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Abstract This paper presents three-dimensional elasticity solutions for an annular sector plate made of trans-
versely isotropic functionally graded material (FGM) subjected to concentrated forces (X, Y, 0) or couples
(Mx, My, M7z) applied at one of its radial edges. The elastic coefficients can vary arbitrarily through the plate
thickness. The analysis was based on the assumed forms of displacements for bending of an FGM plate (Mian
and Spencer in J Mech Phys Solids 4:2283-2295, 1998), in which the four analytical functions were constructed
properly. Appropriate boundary conditions and end conditions similar to those in the classic plate theory were
employed to determine the unknown constants contained in the analytical functions so as to accomplish the
analysis. When the material coefficients are all constant, the obtained analytical solutions can be degenerated
into those for a homogeneous transversely isotropic annular sector plate, which have never been reported
before. The solutions may be further reduced to those for a homogeneous isotropic annular sector plate, among
which the ones for concentrated couples (Mx, My, 0) are also new to the literature.

1 Introduction

In resent years, functionally graded materials (FGMs) have been developed rapidly, where material properties
vary continuously in one or more directions according to a specific profile. Nowadays, FGMs are applied in
many fields, such as aviation, aerospace, electronics, chemistry, nuclear energy, and biomedicine, and have
shown significant application prospects. A lot of papers have been published on the bending of FGM plates
by analytical and numerical methods [1-15]. It is noted that England and Spencer [16] developed a complex
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variable method for the bending analysis of inhomogeneous isotropic and laminated elastic plates. Four complex
potentials (analytical functions) were suggested to represent the solutions. By the complex variable method,
England [17,18] presented bending solutions for FGM plates under transverse biharmonic or higher-order
harmonic loads acting on the plate upper surface. Yang et al. [19] extended the above method to uniformly
loaded transversely isotropic FGM annular plates. Yang et al. [20,21] further derived elasticity solutions for
FGM rectangular and annular plates subjected to biharmonic loads. Based on the works of Yang et al. [19,20],
Huang et al. [22] investigated an infinite transversely isotropic functionally graded sectorial plate subjected to
a concentrated force or couple at the tip.

By using the displacement expansions in Refs. [5,17], this paper considers the deformation of an FGM
annular sector plate, with its upper and lower surfaces free from tractions but subjected to concentrated forces
(X, Y,0) and couples (M, My, Mz) that are applied at one of its radial edges. The other radial edge is fixed,
and the two arc boundaries are free. The elastic coefficients can vary arbitrarily through the plate thickness.

2 Basic equations and boundary conditions

For convenience, we shall use two coordinate systems in the following analysis, i.e., the rectangular Cartesian
coordinates and the cylindrical coordinates. The planes Oxy and Or6 are taken to be identical, and they are
coincident with the mid-plane of the plate. In the cylindrical coordinate system, the region of the annular sector
plateis:a <r <b,0<6 <a, —h/2 <z < h/2, as shown in Fig. 1. Both the concentrated forces (X, Y, 0)
and the concentrated couples (Mx, My, Mz) act on the middle point C on the radial edge between point
A (r = a) and point B (r = b). The positive directions of these external forces and couples are coincident with
the positive directions of the corresponding axes.

In the Cartesian coordinate system, the equilibrium equations for a three-dimensional (3D) elastic body in
the absence of body forces are

(o] N 0 (1)

where i, j = x, y, z, and the Einstein convention for repeated indices is adopted. The stress—displacement
relations for transversely isotropic materials [23] are

Ox = CllU x +C12V,y +C13W 7, Oy =C12Ux +C11V,y +C13W ;, Tzx = C44 (w,x + u,z) ,
o: =ci3uy +ei3vy+onw,, Ty =ca (vt wy), To =ces(u,y +vx) 2)

where u, v, and w are the displacement components, and ¢;; are the elastic stiffness coefficients with a constraint
2c66 = c11 — c12. For FGMs, Cij = Cij (2). If ¢c11 = ¢33, c12 = c13, and c44 = cgp, the material becomes
isotropic.

According to the plate theory of Mian and Spencer [5], we take the solutions to Eqgs. (1) and (2) as follows:

u(x,y,2) =i+ RiA, + Ry, + RV,
Ay
P /’_

»
a\f "\ 6 A \ B X
: ® -—

o Z
My "’\__'7 X
Yy Mz

My |

Fig. 1 The annular sector plate, loadings and coordinate systems
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v(x,y.2) =0+ RiIAy + Row,y + RyVZiy,
w(x,y,2) =0+ T1A + TV 3)

where Ry, Ry, R», Ty, T» are functions of z, u, v, and w are the mid-plane displacement components, and

u=1ulx,y), v=uv(x,y), w=w,y)), (54.1,2)

A=iiy+b, Vi=-— (54.3,4)

Substituting Eq. (3) into Eq. (2) and then into Eq. (1), and using the stress boundary conditions on the
upper and lower surfaces of the plate, i.e., Ty, (x,y, £h/2) = 1y, (x,y,£h/2) = 0, 0, (x,y, —h/2) =
0, o, (x,y,h/2) = p(x,y), we can obtain the analytical expressions of Ry(z), ..., 72(z) [24]. Then, the
initial 3D problem is converted into a two-dimensional (2D) problem, which involves the determination of the
three mid-plane displacements u, v, and w.

According to the complex variable formulations in Ref. [17], Yang et al. [20] obtained, when p (x, y) = 0,
the following expressions for mid-plane displacements and resultant forces:

B =CFE)+ B @+ +TE), (5.1)

okt - — K2 ra
iD= () =8 O~ T @) =22 [B©O) +¢F ©], (5:2)

k1 — 1 K1
Ne+ Ny =ar[¢ @) +8 @] +4a[8 ) +F ©)]. (5.3)
Ny = No+ 2Ny = a1 [60" @+ ' ()] = as9” @) +4a2 B )

+2a50 (§) —arB (©), (5.4)
M+ My = —bi[¢' @)+ 9@ ] +4b2 |8 ©)+F @], (5.5)
My = My +2iMyy = a6 [E8" ) +9 ©)] = bsd” ©) + b6 8" (@) +bra” @) = by @), (5.6)
Qu: —iQy: = = (b1 +a6) ¢ (§) + (b2 = be) B (¢) (57)

where ¢ = x + iy and ¢ = x — iy; the prime denotes derivative with respect to ¢, & (), B (), ¢ (¢), and
¥ (¢) are analytical functions of the complex variable ¢; and ay, a2, as, ag, a7, b1, b2, bs, bg, b7, bg, k1 and
k7 are constants related to the elastic coefficients [20], and

h2 h2
(Nx,Nyvay) 2/ (UXv"y’fx_v) dz, (Mx’Mvaxy) Z/ (Gx"fy’fxy)zdzv
—h2 —h2
h2
(sz, Qyz) = / (Tva Tyz) dz. (6)
—h)2

The boundary conditions for the problem studied are as summarized in the following:
(i) The two arc edges (r = a and r = b) are free:
N, (a,0) =0,Nyg(a,0)=0, M, (a,0)=0, V.(a,6)=0,
N, (b,0) =0,N, (b,0) =0, M, (b,0)=0, V,.(b,0)=0 @)
where V,, the effective shear force, is defined as

oM,
rof

V, = Qrz + (8)

(i1) At the radial edge (@ = 0), the following equivalent boundary conditions in the sense of Saint-Venant
approximation are employed:
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b b
—/ Nyg (r,0)dr = X, —/ No (r,0)dr =7, (9.1,2)
b
—/ Qo (r,0)dr + M9 (b,0) — Mg (a,0) =0, (9.3)
b
/ My (r,0) dr = Mx, (10.1)
b a+b b a—>b
/ (V - ) Qo (r,0)dr —/ Mg (r,0)dr — = (Mo (a,0) + Mo (b, 0)] = My, (10.2)
b
_/ Ny (r,O)-(r—a—;b>dr=Mz. (10.3)

In Egs. (7)-(10), the internal forces (N,, Ny, Ny9, Oy, Qp;) and internal couples (M,, My, M,p)
expressed in the cylindrical coordinate system are

h/2 h/2
(Ny, No, Nvg, Qrz, Qoz) :/ (07,00, Tr9, Trz, Toz) dz, (M, Mg, M) :/ (07, 09, Tr9) 2dz.
—h/2 —h/2
(11)
By using Eq. (9.2), Eq. (10.3) can be rewritten as
b b
—/ No (r, 0) rdr = My + %Y. (12)
a

M,y (b,0) and M,y (a, 0) in Egs. (9.3) and (10.2) are the concentrated forces in the z-direction at points
B and A, resulting when calculating the effective shear force V..
(iii) The radial edge 6 = « is fixed.

3 Analytical solution

The four analytical functions ¢ (¢), B (¢), ¥ (¢), and « (¢) are constructed here using the trial-and-error
method. Enlightened by the stress solutions for an elastic curved bar [25], we try to find those analytical
functions, from which the internal forces and couples are either independent of 6 or proportional to sin § and
cos 6. Thus, we may assume

G ()= (A1 +iA2) >+ (C1+iC)In¢ + Ag¢ + Co¢ Ing,

B(£) = (B1+iB2){? + (D1 +iD2)In¢ + Bo¢ + Do¢ In¢,

V() = (Fi+iF) {2+ (Ey +iE)In¢ + Fo¢ ™',

a(0)=(G1+iG) ¢ "+ (H +iH)¢In¢ +Goln¢ (13)

where Ay, By, Cy, D1, Ey, F1, Gy, Hi, Ay, B2, Ca, D2, Ea, >, G2, Ha, Ao, By, Co, Do, Fp, and G are 22
undetermined real constants.
By virtue of Egs. (5.3,4) and (13), we have

N, + Ny = Ny + Ny = [4(@1A1 +4a2B)) r +2(a1Cy +4a Dy) r~ '] cos @
+[~4(a1A2 +4a:By) r + 2 (a1Ca + 4ar D) r '] sin 6
+2a; (Ag + Co) + 8az (By + Do) + 2 (a1 Co + 4ar Do) Inr, (14)
No — Ny +2iNyg = (Ny — Ny + 2i Nyy) 27
= {la1 (E1 = C1) + 2 (agH1 = 2a2 D)1~ + 2 (@1 A1 +4azBy) r
~2(a1Fi +asCy —2a¢Gy +a7Dy) r >} cosd
—[2(a1A2 +4a2Bo) r + (@1 E2 + 4a: D + 2a6Hr + a1C2) r™!
+2 (a1 Fp + asCy — 2a6Gy + a7 D) r_3] sin 6
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+a1Co + 4ay Dy + (—ay Foy + asCo — 2agGo + a7 Do) r >
+[2 (@142 +4a2By) r + (a1 E2 — 4ax Dy + 2aHr — a1C2) r™!
~2 (a1 F> + asCy — 2a6Go + a7D7) r ] i cos
+{la1 (E1 + C1) +2(asHy +2a2D1)1r ™" +2 (a1 Ay +4ar By) r
+2 (a1 Fy + asCy — 2agGy1 +a7;Dy) r >} isiné. (15)
From Eqgs. (14) and (15), we obtain
Nyg = Ny (r)sin + N2, (r) cos0, Ny = N} (r)cos@ + NZ (r)sinf 4+ N (r),
N, = N!(r)cos® + N? (r)sin0 + N° (r) (16)
where
NY () = (@A 4+ 4a2B) r + % (a1C1 4 4ay Dy + a1 E1 + 2agHy) r™!
+ (a1 F1 4+ asCi —2a6G1 +arDi) r ™, (17)
N2 (r) = (a1A2 + 4a2Bo) r + % (—a1Cay — day Dy + a1 Es + 2agHo) r ™!
— (a1F> + a5Cy — 2aGa + a7Dy) r =3, (18)
NL(r) =3 (a1A) +4a2B))r + % [a (Cy + E1) + 4ay Dy + 2agH]r ™!
— (a1 F + asCy —2a¢G | + a7Dy) r >, (19)
N (r) = =3 (a1A2 +4a2By) r + % (a1Cy + 4a; Dy — a1 Ey — 2agHa) r™!
— (a1F> + a5Cy — 2aGo + a7Dy) r =3, (20)
NJ (r) = a1 Ao + galco + 4as By + 6a; Dy + (a1 Co + 4az Do) Inr
+% (—a1Fo + asCo — 2a¢Go + a7 Do) 2, (2D
N!(r) = (@ Ay +4a2B))r + % (aiCy — a1 Ey + 12a2D1 — 2a6Hy) r™!
+ (a1 Fi 4+ asCy — 2a¢Gy + a7D1) r =3, (22)
N2 (r) = — (a1A2 + 4a2Ba) r + % (3ai1Cy + a1 Ex + 12a2 D2 + 2agHp) r ™!
+ (a1 F> + asCy — 2a6Ga + a7D2) r =2, (23)
NO(r) = a1Ag + %al Co + 4ax By + 2a; Dy + (a1 Co + 4ax Do) Inr
+% (a1 Fo — asCo + 2asGo — a7 Do) r 2. (24)
Meanwhile, Egs. (5.5,6) and (13) yield
M, + Mg = My + My = [4 (b1 Ay +4b2B1)r +2(=b1Cy +4brDy) r '] cos 6
+[4 (b1As — 4byBo) r — 2 (b1Ca — 4by Do) r~ '] sin @
—2by1 (A + Co) + 8b2 (Bo + Do) + 2 (—b1Co + 4b2 Do) Inr, (25)

My — M, +2iMyg = (My — M, + 2i My,) e*°
= {las (E\ — C1) + (b7Hy — beD)]r~" +2 (a6 A1 + bsB1) r
~2(agFi + bsCi — b;Gy + bgD1) r >} cos @
+[=2 (agA2 + beBa) r — (a6 E2 + b1 Hy + agCo + be D) r !
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—2(agFy + bsCy — b7Gy + bg D7) r_3] sin 6

+agCo + beDo + (—agFo + bsCo — b7Go + bg Do) r >
+{las (E1 + C1) + (b7 H1 + be D) ™!

+2(asA1 + beB1)r +2 (agFy +bsCi — bGy +bgDy)r >} isin6

+ [2 (a6Az + beB2) r + (agEx + b7Hy — agCr — beD») r!

—2(agFy + bsCy — b7Gy + bgD») r_3] icosf.

From Egs. (25) and (26), we have

where

(26)

Mg = MY, (r)sing + M2, (r)cos0, Mg = M} (r)cos6 + M7 (r)sin@ + Mg (r),
M, = M} (r)cos + M> (r)sin® + M° (r)

M}g (r) =

M}y (r) =

Mel (}") =

MZ(r) =

MY (r) =

Mr1 (}") =

Mrz(l") =

M;E)(}”) =

1
(agA1 + beB1) 1 + 3 (aC1 + beD1 + agEy + by Hy) r ™!
+ (agF1 + bsCy — b7G1 + bgDy) r >,

1
(agA2 + beB2) r + 3 (—agCy — bgDy + agEy + byHa) r !
— (agF + bsCy — byGo + by D) r 2,

1

[(=2b1 + ae) A1 + (8b2 + be) B1]r + 3 [— (b1 +as) Cq

+ (8by — bg) D1 + agE1 + b7H]]i‘_1
— (bsCy + bgDy + agFy — b7G1)r >,
[(2by — ag) Az — (8by + be) Ba]r

1
-5 [(2b1 + ag) Ca + (b — 8b2) D + agEa + by Hy] r™!
— (bsCy 4 byDy — b7Ga + agFy) r 3,

1
—b1 Ay + 4b2 By + (506 - bl) Co
1
+ (4b2 + §b6> Do + (—=b1Co +4by Do) Inr

1
+5 (bsCo + bs Do — asFo — b7Go) r 2,
[— (2b1 + ae) A1 + (8b2 — bg) B1]r
1
+5 [(as = 2b1) C1 + (82 + be) D1 — agE1 — brH 1r ™!

+ (agFi + bsCy — byG1 + bgDy) r >,
[(2b1 + ag) A + (be — 8b2) Bo]r

1
+§ [(a6 — 2b1) C2 + (8ba + be) Dy + agE2 + b1 Holr ™!
+ (bsCy + bgDy 4+ agFr — b7G)) r_3,

1 1
—b1Ag + 4b2 By — (E(le + bl) Co + <4b2 — §b6> Dy

1
+ (=b1Co + b2 Do) Inr — 5 (b5Co + bs Do — as Fo — b1Go) r2.

Also, Egs. (5.7) and (13) give rise to
Qr; —iQg; = (sz - iQyz) e'?

27)

(28)

(29)

(30)

3D

(32)

(33)

(34)

(35)
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= {2[— (b1 + ag) A1 + (4b2 — be) B1]1 + [(b1 + as) C1 — (4by — be) Dl]r_z} cos 6
+[(2b1 Az + 2ag Ay — 8by By + 2b6 By) + (b1C2 + agCa — 4ba Dy + beDy) 772] sin 6
+{2[— (b1 + a6) A1 + (4b2 — be) Bi] — [(b1 + ae) C1 — (4bs — by) Dl]”_z} isin6
+ [(=2b1As — 2a6 A + 8b2 By — 2b6B2) + (b1Ca + asCa — 4by Da + beD2) r %] i cos 6

+[— (b1 + ag) Co + (4by — be) Dol r~". (36)
From Eq. (36), we get
Qr; = O}, (r)cosf + Q% (r)sind + Q°, (r), Qo: = O, (r)siné + Q3. () cos b (37)
where
0}, (r) = —=2[(b1 + ae) A1 — (4by — be) B1]+ [(b1 + ag) C1 — (4by — bg) Di] r2, (33)
02, (r) = 2[(b1 + ag) Az — (4by — be) Bal + [(by + a6) C2 — (4by — be) D217 ™2, (39
0. (r) = [— (b1 + as) Co + (4by — bg) Dol r ™", (40)
Q4. (r) = 2[(b1 + ag) Ay — (4by — be) Bi] + [(b1 + ae) C1 — (4by — b) D117 72, (41)
Q3. (r) = 2[(b1 + ag) Az — (4by — be) B2] + [— (b1 + ag) C2 + (4by — be) Da]r 2. (42)
Then, Eqgs. (8), (37.1) and (27.1) lead to
V. = V! (r)cos 6 + V2 (r)sin6 + 02, (r) (43)
where

Vi) =0, )+ My (r)r~! = — (2b1 + ag) A1 + (8b2 — be) By

3 3 1 1 2
- b | C —bg —4by | D —agE —b7Hy | r™
+[(2a6+ 1) 1+<26 2) 1+2a6 1+27 1:|r

+ (agF1 + bsC1 — b7G +bgD1)r_4, (44)
V2 (r) = Q7F, (r) — M7 (r)r~" = (2b1 + a6) Ay + (bs — 82) By
+ [(bl + §a6> Cr + (ébs — 4b2> Dy — l616E2 — 1l?7H2j| r2
2 2 2 2
+ (a6 F> + bsCy — b7Go + by D) r . (45)

Substituting Eqgs. (16), (27), (37) and (43) into Egs. (7), (9), (10.1,2) and (12), we can get the following
expressions for the boundary conditions:

Nl'@) =0, NYy@=0 M'@=0 V'@a=o0, (46.1-4)
N*(@) =0, N%(@) =0, M?>@ =0, V?(@)=0, (46.5-8)
N'@)y=0, NLYw)y=0 M ®») =0 VI b =0, (47.1-4)
N?(b) =0, N2%((b)=0, M>(®)=0, VZ>(@b)=0, (47.5-8)
N2 (@) =0, M%) =0, QY (a)=0, (48.1-3)
N () =0, M2(b)=0, Q° (b)=0, (49.1-3)
and
b b

—/a N2 (r)dr = X, —/a [Ng (1) + N§ ()] dr =Y, (50.1,2)

- " 02, () dr 1 M2 () — M @ =0, (50.3)

b
/ [M} () + MY ()] dr = My, (50.4)
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b b b
/ [( . )Qezw rem}dr‘aT[M (@ + My 0)] = Mr.
a+b

b
—/ [Ng (r) + N§ ()] rdr = Mz + Y. (51)

4 Solutions for the algebraic equations

There are totally twenty eight equations in Eqs. (46)—(51), but with only twenty two undetermined constants.
Hence, for these equations to have unique solutions, we can assure that there must be redundant equations or
linear dependent equations among the twenty eight equations. For example, by substituting Eq. (40) into Eq.
(48.3) or (49.3), we get

(=b1 +ag) Co + (4b2 — be) Do = 0. (52)

Substitution of Eq. (52) into Eq. (40), we have Q?Z (r) = 0. Thus, from Eq. (37), we obtain
0, = Q,, (r)cosf + Q2, (r)sinb. (53)
By virtue of Egs. (19), (21), (32), and (42), and then using Egs. (17), (24), (35), (39), and (52), respectively,
we have

/ N (r)dr—[rNO(r) / My (r)dr—[rMO(r)] (54.1,2)

b
/ rNg (r)dr = [r*N, (r) / 03 (rdr = [r 0z, (r)] (54.3,4)

Substituting Eq. (54.4) into Eq. (50.3) and using Eqs. (46.8) and (47.8), we can prove that Eq. (50.3) is an
identity. Substituting Egs. (48.1) and (49.1) into Eq. (54.1), substituting Egs. (48.2) and (49.2) into Eq. (54.2)
and substituting Eqgs. (46.2) and (47.2) into Eq. (54.3), we can find that the definite integrals on the left-hand
side of Egs. (54.1-3) are all zero. Thus, Egs. (50.2), (51.1) and (51.3) can be simplified as

b
—/ N, (r)dr =Y, (55)
b
/ M, (r)dr = My, (56)
b
—f rN9 (rydr =Mz + %bY 57

Hence, the left six equations in Eqs. (50) and (51) can be further simplified to five equations, i.e., Egs. (50.1),
(51.2), (55), (56), and (57). Now we have twenty seven equations (Egs. (46)—(49), (50.1), (51.2), (55), (56)
and (57)) to solve 22 undetermined constants. We can divide these twenty seven equations into three groups
to solve related problems: The first group contains ten equations, i.e., Egs. (46.1-4), (47.1-4), (55) and (56) to
solve eight undetermined constants, A, By, ..., Hy; the second group contains ten equations including Egs.
(46.5-8), (47.5-8), (50.1) and (51.2) to solve eight unknowns, A, Ba, ..., Hy; and the last group consist of
the rest seven equations, i.e., Egs. (48), (49) and (57), which will be used to solve for the rest six undetermined
constants, Ag, By, ..., Fp.

For the third group, both Eqgs. (48.3) and (49.3) are replaced by Eq. (52), as shown earlier. Hence, the
left six equations, Eqgs. (48.1,2), (49.1,2), (52), and (57), can be used to solve for six undetermined constants.
These six algebraic equations are listed in Eqgs. (81)—(86) in “Appendix 1.”

For the first group, by comparing Eq. (17) with Eq. (22), we can obtain

NY )y = NY ) = et (58)

where
Ji=a1Ci+4a,Dy — a1 E| — 2a¢H, 59)
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Comparing Eq. (33) with Eq. (34), we have

Mr1 (r) — rVr1 (r) = Jor ! (60)
where
J» = (—ag + 2b1) Cy + (8by — bg) D1 — agEy — b7H,. (61)
In Egs. (58) and (60), if
J1=0, =0, (62)

then we can find: (i) By Eq. (58), Egs. (46.1) and (46.2) are linear dependent, and Eqs. (47.1) and (47.2) are
linear dependent; (ii) by Eq. (60), Egs. (46.3) and (46.4) are linear dependent, and Eqs. (47.3) and (47.4) are
linear dependent. Thus, the eight equations, Eqs. (46.1-4) and (47.1-4), can be simplified into six equations,
i.e., Egs. (46.1,3), (47.1,3) and (62). Together with Eqgs. (55) and (56), we now have eight equations to solve
for eight undetermined constants, A1, By, ..., Hi. These equations are listed in Egs. (87)—-(94).

For the second group, we can similarly get

N2 () + N2y (r) = Jsr™', M?+ M2 —r Q2. = Jur™ (63)
where
J3 =a1Cy +4ay Dy + a1 Er + 2acHp, (64)
Js = — (ag + 2b1) C2 + (8by — bg) Dy + agE» + b7 H». (65)
If we let
J3 =0, Jy=0, (66)

then with the same reasoning, the eight equations, Eqgs. (46.5-8) and (47.5-8), can be simplified into four
equations, Egs. (46.5,7) and (47.5,7). Together with Egs. (50.1), (51.2) and (66), we now have eight equations
that can be used to solve for eight undetermined constants A;, Ba, ... Hy. These equations are listed in Egs.
(95)—(102).

So far, all undetermined constants in Eq. (13) have been determined with all boundary conditions satisfied.
From the above derivation, we know that:

(i) When the annular sector plate is subjected to an in-plane bending moment Mz at & = 0 only, we can just
retain the undetermined constants Ag, By, ... G in Eq. (13) and let all other constants be zero.

(i) When the annular sector plate is subjected to an out-of-plane bending moment My at & = 0 only, we can
just retain the undetermined constants A, By, ... Hy in Eq. (13) and let all other constants be zero.

(iii) When the annular sector plate is subjected to a concentrated force Y in the y-direction at & = 0 only, we
can just retain the undetermined constants Ag, By, ... Go and Ay, By, - - - Hy in Eq. (13) and let the other
constants be zero.

(iv) When the annular sector plate is subjected to a concentrated force X in the x-direction or a concentrated
couple My in the y-direction at & = 0, we can just retain the undetermined constants A», B ... H in Eq.
(13) and let all other constants be zero.

5 The degenerated stress solutions for a homogeneous plate

In general, it is difficult to obtain the concise and explicit solutions directly by hand to the algebraic equations
in “Appendix 17 because of their high-order nature. We thus turn to consider several special cases of a
homogeneous plate. According to Yang et al. [20], for a homogeneous plate, we have

ar=0, ag=0, a;=0, b1 =0, bs=0, kr=0. (67)
(i) The plate is subjected to Mz

In this case, only the constants Ag, By, . . . Gg should be retained in Eq. (13). By using Eq. (67), Egs. (81)—(86)
can be simplified into Egs. (103)-(108) in “Appendix 2.” Then, the constants By, Dy, G can be determined
from Eqs. (104), (106), and (107), while Ag, Co, Fp can be obtained from the other three equations. The
expressions are listed in Eq. (125) in “Appendix 3.”
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Substituting Eq. (125) into Egs. (24) and (21), and then into Eq. (16), we can obtain the internal forces in
the homogeneous transversely isotropic plate induced by Mz,

AM 2p2 p
Nyg =0, Nr=——z<a ln—+b21n£+a21nc—l>,
a

N r2 r
4M b b
Ne:——Z _4 ln——l—bzlni—I—azlng-i—bz—a2 (68)
N r2 a b r

where N is listed in Eq. (127).
Substituting Eq. (125) into Egs. (32), (35) and (40), and then into Egs. (27) and (37), we can obtain

Mr9 = 07 MG = 09 Mr = 07 Qrz = 07 QQZ = 0 (69)
For an isotropic plate [20], we have

2Eh vER3
= , aS = —2.
l+v 30+v)

ai (70)

Substituting Eq. (70) into Eq. (125), we can get the expression for the constants in Eq. (126) for the homogeneous
isotropic plate.

It is seen from Eq. (68) that the internal forces are independent of the material constants and hence
are suitable for both transversely isotropic and isotropic plates. Furthermore, Eq. (68) agrees well with the
integration over the thickness of the stresses in a curved bar as documented in Ref. [25].

(i) The plate is subjected to Mx

In this case, only constants Ay, By, ... Hy are kept in Eq. (13). By virtue of Eq. (67), Egs. (87)—-(94) can
be simplified into Egs. (109)—(116). Then, from Eqgs. (109), (111), (113), (115) and Y = 0, we can obtain
A1, C1, Eq and Fy, and from (110), (112), (114) and (116), we can get By, D1, G1, and Hj. All the final results
are listed in Eq. (128).

Substituting Eq. (128) into Egs. (17), (19), (22), (28), (30), (33), (38), and (41), and then into Egs. (16),
(27) and (37), we obtain the internal forces in the plate,

Nr = 07 N9 = O’ N}’@ = 07

Moy — [b2r* — 4bs (8by — bg) (a® + b*) r? + be (8ba — be) a*b*] Mx ing
[62 (b2 — a2) — (8b; — be)*In () (a2 + b2)] 3 ’
My — [b6 (82 + be) r* — (8by — b6)? (a® + b?) r? — bg (8by — be) a’b*| Mx cosd
[b2 (b2 — a%) — (8by — be) In (£) (a2 + b2)] r3 ’

be (8by — be) [r* — (a® + b*) r? + a*b*] My

M, = 0,
[b2 (b2 — a2) — (8by — be)* In (2) (a2 + b2)] 13 o8
0, — (4by — bg) [2ber* + (8by — be) (a* + b?)] Mx cosd
T [2 (b7 — a?) — (8by — be)* In (2) (a2 + b2)] 12 ’
4by — bg) [—2ber? + (8by — bg) (a* + b2)| M
QGZZ( 22 6) [—2ber? + ( 22 62((1 +b%)] Xy an
[bﬁ (b2 — az) — (8by — bg)“ In (E) (a2 + bz)] r2
For isotropic materials [20], we have
b ER by EP B+ WER )
T T Ra—y T T30y PTT300+wnd -

Substituting Eq. (72) into Eq. (128), we get Eq. (129) for an isotropic plate.
Substituting Eq. (129) into Egs. (17), (19), (22), (28), (30), (33), (38), and (41), and then into Egs. (16),
(27), and (37), we have the following internal forces in a homogeneous isotropic plate induced by My:

N@ = 07 Nr = Ov N}’Q = 01
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[(1=v)?r* =B +v) (L +v) (@ +bY)r? — G +v) (1 —v)a?h?| My
P31 =)? (b2 —a?) — 3 +v)?In (L) (a® + b?)]

—(1=v) G+ [r* = (a® + b*) r? + a’b*| My

= cos 6,

3 =v)? (b2 —a?) — 3+v)?In(2) (a2 +b?)]

[-A=»)A+30)r* =@+ (a>+ %) rP + B+v) (1 —v)a®b?| My

Mo = sin @,

My = 0,
0 r3a - )2 (b —a%) — 3+ )% 1n (3) (a® +b?)] o8
0, 220 =v)r* = B +v) (a® + b*)] Mx cosd
TR =2 (2 —a?) - B+ v)PIn (D) (@@ +p?2)]
221 =v)r2+ B +v) (a® +b*) ] Mx .
= 9. 73
0 = = (=) = G+’ () (@ —|—b2)] o (73)

(iii) The plate is subjected to Y

In this case, constants Ag, By, ...Go and Ay, By, ... H; should be retained. Among them, By, Do, and G
can be solved from Egs. (104), (106), and (107), and Ag, Co, and Fy can be obtained from Egs. (103), (105),
and (108) with Mz = 0. The expressions for Ag, By, ... Gy are listed in Eq. (130). Substitution of Eq. (130)
into Egs. (24), (21), (32), (35), and (40) leads to

2{[p*In (%) —a®In ()] r? +1n( ) a*b*} (a +b)Y

NO(r) =
(0 = a2 =4 (n2) 22 ] 2
N0 () 2{[(1-n2)p? — (1 —In%)a®]r* +1In(4)a’b?} (a+ b)Y
r)=-— ,
’ (0 = @) 4 (ng)* 2]
MY (r)=0, MP(r)=0, Q° (r)=0. (74)

From Egs. (110), (112), (114), and (116) along with Mx = 0, we can obtain By, Dy, G, Hj, and from
Egs. (109), (111), (113), and (115) along with Y = 0, we can obtain Ay, Cy, Ej, Fi. The results are listed in
Eq. (131). Substituting Eq. (131) into Egs. (22), (19), (17), (28), (30), (33), (38), and (41), we get

Nl = (b2 — r2) (a2 — r2) Y [3r4 — (a2 + b2) r? — azbz] Y
T [@? =02 =In(5) (2 +17)] 13 [a® = b2 —1In(F) (a® +57)]
(b2 — r2) (a2 — r2) Y
=PI (§) (@ + 2]
MYa)=0, My(r)=0, M'(r)=0, Q). (r)=0, Qp (r)=0. (75)
Substitution of Egs. (74) and (75) into Egs. (16), (27), and (37) gives rise to
(b2 — r2) (a2 — rz) Y

Nj(r) =

NY () =

T @ @]
+2{[b21n(§)—azln(‘r—‘)]rz—i-ln(‘b—‘)azbz}(a+b)Y’
[(b2 —a2)* — 4 (in §)2a2b2] r2
B [3r4—(a2+b2) r2— sz] - cos
YOS e @
2{[(1—111’;’)5;2 (l—ln )a*]r? +1n (%) a*b*} @+ b)Y
(2 — ) — 4 (in §)* a2 ] 2 ’

o b
PO = AR () @+ )]

sin @,
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Mg=0, Myg=0, M, =0, 0,.=0, Q=0 (76.1-5)

Itis noticed that the expressions in Eq. (76) for the internal forces in a homogeneous plate subjected to Y are all
independent of the material constants, and the above expressions are valid for both homogeneous transversely
isotropic and isotropic plates. It is seen that the expressions in Egs. (76.1-3) are coincident with the results of
ITankoBuu [26].

(iv) The plate is subjectto X = —Q

In this case, we retain Ay, By, ... Hp only in Eq. (13). By using Eq. (67), we can simplify Egs. (95)—(102) into
Egs. (117)—(124). Then we can solve Az, C2, E», and F; from Egs. (117), (119), (121), and (123) and solve
By, D>, G;,and H; from Egs. (118), (120), (122), and (124) along with My = 0. The results are listed in Eq.
(134). When the material is isotropic, by substituting Eq. (70) into Eq. (134), we get Eq. (135).

Substitution of Eq. (134) or (135) into Egs. (23), (20), and (18), and then into Eq. (16) leads to

212
b 1
N, = Q |: a + d —:| sin @,

ai;ii +In f; (@ +b2)r3 " a+ b2 Ty
a
N 0 a’b® 1 N 3r 17 . o
= - — — —|sind,
o b tmbl @ +br a4 by
a a
(0] a’b? r 1

Nyg = — + — — | cos@. 77

ro Z;;Zi TIn % (az + b2) 3 (a2 + b2) r (77)

As we can see, the above internal forces due to the concentrated force Q are also independent of the material
constants. They actually coincide with the integrations of the stresses over the thickness of a curved bar under
the shear force Q [25].

Substitution of Eq. (134) or (135) into Egs. (31), (34), (39), and (42), and then into (27) and (37) leads to

Mg =0, My =0, M, =0, O, = 0, Qo; = 0. (78)
Equations (77) and (78) are valid for both homogeneous transversely isotropic and isotropic plates.

(v) The plate is subject to My

In this case, only the constants A», B», ... Hy should be retained in Eq. (13). From Egs. (117), (119), (121),
and (123) along with X = 0, we can get A;, C2, E;, F>. Meanwhile, from Egs. (118), (120), (122), and (124),
we can obtain B, Dy, G2, H. The results are listed in Eq. (136).

Substituting Eq. (136) into Egs. (18), (20), (23), (29), (31), (34), (39), and (42), we can get the following
internal forces in a homogeneous transversely isotropic plate due to My:

N9 ZO’ Nr=0’ Nrezoa
[b2r* — 4bs (8by — bg) (a® + b*) r? + be (8by — be) a*b*| abMy

Mg (r) = 0,
7 ) = 8y — be) [(4bs — be) (a® — b%) + (8bs — bs) In (2) ab (a? + b2) + bgab (@@ — D7) 12

Mo () — [—b6 (8ba + b) r* + (8by — be)* (a® + b?) r? + be (8by — be) a*b* | abMy ino
T 8y — be) [(4by — be) (a* — b*) + (8by — be) In (2) ab (a? + b?) + beab (a2 — b2)]

M, () —be (b2 — r2) (a2 — r2) abMy .
L (r) = sin @,

[(4bs — be) (a* — b*) + (8b2 — be) In (2) ab (a2 + b2) + beab (a2 — b2)] r3

0 () — — (4by — be) [2b6r* + (8by — bg) (a* + b*) ] abMy ing
U (8by — be) [(4ba — be) (a* — b*) + (8bs — be) In (2) ab (a® + b?) + beab (a® — b2)]r2

00 (1) — (4by — bg) [—2ber? + (8b — be) (a* + b*) ] abMy cost.

(8by — be) [(4by — be) (a* — b*) + (8b2 — be) In (2) ab (a2 + b2) + beab (a? — b2)] r?
(79)

When the material is isotropic, substituting Eq. (72) into Eq. (136), we get Eq. (137). Substituting Eq.
(137) into Egs. (18), (20), (23), (29), (31), (34), (39), and (42), and then into Egs. (16), (27), and (37), we have
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No=0, N,=0, Ng=0,
[(1=v)?r* = B +v) A +v) (a* +b*) r? — B+ v) (1 — v) a?b*| abMy

My = 0,
’ B+ [2(a*-b*)+ 1A —v)(ab? —a’b)+ 3+ v)In (%) (ab® + a®b)] r3 o8
[T+30) (A=) r*+ B+ v)? (a> +b%)r? = (1 —v) B+v)a*b*|abMy
My (r) = sin g,
B+v)[2(a* = b*) + (1 =) (ab® — a3b) + 3+ v)In (2) (ab? + a?b)] 3
. 2 g2\ (2 2
M, () = (1 —v) (r b ) (r a )abMy Sin .
[2 (a* = b%) + (1 — v) (ab® — a3b) + B+ v) In (2) (ab> + a3b)]
— 2 _ 2 2
01 (r) = 2[2(1 —v)r? = B3 +v) (a* + b*)]| abMy ino.
B+v)[2(a* = b*) + (1 —v) (ab3 —a3b) + 3+ v)In (2) (ab® + a®b)] r?
_ 2 2 2
e () = - 2[20 = v)r? + B +v) (a* + b*) ] abMy cost. (80)

B+v)[2(a* = b*) + (1 —v) (ab3 — a3b) + 3+ v) In (2) (ab® + a®b)] r?

6 Conclusions

In this paper, we derived 3D analytical elasticity solutions for a functionally graded annular sector plate
subjected to concentrated forces (X, Y, 0) and concentrated couples (Mx, My, Mz) at one radial edge, with
the other radial edge fixed and the two arc edges free. The material parameters can vary arbitrarily through
the thickness direction. When the material parameters keep unchanged, the results are readily degenerated
into those for homogeneous transversely isotropic plates, which are all new to the literature, and can serve
as useful supplements to the monograph by Ding et al. [23]. The results can be further reduced to those for
homogeneous isotropic plates. Some results coincide with integrations of the stresses over the thickness of a
curved bar subjected to concentrated forces X, Y or concentrated couple Mz, which have been reported in the
literature. This agreement, although for some special cases, does verify the correctness of the derivations in
our analysis. We also note that the results for a homogeneous isotropic elastic plate subjected to concentrated
couples Mx and My are also new to the literature. The obtained results can serve as benchmarks for further
approximate or numerical studies.
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Appendix 1: Algebraic equations of a transversely isotropic functionally graded annular sector plate

2a1A¢ + 8ay By + [a1 (I1+2Ina) — a5a_2] Co
+[4a> (1 +2Ina) — aza2] Do + a1a™*Fy + 2aga >Go = 0, (81)
—2b1 Ag + 8b2 By — [ag + 2b1 (1 +Ina) + bsa™] Co
+[8b2 (1 + Ina) — b — bsa™?] Dy

+aga > Fy + bja>Gy = 0, (82)
2a1Ag + 8a2 By + [a1 (1 +2Inb) — asb™*] Co
+[4a> (1 4+ 21nb) — a6~ 2] Do + a1b™ > Fy + 2agh™>Go = 0, (83)

—2by Ao + 8b2 By — [ag + 2b1 (1 + Inb) + bsb™*] Co

+[8b2 (1 +1nb) — b — bsb™2] Dy

+agh 2 Fy + b7b"2Go = 0, (84)
— (b1 +ae) Co + (4by — bs) Do = 0, (85)
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—ay (b2 — az) Ay — 4day (b2 — az) By

b
—[al (b2—a2+b21nb—a21na)+a51n—i| Co
a
2 2,2 2 b
—|4az (b> —a” 4+ b*Inb—a”Ina) + a7ln = | Dy
a

b b
+a|1n( >F0+2a6ln< >G0—2Mz+(a-|—b)Y

2a1aA1 + 8axa By + (3a1a_ + 2asa™ ) Cq
+2 (6a2a7] + a7a73) D — alaflEl
+2a1a73F1 — 4a6a73Gl — 2a6a71H1 =0,
—2(2by + ae) aA; + 2 (8by — be) aBy + [(as — 2b1) a”' + 2bsa>] C
+[(8b2 + be)a~' +2bga>] Dy
—aﬁa_lEl + 2a6a_3F1 — 2b7a_3G1 — b7a_1H1 =0,
2a1bAy + 8axbBy + (3aib™" +2asb™?) Cy +2 (6axb™" + a7;b™°) Dy — a1b™ ' E,
+2a1b3F) — 4agh3G| — 2agh™'H, = 0,
—2(2by + a6) bAy + 2 (8by — be) bBy + [(ag — 2b1) b~ " +2bsb ™3] Cy
+[(8b2 + be) b™" + 2bgb ] D
—aghb™ E| 4 2a¢b3Fy — 2b7b 3G — b7b~'H; =0,
a1Cy+4ayDy —a1E1 — 2a6H; =0,
—(ag +2b1) C1 + (8b2 — be) D1 —agE1 — b7Hy =0,

san (0 =) A 1200 (7 ) B+ [anin (1) s (072 - a2) |

+ [4a2 In <é> +a7 (b2 - a_z)} Dy

+ai In ( ) Ei+ai (b7*—a?) Fi —2a6 (b™> —a"2) G1 + 2a61n (9) Hy = -2,
a
(

(86)

(87)

(88)

(89)

(90)
oD
92)

(93)

(=2b1 +ae) (b* = a®) Ar + (8b + be) (4* 2)31—[(2b1+a6)1n <§>_b5 (b2—a2)} o]

[(81)2 — bg)In (b) +bg (b2 - )} Di +agln (b> Ei+as(b™*—a %) F

b
—b7 (b —a"?) Gi +b7ln (-) Hy = 2My,
a

—2a1aAy — 8araBy + (3a16171 + 2a5a73) Cr+2 (6a2a71 + a7a73) D
+a1a_1E2 + 2a1a_3F2 — 4a6a_3G2 + 2a6a_1H2 =0,

2(2b1 +ag) aAs + 2 (be — 8b2) aBs + [(as — 2b1) a™ ' + 2bsa™>] C;
+[(®b2+bg)a™" +2bga ] D
+a6a_1E2 + 2a6a_3F2 — 2b7a_3G2 + b7a_1H2 =0,
—2arbAs — 8axbB; + (3a1b™" + 2ash™?) C2 + 2 (6axb™" + azb™3) D,
+a1b " Ey +2a1b3 Fy — 4agb™3Ga + 2aghb™ ' Hy = 0,

2 (2by + ae) bAs + 2 (be — 8b2) bBy + [(ag — 2b1) b~ " +2bsb ™3] €5
+[(8b2 + be) b~ + 2bsh™*] D
+agh™ Ey + 2agb 3 Fy — 2b7b3Ga + bib"'Hy = 0,

(94)

95)

(96)

O7)

(98)
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2 2 2 2 b -2 -2
aj (b —a )A2+4a2(b —a )Bz— arln| — —a5(b —a ) Cy
a
b -2 -2
—|darIn | — —a7(b —a ) D>
a
b -2 -2 -2 -2 b
+aiIn( =) Ex4a (b7°—a?)F,—2a6(b"> —a"?) Ga +2asIn | — | Hy = —2X, (99)
a a
b
[—2 (2b1 + ag) In (—) a’b® +2bs (a +b) (a — b)® — (2b1 + ae) a*b* (a* — bz)] Ca
a
b
+ {2 (8b> — bg) In (—) a’b? +[(8by — bg) a”b? + 2bg (b — a)*] (a* — bz)} Dy
a
b
—ag |:2abln (—) + (a* - bz)] a’b*Es> + 2ag (a + b) (a — b)> F» — 2b7 (a + b) (a — b)> G»
a
b
—by |:2ab1n <—) + (a* - bz)] a’b*Hy, = 4a°b> My, (100)
a
a1Cy +4a, Dy + a1 Ey + 2a6Hy = 0, (101)
— (ag + 2b1) Co + (8by — bg) D> + agE» + b7Hy = 0. (102)
Appendix 2: Algebraic equations for a transversely isotropic homogeneous annular sector plate
2a1Ao + [a1 (1 +21na) — asa™2] Co + aja™*Fy = 0, (103)
8b2Bo + [8b2 (1 +Ina) — b — bsa™*] D + b7a 2Go = 0, (104)
2a1Ag + [a1 (1 +21Inb) —ash™*] Co + a1b™*Fy =0, (105)
8b2Bo + [8b2 (1 + Inb) — bg — bgb™] Dy + b7b™2Go = 0, (106)
Dy =0, (107)
b
—aj (b2 —az) Ag — |:a1 (b2 —a’>+b*Inb— azlna) + asln —:| Co
a
b
+aj In (—) Fo=2Mz+ (a+b)?Y, (108)
a
2ajaA; + (3aja™' +2asa>) €1 — aja”'Ey + 2a1a > Fy = 0, (109)
2 (8by — be) aBi + [(8by + bg)a™" + 2bga ] Dy — 2b7a Gy — bya” " Hy = 0, (110)
2a1bAy + (3arb™" + 2asb™) C1 — a1b™ " E1 + 2a1b > Fy = 0, (111)
2 (8bs + be) bBy + [(8b2 + be) b~ ' + 2bgh ™| Dy — 2b76 Gy — bsb™'H; = 0, (112)

Ci1 = Eq,
(8b2 — bg) D1 = b7H|,

3a; (b2 — az) Al + |:a1 In <é> + as (b_2 — a_z):l Cq
a

b
+ap In <—) Ei+a (b72 - aiz) F = =27,
a

(8by + bg) (bZ _ a2) B + |:2 (8by — bg) In (g) + bg (b_2 — a—z):| Dy

—by (b72 — a,2) G| =2My,
—2ay1aA) + (3(116171 + 2a5a73) Cr+ a1071E2 + 2a1a73F2 =0,

2 (b6 — 8b2) aBs + [(8by + bg) a™" + 2bga™>] Dy — 2b7a>G + ba™"Hy = 0,

—2a1bA; + (3arb™ +2asb™>) C2 + a1b™ ' Ey + 2a167° F, = 0,

(113)
(114)

(115)

(116)
(117)
(118)
(119)
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2 (bs — 8b2) bBy + [(8b2 + be) b~ + 2bgh™>| Dy — 2b76™>Go + b7b™'Hy = 0, (120)
b
ay (b2 — aZ) Ay + |:—a1 In (—) + as (b_2 — a—Z):| Cy
a
b -2 -2
+ailn| = )Ex+a (b7 —a™) F, = —2X, (121)
a

b
[21)8 (a+b)(a@—b)*+ (8by — bg) a’b? <a2 —b*+2abln E)} D>

b
—2b7 (a +b) (a — b)* Gy — bra*b* (a2 — b* +2abIn —) Hy = 4a°b> My, (122)
a
Cy, = —E, (123)
(8by — be) Dy = —b7H,. (124)

Appendix 3: Constants for several special cases of a homogeneous plate

(i) Constants for the plate subjected to Mz; Constants for the transversely isotropic plate:

By=0, Dy=0, Gy=0,

s 2[A+2Inb)b* — (1 +2Ina)a’| My c 4(b* —a®) My
0= s 0= 5
ar [(b2 = a?)’ =4 (In2)* a2?] ar (12 = @)’ — 4 (In2)” a2?
4[2a;1n () ab? b* —a?®) M
Ry = -l 2+a5( ) LA (125)
a}[(b? = a?)* =4 (in2)’ 22
Constants for the isotropic plate:
Byp=0, Dyg=0, Go=0,
~ (1+4v) - ) __2(1+v)(b2—a2)MZ
0= "N [1+2Inb)b* — (1+2Ina)a’| Mz, Co= N ,
_ Mz 2 22 22\ 2
Fy = 3ERN |:12(1+v)1n<a>ab +v(b a)h (126)
where
2 b\?
N=(*-a*)" -4 (ln —) a’b? (127)
a

(i) Constants for the plate subjected to My;
Constants for the transversely isotropic plate:

A1=0, C;=0, E;=0, F =0,
beMx

B =) = by —bo I (B) (@ + 5
Dy = — (8by — be) (a* + b*) My

bZ (b2 — a?) — (8by — be)* In (2) (a® + b2)’
G — (8by — be) [bea’b* + bg (a* + b*)] Mx

~ b2by (b2 — a?) — by 8by — be)? In () (a2 + b2)
8by — bg)? (a> + b*) M
Hy = —— (802 = bo) (“+2) X . (128)
biby (b — a?) — by (8by — be)* In (2) (a® + b?)
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Constants for the isotropic plate:

Ai=0, C; =0, E;1=0, F =0,
B = 3(14v) (1 —v)>Myx

ER3[(1 —v)* (b2 —a?) — B +v)*In () (a2 +b2)]
Dy — 3(a? +b%) B+v) (1 —v?) My

ER3[(1 —v)* (b2 —a?) — B +v)*In () (a2 +b2)]

33+ v)[10(1—v?)a’b?* — B +v) (1 +v) (a® +b*) h?| Mx

T 0ER[(1— v (B2 —a2) — B+ )7 (2) (@ + b2)]
3(1+v) B+ v)? (a® + b?) Mx

e A= (P =) = G+’ (D) (@ + )] (12

(iii) Constants for the plate subjected to Y;
Constants for the transversely isotropic plate:

By=0, Dy=0, Go=0,
_@+b[a +2Inb)b? — (1 +2Ina)a®] Y 2(a+b)(b* —a®)Y
T (2 —a —ambya?] T a[(?-ad) —4(ml)a?]
2(a+b) [2a;In (2) a’b? +as (b* —a?)]Y (130)
a3 [(b2 - 112)2 —4(In 2)2 a2b2]
By =0, D;=0, G, =0, H =0,

Fy =

Y (a*+b%)Y
A] == b N Cl = El = — b s
ai [~ +1n (5) (@ +52)] arf@— 0+ (2) (@ +52)]
22 2 42
= 2[ala b +a5(ah+b)]Y . a3
aj [a2 —b2+1n (5) (a2 + bz)]
Constants for the isotropic plate:
Bop=0, Dyg=0, Go=0,
4 (14+v)(a+b)(b* —a®>+2b°Inb—2a’Ina)Y
0 =
2ER [ (b2 = @)’ 4 (In2)’ 22
c (14+v)(@+b)(b* —a®)Y
0=— ,
Eh[(p —a?)’ =4 (in2)* 2]
(@+b)[4(1+v)In(2)a®? + % (b* —a®) W)Y 132
0=— ;
2ER [ (b2~ a?)* = 4 (in2)’ 22
Bi=0, D=0, G;=0, H =0,

A — (I1+v)Y _ (1+v) (a*>+ %)Y

2Eh[a? — b2 +1In (%) (a2 +b2)] 2Eh[a? — b2 +1n(2) (a2 + b?)]
[6(1+v)a?b? + v (a® + b*) h?]Y 133)
12Eh [a? — b2 +1n (2) (a2 + b2)]

C,=E;
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(iv) Constants for the plate subjected to X = —Q;
Constants for the transversely isotropic plate:

B,=0, D=0, G,=0, H,=0,
o 0 o (a+b%) 0
Ta@-ren@)@+)] T af@-p2+n@)@+)]
212 2 2
Py — 2[ala b” +as (ab +b )] 0 . (134)
ai [a? — b2 +1n(2) (a® + b?)]
Constants for the isotropic plate:
B, =0, D=0, G,=0, H,=0,
e 1+v)0 S (1+v)(a®>+b%) Q
2T 2ER[@@ = +m(E) (@ +62)] 0 2Eh[a>— b2 +1In (L) (a2 +b2)]
2+ R +6(1 2p?
Fz:[v(a + ) + (b—l—v)a ]Q. (135)
12Eh [a> — b* + In (2) (a® + b?)]
(v) Constants for the plate subjected to My;
Constants for the transversely isotropic plate:
Ay=0, Cr, =0, E,=0, F,=0,
B — b6abMy
2 (8by — be) [(4bs — be) (a* — b*) + (8by — be) In (£) ab (a2 + b2) + beab (a? — b2)]’
ab (a2 + bz) My
Dy = )
(4by — be) (a* — b*) + (8by — be) In (%) ab (a2 + b2) + beab (a® — b?)
G — [b6a2b2 + bg (a2 + bz)] abMy
27 by [(4by — be) (a* — b*) + (8b1 — be) In (2) ab (a? + b?) + beab (a® — b2)]’
8by — be) ab (a* + b*) M
Hy = — (802 — bo)a (a;r ) My . (136)
b7 [(4by — be) (a* — b*) + (8by — be) In (2) ab (a? + b?) + beab (a* — b?)]
Constants for the isotropic plate:
Ay =0, Cr,=0, E»,=0, F,=0,
B — 3(1—v)*(1+v)abMy
2T B+ v ER[2(a* —b*) + G+ v)In (L) ab (a2 + b2) — (1 — vyab (a? — b?)]’
Dy — -3 (1 - v2) (a2 + bz) abMy
2T ER[2(a* — b*) + G+ v)In (L) ab (a® + b2) — (I — vy ab (a2 — b?)]’
G 3(L4+v) [B+v) (a® + b*) h* — 10(1 — v) a®b?| abMy
2T 10ER [2(a* = b*) + G+ v)In (2) ab (a2 + b?) — (I — vy ab (a2 — b?)]’
=3{0+v)B+v) (a2 + bz) abMy
Hy = . : (137)
ER3[2(a* —b*) + B+ v)In(2)ab (a® + b%) — (1 —v) ab (a*> — b?)]
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