skewed cylindrical panels and the
FG-CNTRC rectangular panels with those available in the open literature. In addition, comparison studies for
the FG-CNTRC skewed cylindrical panels with UD of CNTs are performed with those obtained via the finite
element-based commercial software ANSYS. Afterward, the effects of the CNTs distributions and volume
fractions, skew angles, aspect ratio, length-to-thickness ratio and different boundary conditions on the non-
dimensional frequency parameter of the FG-CNTRC skewed cylindrical panels are presented.

In this study, the material properties which are used for the matrix (m) and reinforcing phase (CNTs) are,
respectively, defined as [41], νm = 0.34, ρm = 1.15 g/cm3, Em = 2.1GPa, ECNT

11 = 5.6466TPa, ECNT
22 =

7.0800 TPa, GCNT
12 = 1.9445TPa.The properties of theCNTs andmatrix and are given at the room temperature

of 300K. The CNT efficiency parameters η j ( j = 1, 2, 3) are adopted according to the reported effective
properties of CNTRCs in literature (e.g., Ref. [83]) by matching the Young’s moduli E11 and E22 with the
counterparts computed by the rule of mixture. The material properties of the CNTRCs are presented in Table 1
which are chosen from the work of Shen [32]. Also, unless otherwise stated, the transverse shear correction
factor is assumed to be ks = 5/(6− ν12), which has been suggested for functionally graded materials [33] and
it is assumed that G23 = G13 = G12.

The edges of the FG-CNTRC skewed cylindrical panels are enumerated, respectively, from 1 to 4 as
depicted in Fig. 2. For instance, S∗–C–F–S indicates that the edges 1–4 are, respectively, movable simply
supported, clamped, free and immoveable simply supported. Also, the non-dimensional frequency parameter
is defined to be (λi = ωi (a2/h)

√
ρm/Em), which is used in all numerical studies except those in Tables 3, 4,

5 and 6.
As a first example, the convergence behavior of the present approach for the free vibration analysis of

fully clamped and simply supported FG-CNTRC skewed cylindrical panels is investigated and the results are
shown in Table 2. The first three frequency parameters against the number of grid points are reported for
the panels with FG-X distribution of CNTs. Also, Fig. 4 is provided to present the convergence behavior of
the FG-CNTRC skewed cylindrical panels for various combinations of simply supported, clamped and free
boundary conditions. The results of Table 2 and Fig. 4 are prepared for skewed panels with a sharp skew angle
(i.e., α = 60◦) to better reflect the efficiency of the approach. The fast rate of convergence of the method for
the FG-CNTRC skewed panels is quite evident. It can be seen that 17 grid points along the x and s-directions

Table 1 Material properties for a polymer composite reinforced by (10, 10) single-walled CNTs at room temperature [32]

V ∗
CNT E11 (GPa) η1 E22 (GPa) η2 η3

0.11 94.4168 0.149 2.2037 0.934 0.934
0.14 120.3846 0.15 2.2977 0.941 0.941
0.17 144.7714 0.149 3.4939 1.381 1.381
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Table 2 Convergence of thefirst three non-dimensional frequency parameters (λi = ωi a2/h
√

ρm/Em)of theFG-CNTRCskewed
cylindrical panels with FG-X distribution of CNTs (R/h = 10, a/h = 10, b/a = 1, α = 60◦, V ∗

CNT = 0.17)

Nξ = Nη C–C–C–C S–S–S–S

λ1 λ2 λ3 λ1 λ2 λ3

7 43.1379 62.1519 79.9991 32.8214 50.1634 69.4388
9 42.9701 59.8903 75.4305 32.8021 49.7842 65.6159
11 42.9603 59.8098 74.7486 32.8267 49.7688 65.4322
15 42.9575 59.8082 74.7293 32.8503 49.7720 65.4407
17 42.9572 59.8081 74.7292 32.8570 49.7730 65.4426
19 42.9571 59.8081 74.7291 32.8620 49.7737 65.4440
21 42.9570 59.8081 74.7291 32.8657 49.7741 65.4451
23 42.9569 59.8081 74.7291 32.8685 49.7745 65.4459

Table 3 Convergence and comparison study of the first three natural frequency parameters (λ̄i = ωi a2/(hπ2)
√

ρm/Em) and
(ω̄i = ωi h

√
2ρm(1 + νm)/Em) of the fully clamped FG-CNTRC skew plates with UD of CNTs (R/h = 1000, a/h = 10,

b/a = 1)

Source Nξ (α = 30◦, V ∗
CNT=0.17, ks = 5/6) (α = 60◦, V ∗

CNT = 0.17, ks = 5/6)

λ̄1 λ̄2 λ̄3 λ̄1 λ̄2 λ̄3

TDQ (present) 9 2.4129 3.3559 4.5509 4.0246 5.7146 7.2501
11 2.4131 3.3556 4.5509 4.0236 5.7075 7.1853
15 2.4131 3.3556 4.5510 4.0234 5.7073 7.1836
17 2.4131 3.3556 4.5510 4.0233 5.7073 7.1836

DQM [35] 2.4131 3.3556 4.5510 4.0233 5.7073 7.1836

(α = 30◦, V ∗
CNT = 0.14) (α = 45◦, V ∗

CNT = 0.14)

ω̄1 ω̄2 ω̄3 ω̄1 ω̄2 ω̄3

TDQ (present) 7 0.3269 0.4596 0.6175 0.3808 0.5681 0.7197
9 0.3270 0.4502 0.6172 0.3809 0.5539 0.7138
11 0.3270 0.4502 0.6172 0.3809 0.5537 0.7134

DQM [45] 0.3271 0.4503 0.6173 0.3810 0.5538 0.7135

Fig. 4 Convergence behavior of non-dimensional fundamental frequency parameter for the FG-CNTRC skewed cylindrical panels
with different boundary conditions (FG-X, V ∗

CNT = 0.17)

(Nx = Ns = 17) lead the results with at least four digits convergence. Hence, these numbers of grid points
are used for the following numerical calculations.

In Table 3, the accuracy of the numerical results is established through a convergence and comparison
study of the first three non-dimensional frequency parameters of the fully clamped CNTRC skew plates as a
limit case of the present formulation (i.e., when R → ∞) with available published data in the literature. The
comparison is performed with the DQM results of CNTRC skew plates obtained by Malekzadeh and Zarei
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Table 4 Comparison of the first three non-dimensional frequency parameters (λ̃i = ωi R
√

ρ/E) of the homogeneous skewed
cylindrical shells with F–C–F–C (clamped at the curved edges) boundary condition (a/R = 0.5, h/R = 0.05, ν =0.3, ks = 5/6,
E = 210GPa, ρ = 7800kg/m3)

Method θ0 = 30◦ θ0 = 60◦

α = 0◦ α = 15◦ α = 30◦ α = 45◦ α = 0◦ α = 15◦ α = 30◦ α = 45◦

First mode (λ̃1)
TDQ 1.3019 1.3614 1.5649 1.9756 1.3505 1.4063 1.5903 1.9778
P-type [84] 1.314 1.375 1.585 2.006 1.365 1.423 1.616 2.020
I-DEAS [84] 1.307 1.366 1.567 1.979 1.356 1.405 1.565 1.901

Second mode (λ̃2)
TDQ 1.4441 1.4810 1.6194 1.9793 1.3693 1.4195 1.5935 1.9779
P-type [84] 1.462 1.500 1.643 2.014 1.383 1.435 1.614 2.020
I-DEAS [84] 1.452 1.489 1.626 1.981 1.375 1.419 1.563 1.901

Third mode (λ̃3)
TDQ 2.2411 2.2432 2.3096 2.7243 1.5948 1.6631 1.9147 2.5610
P-type [84] 2.269 2.271 2.340 2.772 1.609 1.678 1.935 2.602
I-DEAS [84] 2.272 2.274 2.338 2.746 1.601 1.667 1.912 2.538

Table 5 Comparison of the first three non-dimensional frequency parameters (λ̃i = ωi R
√

ρ/E) of the homogeneous skewed
cylindrical panels with F–C–F–C (clamped at the curved edges) boundary condition α = 45◦, h/R = 0.01, ν = 0.3, ks = 5/6,
E = 210GPa, ρ = 7800kg/m3)

Method θ0 = 30◦ θ0 = 60◦

a/R = 0.5 a/R = 1 a/R = 2 a/R = 3 a/R = 0.5 a/R = 1 a/R = 2 a/R = 3

First mode (λ̃1 )
TDQ 0.5016 0.1695 0.0553 0.0293 0.5016 0.1795 0.0733 0.0396
P-type [84] 0.505 0.170 0.056 0.030 0.509 0.181 0.074 0.040
I-DEAS [84] 0.500 0.169 0.055 0.029 0.484 0.177 0.073 0.039

Second mode (λ̃2)
TDQ 0.5020 0.1870 0.0655 0.0315 0.5017 0.1795 0.0761 0.0527
P-type [84] 0.505 0.188 0.066 0.032 0.509 0.181 0.076 0.053
I-DEAS [84] 0.500 0.187 0.066 0.031 0.484 0.178 0.076 0.053

Third mode (λ̃3)
TDQ 0.9096 0.3327 0.1215 0.0663 0.9233 0.3456 0.1298 0.0795
P-type [84] 0.913 0.334 0.122 0.067 0.930 0.349 0.130 0.080
I-DEAS [84] 0.909 0.332 0.121 0.066 0.900 0.341 0.129 0.079

[35] and Ansari et al. [45]. The results are prepared for different values of the skew angles and CNTs volume
fraction. Excellent agreement between the numerical results can be observed which illustrates the accuracy of
the solution method.

As another example, in Tables 4 and 5, the first three frequency parameters for the homogeneous skewed
cylindrical panels are compared with those obtained by Kandasamy and Singh [84]. They used the finite
element method to extract the results. The boundary conditions are free at the straight parallel edges and fully
clamped at the curved edges. The results are presented for different values of the skew angle and length-to-
radius ratio in Tables 4 and 5, respectively. As it can be seen, a very good agreement is achieved in all cases
under consideration.

In order to validate the results of the present approach for the FG-CNTRC panels, the free vibration of FG-
CNTRC rectangular panelswithmovable simply supported boundary conditions analyzed by Pouresmaeeli and
Fazelzadeh [71] is considered. In Table 6, the obtained fundamental frequency parameters for different values of
the CNTs volume fraction are comparedwith those reported in Ref. [71], whichwere extracted usingGalerkin’s
method. The excellent agreements between the present numerical results and those of aforementioned solution
are quite obvious, which indicate the accuracy of the present approach.

Through several examples, the present method proves to be reliable, efficient and accurate by performing
convergence and comparison studies.At the next stage, the effects of various parameters on the non-dimensional
frequency parameters of the FG-CNTRC skewed cylindrical panels are studied.

The influences of the CNTs distribution together with their volume fractions on the fundamental fre-
quency parameters of the FG-CNTRC square and skewed cylindrical panels are presented in Tables 7 and 8,
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Table 6 Comparison of the non-dimensional fundamental frequency parameter (λ1 = ω1a2/h
√

ρm/Em) of the FG-CNTRC
square cylindrical panels with S∗–S∗–S∗–S∗ boundary condition (a/R = 0.5, a/h = 20,b/a = 1)

Method V ∗
CNT UD FG-V FG-X FG-O

Present (TDQ) 0.11 18.0369 16.0357 20.5510 14.4072
Galerkin’s method [71] 18.1263 16.0598 20.5479 14.5525
Present (TDQ) 0.14 19.6040 17.4066 22.2744 15.6476
Galerkin’s method [71] 19.6278 17.3905 22.1792 15.7660
Present (TDQ) 0.17 22.3103 19.7952 25.5194 17.7691
Galerkin’s method [71] 22.3797 19.7991 25.4877 17.9030

(a) (b)

Fig. 5 a, b The variation of fundamental frequency parameter against the skew angle for the FG-CNTRC skewed cylindrical
panels with different distribution of CNTs (V ∗

CNT = 0.11), a simply supported, and b clamped

Table 7 Non-dimensional frequency parameters (λi = ωi a2/h
√

ρm/Em) of the FG-CNTRC square cylindrical panels with
different volume fraction and CNTs distributions (R/h = 10, α = 0◦, b/a = 1)

V ∗
CNT a/h C–C–C–C S–S–S–S

UD FG-V FG-O FG-X UD FG-V FG-O FG-X

0.11 10 19.774 19.347 18.903 20.228 16.378 16.247 14.731 17.354
50 47.524 43.62 40.211 53.039 31.715 31.539 29.058 34.208

0.14 10 20.311 19.964 19.543 20.776 17.147 17.064 15.490 18.121
50 50.979 46.563 42.764 57.028 33.361 33.145 30.170 36.346

0.17 10 24.683 24.205 23.592 25.418 20.381 20.327 18.325 21.713
50 58.931 54.110 49.734 66.129 39.464 39.382 36.169 42.801

Table 8 Non-dimensional frequency parameters (λi = ωi a2/h
√

ρm/Em) of the FG-CNTRC skewed cylindrical panels with
different volume fraction and CNTs distributions (R/h = 10, b/a = 1, α = 45◦)

V ∗
CNT a/h C–C–C–C S–S–S–S

UD FG-V FG-O FG-X UD FG-V FG-O FG-X

0.11 10 24.137 23.806 23.282 24.695 19.008 18.958 17.402 20.050
50 59.816 56.444 53.896 64.655 43.668 43.384 40.652 46.371

0.14 10 24.728 24.465 23.912 25.359 19.800 19.834 18.136 20.894
50 63.083 59.278 56.330 68.510 45.438 45.193 41.924 48.687

0.17 10 30.146 29.810 28.991 31.146 23.675 23.815 21.606 25.184
50 74.393 70.378 67.056 80.841 54.425 54.350 50.381 58.453
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(a) (b) (c)

Fig. 6 a–c The first three mode shapes of a simply supported (S-S-S-S) FG-CNTRC cylindrical panel with UD of CNTs (α = 0◦),
a first mode shape, b second mode shape, c third mode shape

(a) (b) (c)

Fig. 7 a–c The first three mode shapes of a simply supported (S–S–S–S) CNTRC skewed cylindrical panel with UD of CNTs
(α = 45◦), a first mode shape, b second mode shape, c third mode shape

(a) (b)

Fig. 8 a, b The variation of the first three frequency parameters versus skew angle for the FG-CNTRC skewed cylindrical panels
(V ∗

CNT = 0.17, FG-X), a simply supported, and b clamped

respectively. The results are provided for the two different values of the length-to-thickness ratio of the panels,
corresponding to moderately thick and thin panels, and also for the fully clamped and simply supported panels.
It is observed that by a slight increase in the CNTs volume fraction, the frequency parameters change consid-
erably. In Fig. 5, the influences of skew angles together with CNTs distributions on the fundamental frequency
parameter of FG-CNTRC skewed panels are exhibited. From the data presented in Tables 7 and 8 and this
figure, one can see that in all cases under consideration, the panels with the FG-X and FG-O distributions of
the CNTs have the greatest and lowest natural frequencies, respectively. This means that the panels with FG-X
distribution of CNTs show greater stiffness compared with the same panels but with other CNTs distributions.
Also, the first three mode shapes of FG-CNTRC square and skewed cylindrical panels with UD of CNTs are,
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(a) (b)

Fig. 9 a, b The variation of fundamental frequency parameter against the skew angle of FG-CNTRC skewed cylindrical panels
for the five different radius-to-thickness ratios (V ∗

CNT = 0.17, FG-X), a simply supported, and b clamped

(a) (b)

Fig. 10 a, b The influences of the boundary conditions on the variation of the fundamental frequency parameter versus CNTs
volume fraction for the FG-CNTRC skewed cylindrical panels (FG-X), a α = 30◦, and b α = 60◦

respectively, depicted in Figs. 6 and 7. It can be seen that the skew angle only skewed the mode shapes and
their overall behavior is the same for the skewed and square panels.

In Fig. 8, the variation of the first three frequency parameters versus the skew angle for the FG-CNTRC
skewed cylindrical panels with FG-X distribution of CNTs is illustrated. Panels with both simply supported
and fully clamped boundary conditions are considered. In all cases, it is observed that the frequency parameters
increase monotonically as the skew angle increases. In addition, it can be seen that the skew angle plays a
significant role on the higher natural frequencies of the FG-CNTRC skewed cylindrical panels.

The effects of skew angle together with the radius-to-thickness ratio on the fundamental frequency param-
eter of FG-CNTRC skewed cylindrical panels with simply supported and fully clamped boundary conditions
are investigated in Fig. 9. It is seen that for all values of the radius-to-thickness ratio, the frequency parameter
increases when increasing the skew angle. Also, for a constant value of the skew angle, the frequency parameter
decreases by increasing the radius of the skewed panels and almost for the radius-to-thickness ratios larger
than 100, the frequency parameter becomes insensitive to increase in the parameter R/h. This means that for
R/h > 100 the curved skewed panels degenerate to skewed flat plates.
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Fig. 11 Variation of the fundamental frequency parameter against the aspect ratio for the fully clamped FG-CNTRC skewed
cylindrical panels with FG-X distribution of CNTs and different values of their volume fraction

Table 9 Non-dimensional frequency parameters (λi = ωi a2/h
√

ρm/Em) of the FG-CNTRC skewed cylindrical panels with
different length-to-thickness ratio and CNTs distribution (R/h = 10, θ0 = 60◦, α = 45◦, V ∗

CNT = 0.17)

a/h Method UD FG-X

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

C–C–C–C 10 TDQ 27.220 31.404 39.518 48.842 28.068 32.497 40.938 50.006
ANSYSa 26.802 30.965 38.990 48.063 – – – –

20 TDQ 43.702 46.626 55.699 69.659 46.420 49.536 59.049 73.633
ANSYS 43.260 46.168 55.215 69.093 – – – –

S–S–S–S 10 TDQ 22.089 25.593 33.509 44.093 23.616 27.140 35.186 45.960
ANSYS 21.329 24.505 32.140 42.358 – – – –

20 TDQ 32.224 33.932 42.368 56.755 34.878 36.820 45.620 60.654
ANSYS 31.991 33.367 41.364 55.359 – – – –

F–C–C–C 10 TDQ 23.204 26.800 31.317 39.385 23.979 27.658 32.445 40.806
ANSYS 22.825 26.327 30.484 38.805 – – – –

20 TDQ 37.150 42.569 46.331 55.386 40.054 45.296 49.270 58.771
ANSYS 36.803 41.977 45.820 54.836 – – – –

C–S–C–S 10 TDQ 22.823 28.371 37.897 47.065 24.377 29.980 39.626 48.763
ANSYS 22.037 27.290 36.519 44.591 – – – –

20 TDQ 32.504 36.697 48.517 64.916 35.209 39.718 51.993 69.106
ANSYS 32.231 36.058 47.471 63.465 – – – –

F–C–F–C 10 TDQ 23.162 23.227 26.518 31.116 23.925 24.011 27.393 32.272
ANSYS 22.793 22.837 26.011 30.586 – – – –

20 TDQ 37.086 37.210 41.815 45.677 39.990 40.111 44.539 48.663
ANSYS 36.724 36.880 41.170 45.006 – – – –

F–S–F–S 10 TDQ 18.012 18.304 22.752 28.875 19.648 19.940 24.273 30.453
ANSYS 17.359 17.560 21.497 27.149 – – – –

20 TDQ 23.384 23.724 30.411 36.503 26.651 26.945 33.267 39.675
ANSYS 23.255 23.779 29.725 35.166 – – – –

a Element type: SHELL181, number of element in each direction: 150

The effects of volume fraction on the fundamental frequency parameter of the FG-CNTRC skewed cylin-
drical panels with different boundary conditions and for two different values of the skew angle are investigated
in Fig. 10. The results demonstrate that increasing the constraints at the edges of the panels leads to increase
in the fundamental frequency parameter for all values of the CNT volume fraction.

Figure 11 shows the impact of the aspect ratio (b/a) on the fundamental frequency parameter of the fully
clamped FG-CNTRC skewed cylindrical panels with FG-X distribution of CNTs and for different values of
their volume fraction. It can be noted that the frequency parameter decreases as the aspect ratio of the panels
increases for all values of the volume fraction.

The effects of boundary conditions together with the length-to-thickness ratio and skew angle on the first
four non-dimensional frequency parameters of the FG-CNTRC skewed cylindrical panels are shown in Tables 9
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Table 10 Non-dimensional frequency parameters (λi = ωi a2/h
√

ρm/Em) of the FG-CNTRC skewed cylindrical panels with
different skew angles and CNTs distribution (R/h = 10, θ0 = 60◦, a/h = 0.1, V ∗

CNT = 0.17)

α ◦ UD FG-X

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

C–C–C–C 20 24.790 28.110 39.087 44.328 25.529 29.102 40.537 45.370
40 26.338 30.345 39.171 46.985 27.149 31.407 40.591 48.049
60 34.012 37.685 43.336 50.391 35.096 38.941 44.801 52.048

S–S–S–S 20 20.511 22.080 32.114 42.991 21.866 23.487 33.794 44.465
40 21.536 24.540 32.942 44.256 23.001 26.039 34.610 46.114
60 25.836 30.286 36.880 44.744 27.751 32.113 38.716 46.685

F–C–C–C 20 21.450 23.238 28.347 33.456 22.131 23.936 29.344 33.867
40 22.590 25.680 30.382 38.488 23.335 26.492 31.484 39.016
60 27.311 34.002 37.523 42.922 28.266 35.102 38.806 44.410

C–S–C–S 20 21.096 25.443 37.473 43.360 22.489 26.925 39.220 44.835
40 22.236 27.478 37.598 45.580 23.733 29.045 39.320 47.145
60 26.508 32.353 40.145 48.576 28.425 34.203 42.023 50.535

F–C–F–C 20 21.354 21.424 22.988 26.579 22.043 22.090 23.741 26.780
40 22.548 22.593 25.326 30.258 23.279 23.347 26.159 31.394
60 27.299 27.323 33.993 37.374 28.251 28.281 35.107 38.681

F–S–F–S 20 16.908 16.992 19.484 26.542 18.428 18.483 20.887 26.774
40 17.655 17.862 21.737 28.081 19.241 19.459 23.211 29.636
60 20.238 20.574 27.347 32.995 22.140 22.430 29.186 34.807

and 10, respectively. Panels with both uniform and FG-X distributions of CNTs are analyzed. For the purpose
of comparison, the panels with UD of CNTs are also analyzed using the commercial software ANSYS and the
results are reported in Table 9. The element type “SHELL181” (150 elements in each x- and s-directions) is
utilized to simulate the panels in this package. Good agreement between the results of the present approach and
those of ANSYS software is observable. Also, it is seen that the frequency parameters considerably depend
on the types of boundary conditions.

6 Conclusions

The free vibration behavior of FG-CNTRC skewed cylindrical panels under different types of boundary condi-
tions was studied. The governing equations were derived based on the FSDT of shells. An extended version of
the DQM, which is composed of the conventional DQM and geometrical transformation laws, was employed
to discretize the strong form of the governing equations and the related boundary conditions. As a special case,
the presented formulation can easily be degenerated to those of functionally graded skewed panels with ceramic
and metal constituents. The fast rate of convergence and close agreements with the available results in the open
literature and also those obtained by means of commercial software ANSYS demonstrate the accuracy, numer-
ical stability and reliability features of the presented approach. The effects of various material and geometric
parameters such as different distributions and volume fractions of CNTs, skew angle, length-to-thickness,
radius-to-thickness and aspect ratios on the frequency parameters of the FG-CNTRC skewed cylindrical pan-
els subjected to different boundary conditions are examined. The results showed that the skewed panels with
FG-X and FG-O distributions of CNTs have the greatest and lowest natural frequencies. It was shown that the
skew angle, radius-to-thickness ratio, aspect ratio and CNTs volume fraction considerably affect the frequency
parameters. The data presented in this work can be used for a comprehensive study of the vibrational behav-
ior of FG-CNTRC skewed cylindrical panels having different patterns of CNTs distributions and boundary
conditions.
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