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Abstract A physical object under consideration is a conventional material that has elastic and thermodynamic
properties. To describe thermal processes in the material, we use a mechanical model different from the models
that are usually used in the kinetic theory and statistical physics. Our method of thermal processes modeling
is based on an idea to introduce a continuum with an internal structure and to consider mechanical quantities
associated with the additional degrees of freedom as analogies of thermodynamic quantities. In this way, we
suggest mechanical interpretations of temperature and entropy, which can be a foundation for the description
of thermal processes within the framework of continuum mechanics and by using the methods of continuum
mechanics.

1 Introduction

Now thermodynamics covers a wide range of issues including gas dynamics, thermoelasticity, thermovis-
coelasticity, thermoelectric and thermomagnetic effects, phase transitions, and chemical reactions. In fact, it
is a set of unrelated branches of science, which differ from each other not only in used mathematical methods
but also in interpretations of basic concepts. In discussing the mathematical methods, we refer to the theory of
thermodynamic potentials, which underlies chemical and electrochemical thermodynamics. We also refer to
the methods of continuum mechanics, which allows us to study thermal processes both in elastic bodies and
in bodies with complicated rheology. In addition, we refer to the methods of crystal lattice dynamics, which
are a basis for the description of transport phenomena in solids from a microscopic viewpoint, and also the
statistical technology including classical statistics and quantum statistics.

The purely phenomenological approaches are used for the description of thermal processes both in non-
equilibrium thermodynamics and in continuum mechanics. The detailed consideration of the methods of
non-equilibrium thermodynamics and possibilities of their use for solving various problems can be found
in the works by the originators of this science, namely Prigogine and De Groot—see [1–3]. In order to
clearly convey the essence of non-equilibrium thermodynamics, it is appropriate to quote from [3]. “Over
the past ten years the macroscopic theory of irreversible processes has become a complete theory. It is based
on two grounds which were established earlier than the theory was formulated. First, the introduction of
non-equilibrium thermodynamic functions made it possible to establish the concept of entropy flow and the
occurrence of entropy, and then to constitute the entropy balance equation on the basis of these concepts.
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Secondly, the thermodynamics of irreversible processes is based on Onsager’s reciprocal relations, i.e., on the
macroscopic equalities which are the result of microscopic reversibility.” The assertion that the macroscopic
theory of irreversible processes has become a complete theory refers only to the linear theory. As for nonlinear
non-equilibrium thermodynamics, it cannot be called a complete theory—see, e.g., [1,2,4,5]. The book [6]
deserves a special reference. This book combines the macroscopic and statistical approaches, that is a rather
rare phenomenon. We also refer to the book [7] on the so-called extended non-equilibrium thermodynamics,
which is constructed based on a generalized Fourier law (the law contains the time derivative of heat flux).

Methods of non-equilibrium thermodynamics andmethods of continuummechanics are very similar. How-
ever, because of some historical reasons, these two sciences have evolved independently of each other. Within
the framework of continuummechanics, there are different approaches to the description of thermal processes.
Truesdell’s method, which is based on the combined use of the first and second laws of thermodynamics, is
mostly used—see [8,9]. The essence of this method is the following. The second law of thermodynamics is
written in the form of the Clausius–Duhem inequality.With the help of the energy balance equation, some of the
thermal terms, namely the rate of heat supplied directly to the volume of a medium and the divergence of a heat
flux vector, are eliminated from the Clausius–Duhem inequality. As a result, the so-called reduced dissipation
inequality, which must hold for all conceivable processes in a medium, is obtained. Since the reduced dissi-
pation inequality includes neither external mechanical forces nor the heat supply from an external source, this
inequality imposes certain restrictions on the constitutive equations. The applications of Truesdell’s method
for constructing various thermo-mechanical models can be found, e.g., in [10–13]. Truesdell’s method was
considerably developed in the works by Zhilin—see [14,15]. Eventually, Zhilin refused the Clausius–Duhem
inequality and suggested a fundamentally new approach, involving the more restrictive formulation of the
second law of thermodynamics—see [16,17]. The methods similar to those used in non-equilibrium thermo-
dynamics are applied in continuum mechanics by Nowacki [18] and some other authors—see, e.g., [19–21].
The approach based on the combination of non-equilibrium thermodynamics and Truesdell’s method is devel-
oped [22–24]. Critical reviews of the basic concepts and fundamental principles of thermodynamics can be
found in [25,26]. In non-equilibrium thermodynamics and continuummechanics, there is no mechanical inter-
pretation of nature and physical meaning of temperature, entropy, and other thermodynamic quantities. The
concept of temperature as the average kinetic energy of the chaotic motion of molecules and the probabilistic
interpretation of entropy, adopted in the kinetic theory and statistical physics, do not contradict non-equilibrium
thermodynamics and continuum mechanics. However, the use of such concepts is problematic when deriving
the balance equations, and it is almost impossible to derive the equations that describe the diffusion-type trans-
port processes. The absence of mechanical interpretations of thermodynamic quantities in non-equilibrium
thermodynamics and continuum mechanics significantly reduces the possibility to use intuitive thinking when
constructing new theories. This circumstance is not very important in the case of linear problems, but it hinders
the development of nonlinear theories.

Appreciating the achievements of statistical physics in the field of thermodynamics of gases and crystalline
solids, we note that the study of thermal phenomena in liquids and amorphous solids, as well as the analysis
of coupled problems of thermoelasticity and thermoviscoelasticity, is still beyond the scope of this science.
In addition, there are some questions that are difficult to answer by using the interpretations adopted in the
kinetic theory and statistical physics. One question is: How to explain in terms of the kinetic theory the thermal
radiation that propagates in vacuum over long distances and causes heating of bodies? It is generally accepted
that the thermal radiation is a result of the electromagnetic radiation that acts on a body and sets its atoms
in thermal motion. But it is unclear why this process occurs at frequencies lying in the infrared range and
does not occur at other frequencies, regardless of atomic masses and characteristics of interatomic bonds.
Another question is: How to determine the temperature of nano-objects in terms of the kinetic theory? The
kinetic theory considers absolute temperature to be proportional to the average kinetic energy of the chaotic
microscopic motion of atoms and molecules. In the case of a macroscopic size body, it is not easy but it
is possible to separate the mechanical (macroscopic) motion of the body, relating to deformation processes,
and the thermal (microscopic) motion of its particles [27]. But it is unclear how to separate the mechanical
and thermal motion in the case when an object is composed of only several tens of atoms. All the problems
described above force us to ponder the question: Does the interpretation of temperature as the average kinetic
energy of the chaotic motion of atoms and molecules reflect some physical reality? To clarify this issue, first of
all, we quoteMaxwell’s remark toward the kinetic theory created by him—see [28, p. 378]: “…If the properties
of such a system of bodies are found to correspond to those of gases, an important physical analogy will be
established, which may lead to more accurate knowledge of the properties of matter. If experiments on gases
are inconsistent with the hypothesis of these propositions, then our theory, though consistent with itself, is
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proved to be incapable of explaining the phenomena of gases. In either case, it is necessary to follow out the
consequences of the hypothesis.” We believe that the same can be said with respect to any other theory. In
order to appreciate the usefulness of a theory, we have to examine whether consequences of the theory are in
agreement with the experimental data.

Next, to clarify the question whether the interpretation of temperature as the average kinetic energy of the
chaotic motion of atoms and molecules is a reflection of some physical reality, we discuss some well-known
facts. First of all, we note that temperature cannot be measured directly. In order to measure temperature, we
have to measure a physical quantity, a change of which is a sign of the change in temperature. Then, we have
to calculate the value of temperature taking into account the fixed points of the temperature scale and using a
formula that relates the change in the chosen physical quantity and the change in temperature. Thus, there is
no reason to believe that measuring temperature we measure the average kinetic energy of the chaotic motion
of atoms and molecules. It is generally accepted that the Brownian motion (a chaotic motion of microscopic
particles of solid matter which are suspended in a liquid or gas) is a visual experimental confirmation of the
molecular-kinetic theory. Indeed, the Brownian motion is a consequence of the thermal motion of molecules.
Observation of the Brownian motion convinces us that the thermal motion of molecules becomes more intense
with increasing temperature. But this is not a sufficient reason to identify temperature with the average kinetic
energy of the chaotic motion of atoms or molecules. It is well known, for example, that all materials possess
electrical resistance and a change in temperature of a material leads to the change in its electrical resistance.
However, nobody concludes from this fact that temperature is electrical resistance. Similar examples can be
found in large numbers. Thus, the known facts do not give us sufficient reasons to take for granted the fact
that temperature is the average kinetic energy of the chaotic motion of atoms and molecules. Hence, the
interpretation of temperature adopted in the kinetic theory is rather a mathematical model than a physical
reality. That is why any alternative model of thermal processes, the mathematical description of which is
reduced to the known equations, is of interest from a theoretical point of view.

Our purpose is to suggest a mechanical interpretation of temperature that can be a basis for the description
of thermal processes within the framework of continuum mechanics and by using the methods of continuum
mechanics. The main idea is to introduce a continuum with an internal structure and additional degrees of
freedom. We believe that characteristics of motion and interactions associated with the internal structure can
be treated as mechanical analogies of temperature and other thermodynamic quantities. The suggested model
of thermal processes is based on internal rotational degrees of freedom. There are the kinetic theories that
include rotational degrees of freedom (see, e.g., [29–31]) as well as the kinetic theories that take into account
internal degrees of freedom (see, e.g., [32]). The suggested model of thermal processes is not similar to these
models. It is based on quite different ideas and approaches.

2 Different views on the nature of heat: historical remarks

Starting from antiquity, there exist different viewpoints on the nature of heat—see [33–36]. According to one
point of view, heat is a state of a body. For example, Roger Bacon (1214–1292) and Johannes Kepler (1571–
1630) adhered to this opinion. In accordance with another point of view, heat is a substance. Galileo Galilei
(1564–1642) formulated the hypothesis of existence of the imponderable fluid accounting for heat. Afterward,
this imponderable fluid was called the caloric fluid. The caloric fluid was considered to be dispersed all over the
matter and to be capable of penetrating into bodies. Combining with solids, it can transform them into liquids,
and combining with liquids it can transform them into gases. Antoine Laurent de Lavoisier (1743–1794),
Pierre Simon de Laplace (1749–1827) and Jean Baptiste Joseph Fourier (1768–1830) were adherents of the
caloric fluid theory. The success and popularity of the caloric fluid in XVII–XVIII centuries was caused by the
fact that predictions of the theory were verified by the experiments carried out at that time. The caloric fluid
theory was recognized to be erroneous only in XIX century when, due to the works by Julius Robert Mayer
(1814–1878), James Prescott Joule (1818–1889), Hermann Helmholtz (1821–1894) and William Thomson,
Lord Kelvin (1824–1907), the principle of equivalence of heat and energy became firmly established and the
heat conservation law, which had dominated earlier, was completely replaced by the energy balance equation
(the first law of thermodynamics).

Robert Boyle (1627–1691) assumed heat to be associated with the molecular motion. In fact, his assump-
tion was the start of the kinetic theory, which was further developed by Rudolf Clausius (1822–1888) and
James Clerk Maxwell (1831–1879). In 1857, Clausius derived the basic formula of the kinetic theory of gases,
by which the gas pressure is equal to two-thirds of the average kinetic energy of molecules per unit volume.
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The comparison of this formula for pressure with the ideal gas law has led to the identification of temperature
with the average kinetic energy of the translational motion of molecules. In 1859, Maxwell suggested the
formula for the velocity distribution, which was later named after him. In 1866, Ludwig Boltzmann (1844–
1906) generalized the Maxwellian distribution for the case when gas particles are subjected to external forces.
The formula suggested by him was later called the Maxwell–Boltzmann distribution. A new stage in the
development of statistical thermodynamics began with the works by Josiah Willard Gibbs (1839–1903). In
contrast to Maxwell and Boltzmann, who have taken the velocity space as a starting point, Gibbs constructed
statistical thermodynamics based on the concept of ensembles. From a mathematical point of view, the use of a
probabilistic approach is a significant progress. It would seem that, due to the rapid development of the kinetic
theory and statistical mechanics in XIX–XX centuries, the kinetic theory of heat had to become a basis for
classical thermodynamics instead of the caloric fluid theory, which was dominant in classical thermodynamics
formerly. However, this did not happen. Starting from the middle of XIX century, there are no mechanical
interpretations of temperature and other thermodynamic quantities in classical thermodynamics. Any mechan-
ical models of heat processes are also absent in non-equilibrium thermodynamics and continuum mechanics.
This refers to the Prigogine non-equilibrium thermodynamics, Truesdell’s method in continuum mechanics,
and some other approaches which have arisen from classical thermodynamics. Certainly, in statistical physics
the methods of the description of non-equilibrium processes are based on the mechanical models (see, e.g.,
[37–40]). However, these models and methods are not consistent with continuum mechanics.

Besides the caloric fluid theory and the kinetic theory of gas, a number of different mechanical models of
thermal processes were suggested by outstanding scientists of past centuries. Some of themodels are relevant to
the subject of our study, and we briefly discuss them. Leonhard Euler (1707–1783) gave his view on the nature
of heat in [41]. Unfortunately, this manuscript is accessible only to the readers who know Latin. A detailed
exposition of some parts of themanuscript as well as the translation of a few quotations can be found in [42,43].
According to [42,43], Euler represented particles of a combustible material as the shells containing within
themselves some peculiar matter, quickly rotating and very elastic. He supposed that the motion resource of
the rotating matter becomes free when the shells are destroyed because of some reason. Euler believed that the
release of the motion resource leads to visible results, namely, to the appearance of flames around the burning
body. Thus, based on [42,43] we may conclude that Euler considered thermal processes to be associated with
the rotational motion of particles constituting an internal structure of a substance. However, there are not ruled
out other interpretations of Euler’s text. Mikhail V. Lomonosov (1711–1765) held similar views—see [44]. He
was convinced that heat consists in rotational motion of particles constituting materials. Benjamin Thompson
(1753–1814) carried out experiments which showed the failure of the caloric fluid hypothesis, and he reached
a conclusion that all thermal effects should be considered as a phenomenon of motion [33,45]. Thompson’s
experiments were partially repeated, confirmed and expanded by Humphry Davy (1778–1829). Davy believed
that the thermal effects are associated with a rotational motion [33,46]. He reasoned as follows. When a body
is heated, it expands, i.e., the matter particles move pushing each other. It is very likely that matter particles
are always in motion. While the temperature remains constant a body is not expanding or compressing, i.e.,
the matter particles do not change their positions. Hence, at the constant temperature the motion of matter
particles has to be rotational. There were some other views on the nature of heat. Thomas Young (1773–1829)
considered heat to be the oscillations of some particles (not particles of matter). He believed that the thermal
oscillations propagate through empty space as waves [33,47]. In his opinion, the only difference between light
and heat is the fact that the thermal oscillations are slower than the light oscillations. Augustin Louis Cauchy
(1789–1857) created several models of light-bearing ether that include not only the transverse oscillations but
also longitudinal ones. In fact, he created several theories of crystal optics with the longitudinal oscillations.
Cauchy supposed the longitudinal oscillations to have the heat nature [34,48]. He believed that the existence
of longitudinal oscillations would be verified by experiment.

Our approach to model thermal processes is based on an idea to combine Euler’s concept of the rotational
character of motion that causes thermal effects and Cauchy’s concept of the interdependence between the
longitudinal oscillations of light-bearing ether and heat processes.

3 A subject of study and basic ideas of the suggested approach

The physical object under consideration is a conventional isotropic homogeneous material without microstruc-
ture, inclusions, etc. This material has elastic and thermodynamic properties. In order to describe thermal pro-
cesses in such a material by means of some mechanical model without using statistical methods, we introduce
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the continuum possessing internal rotational degrees of freedom. The internal degrees of freedom are used for
modeling thermal processes. Motion associated with the internal degrees of freedom has no relation to the real
motion of the material particles. Characteristics of motion associated with the internal degrees of freedom, as
well as characteristics of interactions associated with the internal degrees of freedom, should be considered as
analogies of thermodynamic quantities.

The main ideas of the description of thermoelastic and thermoviscoelastic processes by means of the
mechanical model with internal rotational degrees of freedom (to be exact, the model of one-rotor gyrostat
continuum) were first stated in [49] and developed in [50–52]. These ideas consist in the following:

– We use the one-rotor gyrostat continuum for modeling solids, liquids and gases. This continuum is consid-
ered to be elastic. The interaction of carrier bodies of the gyrostats is attributed to the mechanical processes.
The interaction of rotors of gyrostats models thermal processes. The interaction of the carrier bodies and
the rotors provides the interplay of mechanical and thermal processes.

– The gyrostats (whichmodelmaterial particles) are considered to be embedded into somemediumoccupying
the whole infinite space. This medium represents the physical vacuum, the field, the ether or something
like that. In the papers cited above, it is called the thermal ether. In what follows, it will be called ‘the ether’
for short.

– We assume that all gyrostats interact with the ether by means of elastic moments associated with the
rotational degrees of freedom. Due to the fact that the ether fills the whole infinite space and interacts with
all gyrostats, it plays a double role in our model.

– On the one hand, we assume that all interactions of gyrostats with each other are performed by the
instrumentality of the ether. To be exact, the carrier bodies of different gyrostats interact through the
agency of the ether, and the rotors belonging to different gyrostats interact also via the ether. From a
mathematical point of view, this means that the constitutive equations for all quantities characterizing the
stress state of the one-rotor gyrostat continuum depend not only on the properties of the carrier bodies and
the rotors of the gyrostats, but also on the elastic properties and the stress–strain state of the ether filling
the space between the gyrostats.

– On the other hand, we assume that the ether provides a dissipation of the gyrostats’ energy. Since the
gyrostats interact with the ether, their motion causes appearance of waves in the ether. As a result, a certain
part of the gyrostats’ energy is spent on formation of the waves. Since the ether is considered to be infinite,
waves carrying away the gyrostats energy do not come back. The result is the dissipation of the gyrostats
energy into the ether.

– The dissipation of the gyrostats’ energy into the ether becomes apparent in the material medium in the form
of the heat conduction and the internal damping. The heat conductionmechanism is supposed to be provided
only by the moment interactions between the rotors and the ether. The internal damping mechanism can be
provided in different ways, both due to the kinematic connection between the rotors and the carrier bodies
and thanks to the interaction of the carrier bodies with the ether.

Nowwe explain the physical meaning of the suggested model. For modeling a mediumwith a combination
of various physical properties, we consider atoms as complex particles with several internal rotors. According
to the concepts of modern physics, atoms have a very complex internal structure. For example, they can be in
different energy states and possess the ability to radiate and absorb the energy quanta and elementary particles.
These facts should be taken into accountwhen the properties of a single atomor amolecule consisting of several
atoms are studied. When modeling a medium which consists of millions of atoms, many properties of atoms
can be ignored or taken into account integrally, and it should be done so. For example, when modeling crystal
lattices, very simple models of atoms are used; namely, atoms are assumed to be mass points or infinitesimal
rigid bodies. Let us suppose that we want to model a medium possessing some mechanical, thermal, electric,
and magnetic properties. In order to construct such a model, we can use different approaches. One of them is
to consider atoms as complex particles with internal structure and internal degrees of freedom.

There are two different types of particles with an internal structure: particles with internal translational
degrees of freedom (deformable particles) and particles with internal rotational degrees of freedom (multi-
spin particles). Continua consisting of particles of the first type are called micromorphic continua. Continua
consisting of particles of the second type are called micropolar continua. A peculiarity of micropolar continua
is the fact that each particle of such a continuum has three translational and a number of rotational degrees
of freedom. The number of rotational degrees of freedom of a multi-spin particle depends on the number of
its rotors and the number of independent variables required to determine the orientation of each rotor relative
to the carrier body of a multi-spin particle. All additional strains and stresses in the micropolar continua are
related to the rotational degrees of freedom. In principle, both deformable particles and multi-spin ones can
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(a) (b)

Fig. 1 A quasi-rigid body and its approximate model (the one-rotor gyrostat), which are equivalent in a first approximation

be used to model atoms, and, consequently, both the micromorphic and micropolar continua can be used to
model a medium with some non-mechanical properties. Let us assume the possibility of large strains of the
micromorphic continuum that are associated with the internal degrees of freedom, as well as the possibility
of large relative velocities and accelerations. Then, the problem we are confronted with is to keep atoms as a
whole and conserve their characteristic sizes. Such obstacles do not arise in the case of micropolar continua.
Therefore, in view of the fact that under certain conditions any physical processes demonstrate nonlinear
behavior, it can be argued that the micropolar continua are better suited for modeling media that possess not
only the mechanical properties.

In what follows, we consider an atom to be a multi-spin particle like a quasi-rigid body (see Fig. 1a). The
quasi-rigid body is a rigid body in the sense that the distances between any two points of this particle are
kept unchanged under arbitrary motions of the quasi-rigid body. However, unlike the standard rigid body, the
quasi-rigid body contains several rotors inside. Each rotor can rotate independently, and the rotation of rotors
does not change the inertia tensor of the quasi-rigid body. In fact, the quasi-rigid body is a multi-rotor gyrostat
that consists of a carrier body and a number of rotors rotating independently relative to the carrier body. When
modeling atoms by the multi-rotor gyrostats, the motion of carrier bodies characterizes the motion of atoms as
rigid bodies. It is the motion of atoms as rigid bodies that causes mechanical strains and mechanical stresses in
the material medium. The rotors simulate elementary particles constituting the atoms. Pursuant to this model,
the motion of rotors simulates the change in the internal state of atoms. In our opinion, the internal state of
atoms determines all the physical processes occurring in the material medium, namely electrical, magnetic,
and thermal. Therefore, using the multi-rotor gyrostat continuum we can simulate all the physical processes
in the material medium.

As noted above, simple models of atoms can be used for constructing continuous models of matter, and it
should be done so. In many cases, atoms can be modeled bymass points or infinitesimal rigid bodies. However,
if we want to model a material medium with several physical properties (not only mechanical but also thermal,
electric and magnetic), then the simplest models of atom, namely a mass point or a rigid body, are not suitable.
Consideration of a multi-rotor gyrostat (instead of a mass point or an infinitesimal rigid body) as a model
of atoms significantly complicates a mathematical formulation of the problem and increases the number of
parameters. Therefore, we try to simplify this model of atoms, but so that a simpler model retains key features
of the multi-rotor gyrostat.

Let us consider the quasi-rigid body shown in Fig. 1a. The motion of the quasi-rigid body as a whole is
defined by the position vector of its mass center r(t) and the rotation tensor of its carrier body P̃(t). The mass
center velocity and the angular velocity of the carrier body are given by the formulas

v(t) = dr
dt

, ω̃(t) = −1

2

(
dP̃
dt

· P̃
)

×
(1)

where ( )× denotes the vector invariant of a tensor that is defined for an arbitrary dyad as (ab)× = a × b. Let
us consider a rotor with a number i . The position of the rotor with respect to the mass center of the quasi-rigid
body in the reference configurations is defined by the position vectorRi . According to the fundamental theorem
of the rigid body kinematics, vector ri that defines the rotor position in the actual configuration is calculated
by the formula

ri (t) = r(t) + P̃(t) · Ri . (2)
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The rotation of this rotor is defined by the rotation tensor Pi (t); the translational and angular velocities are
calculated by the formulas

vi (t) = v(t) + ω̃(t) × P̃(t) · Ri , ωi (t) = −1

2

(
dPi

dt
· PT

i

)
×

. (3)

The dynamical structures of the rotor i , namely the kinetic energy, the linear momentum and the angular
momentum calculated with respect to some fixed point Q, have the form

Ki = mi

(
1

2
vi · vi + 1

2
Ji ωi · ωi

)
, K1i = mi vi , KQ

2i = mi
[
(ri − rQ) × vi + Ji ωi

]
(4)

wheremi and Ji are themass and themoment of inertia of the rotor i . For simplicity sake, the rotors are assumed
to be isotropic, and the carrier body is assumed to be inertialess. According to the axioms of additivity, the
dynamical structures of the quasi-rigid body can be represented as

K =
N∑
i=1

Ki , K1 =
N∑
i=1

K1i , KQ
2 =

N∑
i=1

KQ
2i (5)

where N is the number of rotors. Taking into account Eqs. (1)–(5), it is easy to show that the kinetic energy
of the quasi-rigid body K can be represented as a quadratic form of vectors v, ω̃, ωi , and vectors K1, K

Q
2 can

also be expressed in terms of these quantities (see, e.g., [49]). Let us represent the angular velocity of the rotor
i in the form

ωi (t) = ω(t) + ω̂i (t), ω(t) = 1

N

N∑
i=1

ωi (t). (6)

Here ω(t) is the average angular velocity of the rotors; ω̂i (t) is the deviation of the angular velocity of the
given rotor from the average angular velocity. Now we assume that

|ω̂i (t)| � |ω(t)| ⇒ ωi (t) ≈ ω(t). (7)

It is easy to show that the approximate expressions for the kinetic energy, the linear momentum, and the angular
momentum of a quasi-rigid body obtained under assumption (7) coincide with those of the one-rotor gyrostat
shown in Fig. 1b. Thus, the quasi-rigid body (or what is the same, the multi-rotor gyrostat) and the one-rotor
gyrostat are equivalent in a first approximation. The simplified model (the one-rotor gyrostat) is quite suitable
for the purposes of this study. That is why modeling the material medium we use the one-rotor gyrostats to
model the atoms.

In a continuum theory, we use the physical characteristics averaged over a representative volume that
contains billions of atoms. It is important to note that the dynamic properties of a representative volume
of the continuous medium have no qualitative difference from the dynamic properties of particles in the
representative volume. Within the spatial description, it is customary to refer all physical quantities to the
representative volume fixed in space. During its evolution, the representative volume is occupied by different
particles, each having its own mass, tensor of inertia, translational and angular velocities. The formulation of
the main ideas for defining the inertial and kinematic characteristics of the representative volume within the
spatial description can be found in [53].

The derivation of equations of a one-rotor gyrostat continuum can be found in [49]. The concepts of
temperature, entropy, and heat flow are introduced in the context of the suggestedmodel. In [49], it is proved that
the mathematical description of the suggested model can be reduced (in special cases) to well-known equations
such as the heat conduction equation, the self-diffusion equation, and the equations of coupled thermoelasticity.
Amore complicatedmathematicalmodel, which describes both the volume and shear viscosities, is constructed
in [51,52]. On the basis of the suggested theory, the dependence of the acoustic wave attenuation factor on
the angular frequency is obtained. This dependence is in close agreement with the classical dependence in
the low-frequency range. In the hypersonic frequency range, it agrees with the dependence obtained by using
the phonon theory. In [52], the physical nature of heat conduction and internal damping is discussed. This
discussion is based on the theoretical considerations (the concept of thermal ether) and the analysis of two
model problems, which were solved in [50,51]. In [52], the volume viscosity, the shear viscosity, and the



2306 E. A. Ivanova

heat flux relaxation constant are determined by using the known values of the sound velocity and the acoustic
wave attenuation factor. The obtained values of the heat flux relaxation constant are compared with the values
derived from the phonon theory.

In [49–52], the mathematical description of the suggested model is constructed within the framework of
linear theory. Thus, the physically and geometrically linear theory of thermoviscoelasticity is considered in the
cited papers. Now, our purpose is to carry out the further development of the theory in the context of the same
mechanical model. In what follows, we consider nonlinear thermodynamic effects. However, for simplicity
sake, we ignore the internal damping.

4 The one-rotor gyrostat continuum as a model of an elastic medium with thermodynamic properties

Now we give a brief description of our model and summarize the set of equations that describes the model
in the linear approximation [52]. We consider the one-rotor gyrostat continuum. The one-rotor gyrostat is a
particle that consists of the carrier body and the rotor (see Fig. 2). The rotor can rotate independently of the
carrier body rotation, but it cannot execute translatory motion relative to the carrier body. Thus, the one-rotor
gyrostat has nine degrees of freedom, three translational ones and six rotational ones. Free space between the
gyrostats is filled up by the ether. The ether is shown in Fig. 2 as the body points in the space between the
gyrostats. With respect to the ether, we make the following assumptions:

(i) The ether particles aremuch smaller than elementary particles of the conventional substance. The structure
of the ether particles coincideswith the structure of the rotors that belong to the gyroststs. The last assertion
is based on Kelvin’s idea that atoms (as well as all known elementary particles) are the vortex rings that
consist of more “elementary” particles (particles of the ether)—see [54]. According to Kelvin’s idea, the
only difference between the ponderable matter and ether is that the density of ponderable matter is much
larger than the density of free ether.

(ii) Following Kelvin’s ideas, we assume that the ether is a medium that is less dense than the conventional
substance. The ether particles fill the space between elementary particles of the conventional substance,
and the elementary particles interact with each other via the ether particles.

(iii) The interactions of ether particleswith each other and the interactions of ether particleswith the elementary
particles of the conventional substance are basedonlyon the rotational degrees of freedomand theprinciple
of moment interactions. There are no interactions between these particles by means of forces. Thus, from
a continuum mechanics point of view, the model of ether is the special case of the Cosserat continuum.
A nonlinear model of ether is presented in Appendix F. A linearized model of ether is presented in
Appendix G.

(iv) The ether is an infinite medium, i.e., it occupies the whole space. The ether is assumed to be an elastic
medium. However, due to its infinite extent the ether carries away the energy of rotational motion of
material particles located in it. When the particles interact with the ether, their motion disturbs the ether
and causes appearance of waves in it. Since the ether is infinite, the waves cannot be reflected from the
boundaries, and hence, they cannot come back. Thus, the part of the material particles energy, which is
spent on formation of the waves in the ether, is irretrievably lost.

Thus, initially we consider a two-component medium that consists of the one-rotor gyrostat continuum
simulating the conventional substance and the body-point continuum simulating the ether. This two-component

Fig. 2 An elementary volume of the continuum of one-rotor gyrostats together with the continuum of body points in the space
between the gyrostats (on the left-hand side) and the one-rotor gyrostat (on the right-hand side)
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medium is assumed to be conservative. When we study only the one-rotor gyrostat continuum, we should
consider the ether to be an external factor with respect to the continuum under study. Interacting with the
material particles via the rotational degrees of freedom, the boundless ether creates the moment of viscous
damping acting on the material particles. Thus, eliminating the ether we obtain a non-conservative model of
the one-rotor gyrostat continuum.

Further we consider only the continuum of one-rotor gyrostats. We start with a linear theory. Let vector r
be a position of some point in space if the spatial description is used, or a position of some point of the material
medium in the reference configuration if the material description is used. It does not matter because, from a
mathematical point of view, there is no difference between the spatial and material descriptions in a linear
theory. We introduce the following notations: ρ(r, t) is the mass density; I = IE and J = JE are the mass
densities of inertia tensors of the carrier bodies and the rotors, respectively, whereE is the unit tensor; u(r, t) is
the displacement vector; v(r, t) is the velocity vector; P̃(r, t) and ω̃(r, t) are the rotation tensor and the angular
velocity vector of the carrier bodies; and P(r, t) and ω(r, t) are the rotation tensor and the angular velocity
vector of the rotors. When the material medium is not disturbed, tensors P̃(r, t) and P(r, t) are assumed to be
equal to the unit tensor. Upon the linearization near the undisturbed position, tensors P̃(r, t) and P(r, t) are
written as

P̃(r, t) = E + ϕ(r, t) × E, P(r, t) = E + θ(r, t) × E (8)

where ϕ(r, t), θ(r, t) are the rotation vectors of the carrier bodies and the rotors, respectively. Since |ϕ(r, t)|
and |θ(r, t)| are assumed to be small, the kinematic relations take the form

v = du
dt

, ω̃ = dϕ

dt
, ω = dθ

dt
. (9)

The balance equations of the linear momentum for the gyrostats and of the angular momentum for the
carrier bodies of gyrostats are

∇ · τ + ρ∗f = ρ∗
dv
dt

, ∇ · μ + τ× + ρ∗m = ρ∗ I
dω̃

dt
. (10)

Here ∇ is the gradient operator; τ is the stress tensor; μ is the moment stress tensor modeling the interaction
of the carrier bodies of gyrostats; ρ∗ is some reference value of ρ, and it does not depend on time; f is the
mass density of external forces; andm is the mass density of external moments acting on the carrier bodies of
gyrostats.

Since the one-rotor gyrostat has nine degrees of freedom, three translational ones and six rotational ones,
the balance equations (10) should be added by the balance equation of the angular momentum for the rotors
of gyrostats. This equation has the form

∇ · T + ρ∗L = ρ∗ J
dω

dt
(11)

where T is the moment stress tensor modeling the interaction of the rotors of gyrostats and L is the mass
density of external moments acting on the rotors.

The energy balance equation for some part of the one-rotor gyrostat continuum that occupies a control
volume V is written as

d

dt

∫
(V )

ρ∗(K +U ) dV =
∫

(V )

ρ∗(f · v + m · ω̃ + L · ω) dV +
∫

(S)

(
τ n · v + μn · ω̃ + Tn · ω

)
dS. (12)

Here K is the kinetic energy density per unit mass; U is the internal energy density per unit mass; τ n = n · τ ,
μn = n · μ, and Tn = n · T where n denotes the unit outer normal vector to the surface S.

By standard reasoning, taking into account the balance equations (10), (11), we transform Eq. (12) to the
form

d(ρ∗U )

dt
= τ T · ·(∇v + E × ω̃

) + μT · ·∇ω̃ + TT · ·∇ω (13)

where the double scalar product is defined as ab · ·cd = (b · c)(a · d). Introducing the strain tensors ε, κ , ϑ ,
which are determined by the formulas

ε = ∇u + E × ϕ, κ = ∇ϕ, ϑ = ∇θ , (14)
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Fig. 3 Two models of interaction between the rotors and the ether: the 1D model on the left and the 3D model on the right

and taking into account Eq. (9), we rewrite Eq. (13) in the form

d(ρ∗U )

dt
= τ T · ·dε

dt
+ μT · ·dκ

dt
+ TT · ·dϑ

dt
. (15)

Further we consider the special case of the theory of a one-rotor gyrostat continuum. We start with the
formulation of two hypotheses.

Hypothesis 1 Vector L is a sum of the moment Lh characterizing external actions of all sorts and the moment
of linear viscous damping

Lf = −β Jω (16)

where β is the coefficient of damping. The moment Lf models the influence of the ether (the body points
positioned in the space between the gyrostats) that causes the dissipation of the rotors energy. The moment Lh
models the influence of external ponderable bodies that is passed by means of the ether. It can model actions
of various physical nature, e.g., heat supply, electromagnetic excitation or some kind of radiation. The main
difference between the moment Lh and the moment Lf is the fact that the moment Lh occurs only when there
are some ponderable bodies, whereas the moment Lf occurs regardless of the presence or absence of other
bodies.

The structure of moment (16) is chosen in accordance with the results obtained by solving two model prob-
lems [50,51]. The model considered in [50] consists of the semi-infinite inertial elastic rod (a one-dimensional
model of the ether) that is connected with the rotor by means of the inertialess spring working in torsion
(rotation about the axis of the rod)—see Fig. 3, on the left-hand side. The rotation of the rotor disturbs the
elastic rod and causes the torsion waves in it. If the rod had a limited size, the waves would be reflected from
the boundary and come back. In this case, the system would be conservative. The dissipation of the rotor
energy occurs only due to the infinite length of the rod and the absence of sources at infinity. As shown in
[50], after eliminating the variables that characterize the rod motion, the problem is reduced to the set of
equations describing the rotor motion. In the set of equations, there is the equation that contains the moment
of viscous damping characterizing the energy radiation in the ambient medium. It is proved that the moment
of viscous damping is proportional to the angular momentum of the rotor, and the coefficient of damping β
depends on the parameters of the rod and the torsional stiffness of the spring connecting the rotor and the rod.
In order to have a more appropriate model of the dissipative process, we should consider the interaction of the
rotor with a three-dimensional model of the ether occupying the whole space. The model considered in [51]
consists of the spherical source (the spherical surface each point of which is the rotor) and the infinite inertial
elastic continuum modeling the ether—see Fig. 3, on the right-hand side. All rotors of the spherical source are
connected with the continuum by means of the inertialess spring working in torsion (rotation about a radius
of the spherical source). The solution of this problem in the case of spherical symmetry can be found in [51].
Comparing the results obtained in the case of the one-dimension model of the ether and the results obtained
for the spherically symmetric problem in the case of three-dimension model of the ether, we conclude that
although the sets of equations somewhat differ from each other, they have one important similarity. To be exact,
both the problems include the equations with the dissipative terms proportional to the angular momentum,
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and the coefficients of viscous damping have the same dependence on the model parameters. Thus, in view
of the results of [50,51], we assume that the moment modeling the influence of the ether is the moment of
viscous damping proportional to the angular momentum vector—see Eq. (16). We note that the linear models
are studied in [50,51]. A nonlinear statement of the problem modeling the interaction of the rotor with the
ether is considered in Sect. 7.4 and Appendix H.

Hypothesis 2 The moment stress tensor T characterizing the interactions between the rotors is the spherical
part of tensor

T = T E. (17)

Assumption (17) is based on the following interpretations.We suppose the interaction of the carrier bodies of
gyrostats to be attributed to the mechanical processes. We suppose that the interaction of the rotors of gyrostats
models thermal processes, and the interaction of the carrier bodies and the rotors provides the interplay of
mechanical and thermal processes. We consider the moment interaction between the rotors to be an analogy
of temperature. Since temperature is a scalar, the moment stress tensor T must be characterized by one scalar
quantity. Hence, it must be the spherical part of the tensor—see Eq. (17).

In view of Eq. (17), the energy balance equation (15) can be reduced to the form

d(ρ∗U )

dt
= τ T · ·dε

dt
+ μT · ·dκ

dt
+ T

dϑ

dt
, ϑ = tr ϑ . (18)

If we consider Eq. (18) to be the energy balance equation for the classical medium, then we interpret the
last term on the right-hand side of this equation as the thermodynamic one. Since the quantity T has the sense
of temperature analogy, the quantity ϑ acquires the meaning of volume density of entropy analogy. The units of
measurement of the temperature analogy and the entropy analogy that are introduced within the framework of
the suggested model are different from the standard units of measurement of temperature and entropy. Indeed,
the unit of measurement of T is N/m, whereas the unit of measurement of temperature is Kelvin; the unit of
measurement of ϑ is 1/m, whereas the unit of measurement of volume density of entropy is J/(m3 K). This
obstacle can be overcome by introducing a normalization factor a and changing the variables:

T = aTa, ϑ = 1

a
ϑa, θ = 1

a
θa, ω = 1

a
ωa, Lh = aLa

h, J = a2 Ja. (19)

Here Ta is the temperature that can be measured by a thermometer. Its unit of measurement is Kelvin. Cor-
respondingly, ϑa is the volume density of entropy. Its unit of measurement is J/(m3 K). As shown in [52], in
the case of the linear theory the normalization factor a can be eliminated from all equations of the suggested
theory. Therefore, we have no way to determine the numerical value of the normalization factor a. But this is
not necessary.

Now we consider the model of the continuum that is based on the hypotheses stated above. In view of the
hypotheses, the balance equation of the angular momentum for rotors takes the form

∇Ta − ρ∗β Jaωa + ρ∗La
h = ρ∗ Ja

dωa

dt
. (20)

By taking the divergence of both sides of Eq. (20), we obtain one of the forms of the heat conduction equation,
namely

ΔTa − ρ∗β Ja
dϑa

dt
− ρ∗ Ja

d2ϑa

dt2
= −ρ∗∇ · La

h (21)

where the term ρ∗∇ ·La
h plays the role of a heat supply. We note that the heat conduction equation (21) can be

reduced to the conventional form. In order to do this, we have to express ϑa in terms of temperature and strain
tensors by using the constitutive equation given below.

According to the energy balance equation (18), the internal energy density is a function of the strain tensors
ε, κ , and the scalar strain measure ϑ (or the volume density of entropy ϑa that is the same thing). Since we
construct the linear theory, the internal energy density ρ∗U is assumed to be a quadratic form of the quantities
listed above. In this case, the constitutive equations are written as

τ T = τ T
0 + 4C1 · ·ε + 4C2 · ·κ + C4 (ϑa − ϑ∗

a ),

μT = μT
0 + ε · · 4C2 + 4C3 · ·κ + C5 (ϑa − ϑ∗

a ),

Ta = T ∗
a + ε · ·C4 + κ · ·C5 + C6 (ϑa − ϑ∗

a ). (22)
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Here τ 0 and μ0 are the initial stresses, T
∗
a is the value of absolute temperature at which the thermodynamic

parameters are determined, ϑ∗
a is the corresponding value of volume density of entropy, 4C1, 4C2, 4C3 are

the fourth-rank stiffness tensors,C4,C5 are the second-rank tensors characterizing the interplay of mechanical
and thermodynamic processes, and C6 is the scalar quantity characterizing the specific heat.

In view of the foregoing analogies between the mechanical and thermodynamic quantities, the set of
equations (9), (10), (14), (19), (21), (22) can be considered as the mathematical description of a conventional
material which possesses elastic and thermodynamic properties.

5 The structure of material tensors of an isotropic medium: classical theory of thermoelasticity

Now we consider some aspect of the determination of the structure of material tensors. First of all, we note
that the structure of a material tensor essentially depends on the tensor type. This fact follows from Zhilin’s
theory of symmetry [15,17,55,56] that is based on the definition of orthogonal transformation given below.

5.1 Zhilin’s theory of symmetry

Definition 1 A tensor kS′ is called the orthogonal transformation of a tensor kS if

kS = Si1...ik ei1 . . . eik ⇒ kS′ = (detQ)α Si1...ik Q · ei1 . . .Q · eik (23)

whereQ is an orthogonal tensor, α = 0 for the polar tensor kS, and α = 1 for the axial tensor (pseudo-tensor)
kS.

The definition of orthogonal transformation (23) differs from the classical one by the multiplier (detQ)α ,
which is absent in the classical definition. In the case of the polar tensor kS, this multiplier is equal to unity, and
the definition (23) coincides with the classical one. In the case of the axial tensor kS, the multiplier (detQ)α

is equal to +1 for the rotation tensor Q and −1 for the specular reflection tensor Q. Consequently, in the case
of the axial tensor kS the definition (23) differs from the classical one. The classical theory of symmetry is
known to be applicable only for polar tensors. Zhilin’s theory of symmetry, which is based on the definition
of orthogonal transformation (23), is applicable for both polar and axial tensors. Further both types of tensors
are considered, and therefore, Zhilin’s theory of symmetry is used.

Definition 2 The set of orthogonal tensors Qs being solutions of the equation

kS′ = kS (24)

where the tensor kS′ is defined by Eq. (23) is called the symmetry group of the tensor kS.

Thus, if the tensor kS is known, then its symmetry group can be found by solving Eq. (24). The inverse
problem is to determine the structure of the tensor kS on conditions that its symmetry group is known. Only
the inverse problem is of practical interest since the Curie–Neumann principle allows us to find symmetry
groups of all material tensors characterizing properties of a physical object on conditions that the symmetry
group of the physical object is known.

The Curie–Neumann principle The symmetry group of any physical property of a physical object must include
the symmetry group of the physical object.

Thus, if the symmetry group of a real physical object is known, then the Curie–Neumann principle along
with the theory of symmetry allows us to determine the structure of all material tensors of the physical object.

The model of a continuum discussed above contains both polar and axial material tensors. The fourth-rank
tensors 4C1, 4C3, and the second-rank tensor C5 are polar. The fourth-rank tensor 4C2 and the second-rank
tensor C4 are axial. Further we determine the structure of these tensors for an isotropic chiral medium and an
isotropic non-chiral medium.
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5.2 An isotropic chiral medium

The symmetry group of an isotropic chiral medium includes only the tensors of rotation by an arbitrary angle
about arbitrary axes and does not include any specular reflection tensors. Let us consider the tensors of rotation
by an arbitrary angle ψ about three mutually orthogonal axes, the directions of which are determined by the
unit vectors e1, e2 and e3:

Qi = (1 − cosψ) eiei + cosψ E + sinψ ei × E, i = 1, 2, 3. (25)

Substituting Eq. (25) into Eqs. (23), (24), we determine the structure of all material tensors. Since the symmetry
group includes only the rotation tensors (tensors with determinant equal to unity), we obtain the same results
for polar and axial tensors. The fourth-rank tensors and the second-rank ones have the form

4C1 = C1EE + C2

3∑
i=1

eiE ei + C3

3∑
i=1

3∑
j=1

eie jeie j , C4 = C4E. (26)

The question is, what sorts of engineering materials can be qualified as chiral media? In our opinion, it
depends on what properties of a material and what processes in the material are that we want to study. If
we want to study only the mechanical properties and processes, then almost all materials can be qualified
as non-chiral media. The only exceptions are materials consisting of a sufficiently large particles that do not
have a mirror symmetry, such as materials consisting of large polymer molecules having a helical structure
or materials containing the DNA molecules. If we want to model a conventional material taking into account
not only its mechanical properties but in addition some other of its physical properties, then a representative
volume of the continuum must reflect the properties of the material at the microlevel, i.e., the properties of the
material that are conditioned by the state of its atoms. Atoms consist of elementary particles with spin. The
presence of spin eliminates the mirror symmetry. That is why, in order to model a conventional material taking
into account not only its mechanical properties but in addition some other of its physical properties we should
consider this material as a chiral medium. Certainly, the foregoing concerns only the method of modeling that
is developed in this paper, i.e., the method based on using the Cosserat continuum with the microstructure.

5.3 An isotropic non-chiral medium

The symmetry group of an isotropic non-chiral medium includes the tensors of rotation by an arbitrary angle
about arbitrary axes and the tensors of specular reflection from arbitrary planes. Let us consider three tensors
of rotation (25) and three tensors of specular reflection from planes orthogonal to the unit vectors e1, e2, and
e3, respectively:

Qi = E − 2eiei , i = 1, 2, 3. (27)

Substituting Eqs. (25), (27) into Eqs. (23), (24), we obtain the following results. The polar tensors 4C1, 4C3
and C5 have the form (26). The axial tensors 4C2 and C4 are equal to zero.

At the same time, it is well known that tensor C4 characterizing the thermal expansion is not equal to zero.
Consequently, if we assume the medium to be isotropic in the classical sense, then we come into conflict with
the well-known fact that any material contracts or expands when its temperature is changed. Of course, this
is unacceptable. Therefore, further we consider isotropic media which are chiral at least with respect to the
microstructure.

5.4 The hyperbolic type thermoelasticity and classical theory of thermoelasticity

It is well known that when describing mechanical processes in three-dimensional media, the moment interac-
tions and the rotation inertia can be neglected. In accordance with this fact, we suppose that

μ = 0, m = 0, I = 0 ⇒ τ = τ T . (28)
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Assuming that the medium is chiral with respect to the microstructure and taking into account Eqs. (26), (28),
we obtain the following constitutive equations:

τ = τ 0 + C1εE + (C2 + C3)ε
s + C4 (ϑa − ϑ∗

a )E,

Ta = T ∗
a + C4ε + C6 (ϑa − ϑ∗

a ), εs = 1

2

(
∇u + ∇uT

)
, ε = tr εs . (29)

Let us take the following parameters:

C1 = Kad − 2

3
G, C2 + C3 = G, C4 = −αKizT ∗

a

ρ∗cv
, C6 = T ∗

a

ρ∗cv
, β Ja = T ∗

a

ρ∗λ
(30)

where Kiz and Kad = Kiz + α2K 2
izT

∗
a /(ρ∗cv) are the isothermal and adiabatic modules of compression, G is

the shear modulus, α is the volume coefficient of thermal expansion, cv is the specific heat at constant volume,
and λ is the heat conduction coefficient. It is easy to see that the inverse coefficient of heat conduction is directly
proportional to the dynamic coefficient of damping ρ∗β Ja, the inverse specific heat is directly proportional to
the angular stiffness C6 characterizing the moment interaction between the rotors, and the volume coefficient
of thermal expansion is directly proportional to the stiffness C4 characterizing the dependence of the stress
tensor on the angular strains and the dependence of the moment stress tensor on the linear strains.

In view of Eq. (30), the set of equations (10), (21), (29) can be reduced to the form

∇ · τ + ρ∗f ρ∗
d2u
dt2

, τ = τ 0 +
(
Kiz − 2

3
G

)
εE + 2G εs − αKiz(Ta − T ∗

a )E,

ΔTa − ρ∗cv
λ

(
dTa
dt

+ 1

β

d2Ta
dt2

)
= αKizT ∗

a

λ

(
dε

dt
+ 1

β

d2ε

dt2

)
− ρ∗∇ · La

h . (31)

The parameter β−1 is usually called the heat flow relaxation time scale. If the parameter β−1 becomes zero
on conditions that the product β Ja remains finite, then the set of equations (31) is equivalent to the classical
statement of the coupled problem of thermoelasticity (see, e.g., [18]). If the parameter β−1 is not equal to zero,
then Eq. (31) is the statement of the problem of the hyperbolic type thermoelasticity (see, e.g., [57]).

6 The one-rotor gyrostat continuum: basic equations of a nonlinear theory

Constructing a nonlinear model of an isotropic elastic medium that possesses thermodynamic properties,
we have to reconsider the thermodynamic analogies (19) and hypotheses (16), (17). Extending the aforesaid
hypotheses and thermodynamic analogies on the nonlinear casewe are confrontedwith a number of challenges.
This is due to the fact that the problem under discussion can be solved in different ways, and each of the ways
can be substantiated by means of appropriate arguments. In fact, choosing one of the possible ways we accept
some additional hypotheses. In order to represent the essence of the problemmore clear, we start with deriving
the general nonlinear equations of the one-rotor gyrostat continuum—see Fig. 2. The general theory that is
formulated in this Section possesses both the geometrical nonlinearity (the finite rotations and displacements
and the finite deformations) and the physical nonlinearity (nonlinear constitutive equations). The special case
of the model, which is intended to describe an elastic medium possessing thermodynamic properties, will be
considered in the next Section.

6.1 Kinematics and dynamic structures

In what follows, in deriving the motion equations of the continuum, we apply the spatial description—see,
e.g., [60–62]. Let the radius vector r determine the position of some point of space. We introduce the following
notations: ρ(r, t) is the mass density of the material medium at a given point of space; v(r, t) is the velocity
field; u(r, t) is the displacement field; P̃(r, t), ω̃(r, t) are the rotation tensors and the angular velocity vectors
of the carrier bodies; and P(r, t), ω(r, t) are the rotation tensors and the angular velocity vectors of the rotors.
In the spatial description, the kinematic relations have the form

v = δu
δt

, ω̃ = −1

2

(
δP̃
δt

· P̃T

)
×

, ω = −1

2

(
δP
δt

· PT
)

×
. (32)
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Here the operator
δ

δt
= d

dt
+ v · ∇ is the material derivative where the operator

d

dt
is the total derivative. For

more details on this point, see [58] where the material and total time derivatives are defined separately and
evaluated in the context with local fields as well as during their use in integral formulations, i.e., when applied
to balance equations. In particular, it is explained why and how the material and total time derivatives differ
and under which circumstances they turn out to be the same.

The volume density of the kinetic energy of the one-rotor gyrostat continuum has the form

ρK = ρ

(
1

2
v · v + 1

2
I ω̃ · ω̃ + 1

2
J ω · ω

)
. (33)

The volume densities of the linear momentum and the angular momentum of the continuum are

ρK1 = ρv, ρK2 = ρ(r × v + I ω̃ + J ω) (34)

where the angular momentum density is calculated with respect to the origin of the reference frame. The
particles of the continuum under consideration possess the internal degrees of freedom. Therefore, in order
to describe the motion of this continuum it is not sufficient to formulate the balance equations of linear
momentum and angular momentum for the gyrostats in a control volume of the continuum. These equations
must be supplemented with the balance equation of the angular momentum for the rotors in a control volume
of the continuum. Therefore, in what follows we will need the volume density of the angular momentum of
the rotors,

ρK(rot)
2 = ρ(r × v + J ω), (35)

which is also calculated with respect to the origin of the reference frame.
The kinetic energy, the linear momentum vector, and two angular momentum vectors (one of them is the

angular momentum for the continuum in whole, and the other one is the angular momentum for its component
consisting of rotors) constitute the dynamic structure of the continuum.

6.2 The mass conservation law and the dynamics equations

Let V denote some fixed region in the reference frame (control volume) and S denote a closed surface that is
the region V boundary. Now we formulate the law of mass conservation for the control volume as

d

dt

∫
(V )

ρ(r, t) dV = −
∫

(S)

n · v(r, t)ρ(r, t) dS. (36)

Using standard line of reasoning, we derive from Eq. (36) the mass conservation law in the local form. By
using the material derivative, the local form of mass conservation law can be written as

δρ

δt
+ ρ ∇ · v = 0. (37)

Now we formulate the balance equation of the linear momentum for the material medium in the control
volume V as

d

dt

∫
(V )

ρK1dV =
∫

(V )

ρfdV +
∫

(S)

τ ndS −
∫

(S)

(n · v)ρK1dS. (38)

Here f is the mass density of external forces; τ n is the force vector modeling the surroundingmedium influence
on the surface S of the control volume V .

By standard reasoning, we introduce the concept of stress tensor. The stress tensor τ associated with the
force vector τ n is defined by the relation τ n = n · τ . Next, also by standard reasoning, we derive the local
form of the liner momentum balance equation,

∇ · τ + ρf = ρ
δv
δt

. (39)

By obtaining Eq. (39), we used the expression for the linear momentum density (34) and the mass balance
equation (37).
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Now we formulate the balance equation of the angular momentum for the material medium in the control
volume V as

d

dt

∫
(V )

ρK2dV =
∫

(V )

ρ
(
r × f + m + L

)
dV +

∫
(S)

(
r × τ n + μn + Tn

)
dS −

∫
(S)

(n · v)ρK2dS. (40)

Herem is the mass density of external moments acting on the carrier bodies of gyrostats; L is the mass density
of external moments acting on the rotors; and μn and Tn are the moment vectors modeling the influence of
the surrounding medium on the surface S of the control volume V . To be exact, vector μn models the action
on the carrier bodies of gyrostats, and vector Tn models the action on the rotors.

In order to explain the difference between vectors m and L, we use a viscous damping as an example.
A moment of viscous damping can depend on the carrier body angular velocity ω̃ or on the rotor angular
velocity ω. In the first case, we deal with the moment m that characterizes the energy dissipation due to the
presence of somematerial medium (like solids, liquids, and gases). In the second case, we deal with themoment
L that characterizes the energy dissipation due to the presence of the ether (the medium consisting of the body
points similar to the rotors).

Since the particles possess the internal rotational degrees of freedom, in order to close the system of
equations we must now formulate the balance equation of the angular momentum for the rotors in the control
volume V as

d

dt

∫
(V )

ρK(rot)
2 dV =

∫
(V )

ρLdV +
∫

(S)

TndS −
∫

(S)

(n · v)ρK(rot)
2 dS. (41)

By obtaining Eq. (41), we assumed that there are no force interactions between the rotors, and external force
actions on the rotors are also absent. Thus, in the model under consideration the rotors perceive the moment
actions rather than the force ones.

By standard reasoning, we introduce the moment stress tensor μ associated with the moment vector μn
and the moment stress tensor T associated with the moment vector Tn . They are defined by the relations
μn = n · μ and Tn = n · T, respectively. Also by standard reasoning, we derive from Eqs. (40), (41) two
angular momentum balance equations in the local form. After simple transformations by using expressions
(34), (35), and balance equations (37), (39), one of the aforesaid angular momentum balance equations is
reduced to the form

∇ · μ + τ× + ρm = ρ I
δω̃

δt
, (42)

and the other one takes the form

∇ · T + ρL = ρ J
δω

δt
. (43)

Equations (42), (43) describe the rotational motion of the carrier bodies and the rotors, respectively.

6.3 The energy balance equation

Now we formulate the equation of energy balance for the material medium in the control volume V as

d

dt

∫
(V )

ρ(K +U ) dV =
∫

(V )

ρ(f · v + m · ω̃ + L · ω + Q) dV

+
∫

(S)

(
τ n · v + μn · ω̃ + Tn · ω + Hn

)
dS −

∫
(S)

(n · v) ρ(K +U )dS. (44)

Here U is the internal energy density per unit mass; Q and Hn are the rate of energy supply directly into
the volume V and through the surface S, respectively. The rate of energy supply through the surface can be
expressed in terms of energy-flux vector H by the formula

Hn = −n · H. (45)
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By standard reasoning, taking into account the mass balance equation (37) and relation (45), we transform the
energy balance equation (44) to the local form

ρ
δK

δt
+ ρ

δU

δt
= ρf · v + ρ m · ω̃ + ρL · ω + (∇ · τ ) · v + (∇ · μ) · ω̃

+ (∇ · T) · ω + τ T · ·∇v + μT · ·∇ω̃ + TT · ·∇ω − ∇ · H + ρQ. (46)

Next, using expression (33) for the kinetic energy density and balance equations (39), (42), (43), we
transform Eq. (46) to the form

ρ
δU

δt
= τ T · ·(∇v + E × ω̃

) + μT · ·∇ω̃ + TT · ·∇ω − ∇ · H + ρQ. (47)

If the supply of energy of “non-mechanical nature” is ignored, i.e., the body under consideration is assumed
to be isolated, then Eq. (47) takes a more simple form,

ρ
δU

δt
= τ T · ·(∇v + E × ω̃

) + μT · ·∇ω̃ + TT · ·∇ω. (48)

In what follows, for simplicity sake, the supply of energy of “non-mechanical nature” is not taken into account.

6.4 The strain measures and the Cauchy–Green relations

The definition of strain measures is based on the energy balance equation. A purely geometrical consideration
allows us to give an unambiguous definition of strain characteristics only in a very simple case. In more
complicated cases, e.g., in continua with rotational degrees of freedom, by geometrical methods we come
up with many tensor quantities that somehow characterize a strain state of continuum. Purely geometrical
considerations do not give us grounds to prefer some of the deformation characteristics. Solely the energy
balance equation allows us to solve this problem. Following the works by Zhilin [14,15,17,59], we define
strain measures as follows.

The tensors on which the stress tensor and the moment stress tensor perform work are called the strain
measures.

For convenience and brevity, we introduce the strain measures g, Φ, and Θ by the formulas

g = E − ∇u, ∇P̃ = Φ × P̃, ∇P = Θ × P, (49)

and then, we show that these are the quantities that appear in the energy balance equation. It is easy to show
(see [14,17]) that the relations between the velocity gradients and (49) have the following form:

∇v = −δg
δt

· g−1, ∇ω̃ = δΦ

δt
+ Φ × ω̃ + (∇v) · Φ, ∇ω = δΘ

δt
+ Θ × ω + (∇v) · Θ . (50.1–3)

Let us introduce the energy stress tensor and the energy moment stress tensors

τ e = gT · τ · P̃, μe = gT · μ · P̃, Te = gT · T · P, (51.1–3)

and the energy strain measures

ge = g−1 · P̃, Φe = g−1 · Φ · P̃, Θe = g−1 · Θ · P. (52)

By using Eqs. (49)–(52), the energy balance equation (48) can be reduced to the form

ρ
δU

δt
= τ T

e · ·δge
δt

+ μT
e · ·δΦe

δt
+ TT

e · ·δΘe

δt
. (53)

From Eq. (53), it is clear the reason why tensors (51) are called the energy stress tensors and why tensors (52)
are called the energy strain measures. Thus, it is proved that Eq. (49) really introduces the strain measures.
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The energy balance in the form of Eq. (53) allows us to determine the arguments of the function U . If the
material is assumed to be elastic, then from Eq. (53) it is seen that the mass density of internal energy is the
function of the energy strain measures, i.e.,

U = U
(
ge, Φe, Θe

)
. (54)

Since in the case of elastic deformations the stress tensor and the moment stress tensors do not depend on the
strain rates, by standard reasoning the Cauchy–Green relations1 can be obtained from Eq. (53). These relations
have the form

τ e = ρ
∂U

∂ge
, μe = ρ

∂U

∂Φe
, Te = ρ

∂U

∂Θe
. (55)

In view of Eqs. (51), (52), from Eq. (55) it follows

τ = ρ g−T · ∂U

∂ge
· P̃T , μ = ρ g−T · ∂U

∂Φe
· P̃T , T = ρ g−T · ∂U

∂Θe
· PT . (56)

In order to elaborate the constitutive equations, it is necessary to specify the function U
(
ge, Φe, Θe

)
.

Indeed, the conditions of stability of the material impose certain restrictions upon the choice of function
U

(
ge, Φe, Θe

)
.

7 A model of an elastic medium possessing thermodynamic properties

Further, modeling an elastic medium with thermodynamic properties we consider a special case of the one-
rotor gyrostat continuum. In respect of the carrier bodies of gyrostats, we follow the assumptions used in
Sect. 5.4, when obtaining the equations of the classical theory of thermoelasticity. In respect of the external
moment in the angular momentum balance equation for the rotors, we accept an assumption that is similar
to Hypothesis 1 in Sect. 4. In respect of the moment stress tensor characterizing the interaction of rotors, we
accept an assumption that is a generalization of Hypothesis 2 in Sect. 4.

7.1 The simplifying assumptions

In accordance with the conditions (28), which mean transition to the momentless theory for the carrier bodies
of gyrostats, the dynamics equations (39), (42) take the form

∇ · τ + ρf = ρ
δv
δt

, τ× = 0. (57.1,2)

Hypothesis 1* The external moment L acting on the rotors of gyrostats is the sum of the moment Lh, charac-
terizing external actions of various types, and themoment of viscous dampingLf , resulting from the interaction
with the ether, i.e.,

L = Lh + Lf . (58)

The moment Lh models the influence of external ponderable bodies that results in heat supply, electromag-
netic excitation, or some kind of radiation. The main difference between the moment Lh and the moment Lf
is the fact that the moment Lh occurs due to the presence of some ponderable bodies, whereas the moment Lf
occurs only due to the presence of the ether.

In the nonlinear theory, the moment of viscous damping Lf has a more complicated structure than the
moment given by Eq. (16), which is used in the linear theory. But, in order to determine the structure of

1 This term is not standard. It is accepted only in the works of the St. Petersburg school of mechanics. However, now there is
no other term that would be used only in relation to constitutive equations written in the form of partial derivatives of the internal
energy with respect to its arguments. All the known terms are used in relation to both the aforesaid equations and constitutive
equations written in any other form. However, the formulation of constitutive equations in the form of partial derivatives of the
internal energy with respect to its arguments plays an important role in the method of continuum mechanics. That is why this
form of constitutive equations deserves a special name, i.e., the name that is not used for other forms of constitutive equations.
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moment Lf we use the same physical model as in the linear theory. In other words, we assume the rotors to be
immersed in the ether, which is a sufficiently rarefied medium occupying the whole infinite space. The ether
consists of particles possessing both translational and rotational degrees of freedom. However, interactions
between the ether particles are assumed to be the moment interactions, which are related to only the rotational
degrees of freedom. To be exact, the interactions of ether particles should be considered as reactions on relative
rotations of the particles. We suppose that the rotational motion of the rotors of gyrostats disturbs the ether that
results in the appearance of waves in the ether. These waves carry away some part of the rotors energy. Since
the ether occupies the whole infinite space, the waves cannot be reflected from the boundaries, and hence, they
cannot come back. That is why the part of the rotors energy, which is spent on formation of the waves in the
ether, is irretrievably lost. The model of ether and the nature of its interaction with the rotors will be discussed
in Sect. 7.4. In the Section, we will also discuss a model problem, which allows us to determine the structure
of moment Lf .

Hypothesis 2* The energy moment stress tensor Te, which characterizes the rotor interactions, has the fol-
lowing structure:

Te = TeE − Me × E, (59)

where the scalar quantity Te characterizes the spherical part of tensor Te and the vector quantity Me charac-
terizes the antisymmetric part of tensor Te.

The linear theory of thermoelasticity stated in Sects. 4 and 5 is based on assumption (17), according towhich
the moment stress tensor T is the spherical part of the tensor. The linear model based on the representation
of the moment stress tensor T in the form of an antisymmetric tensor is considered in [63]. In the cited work,
the mechanical model of electromagnetic processes is suggested, and the moment stress tensor characterizing
the interaction of rotors is assumed to be of electromagnetic nature. To be exact, the moment stress tensor T is
represented as T = −M × E, and the vector M is considered as an analogy of the electric field vector. In the
linear theory, the differential equations describing the longitudinal oscillations (associated with the spherical
part of the moment stress tensor) and the differential equations describing the transverse oscillation (associated
with the antisymmetric part of the moment stress tensor) are independent. Therefore, in the framework of the
linear theory, the model of thermal processes and the model of electromagnetic processes can be studied
independently. The situation is different in the nonlinear theory. That is why constructing the nonlinear theory
it is important to take into account both the spherical part of the moment stress tensor and the antisymmetric
one. In addition, we refer to [52] where the hypothesis similar to Eq. (59) is accepted, i.e., the moment stress
tensor is assumed to be the sum of the spherical part of the tensor and the antisymmetric tensor, namely
T = TeE−M×E. In the cited work, the linear theory of thermoviscoelasticity is constructed, and the vector
M is associated with the internal damping. We note that, in contrast to the linear theory, in the nonlinear theory
there are two moment stress tensors. One of them is the true moment stress tensor T, which appears in the
angular momentum balance equation (43). The other one is the energy moment stress tensorTe, which appears
in the energy balance equation (53) as the coefficient of the derivative of the corresponding strainmeasure. That
is why a question arises: Which of the aforesaid moment stress tensors must satisfy the simplifying assumption
like Eq. (59)? In the linear theory, the true stress tensors coincide with the energy ones, and the question is
solved unambiguously. In the nonlinear theory, hypothesis (59) requires additional arguments. This question
will be discussed in more detail in Sect. 8.1 devoted to mechanical analogies of temperature and entropy in
the suggested nonlinear theory.

7.2 The angular momentum balance equation for the rotors in view of the simplifying assumptions

In accordance with assumption (59) and Eq. (51.3), the true moment stress tensor T, characterizing the inter-
actions of rotors, takes the form

T = Te g−T · PT − g−T · (Me × PT ). (60)

Now we introduce the notations

I3 = Det g, D = I−1
3 g. (61)

We note that tensor D possesses the property

∇ · D−T = 0. (62)
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A proof of identity (62) is found in Appendix A. In view of Eq. (61), the expression (60) takes the form

T = T D−T · PT − D−T · (M × PT ) (63)

where the following notations are used:

T = I−1
3 Te, M = I−1

3 Me. (64)

After simple transformations (see Appendix B) taking into account Eqs. (52), (58), (61), (62), (63), the
angular momentum balance equation for the rotors (43) can be reduced to the form

[
g−1 · ∇T − g−1 · ×∇M − T

(
Θe

)
× + (trΘe)M − Θe · M

]
· PT + �Lh + �Lf = �J

δω

δt
(65)

where � is the ratio of the density of the material medium to its volume strain, i.e.,

� = ρ

I3
,

δ�

δt
= 0. (66.1,2)

A proof of Eq. (66.2), is found in Appendix C. We note that Eq. (66.2), besides the solution � = const, has
also other solutions (for more details see, e.g., [14,17]).

Next we introduce the notations

Θρ = �−1Θe, gρ = �g. (67)

In view of the notations (61), (67), Eq. (65) can be reduced to the form

[
g−1
ρ · ∇T − g−1

ρ · ×∇M − T
(
Θρ

)
× + (trΘρ)M − Θρ · M

]
· PT + Lh + Lf = J

δω

δt
. (68)

When the angular momentum balance equation for the rotors is written as Eq. (68), the above-formulated
relations between the strain measure Θ and the rotation tensor P, as well as the strain measure Θ and the
angular velocity vector ω, become not very convenient. Since Eq. (68) contains the tensors Θρ and gρ , it is
better to use the relation

∇ω = gρ · δΘρ

δt
· PT . (69)

Multiplying both sides of Eq. (68) by P from the right and using the notations

L∗
h = PT · Lh, L∗

f = PT · Lf , (70)

we obtain the angular momentum balance equation for the rotors in the form

g−1
ρ · ∇T − g−1

ρ · ×∇M − T
(
Θρ

)
× + (trΘρ)M − Θρ · M + L∗

h + L∗
f = J

δΩ

δt
(71)

where vector Ω is called the right angular velocity vector. The relation between this vector and the left angular
velocity vector ω is Ω = PT · ω. The relation between vector Ω and tensor Θρ has the form

∇Ω = gρ ·
[
δΘρ

δt
− Θρ × Ω

]
. (72)

As shown in Sect. 7.3, the constitutive equations for the quantities T andM can be represented in terms of
the invariants of tensor Θρ . Therefore, under certain external actions the rotation tensor can be eliminated. In
this case, vector Ω and tensor Θρ can be considered as the basic variables. This is an advantage of the set of
equations (71), (72).
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7.3 The Cauchy–Green relations in view of the simplifying assumptions

Taking into account the expression (59) for tensor Te and the fact that tensor μ is equal to zero, we rewrite the
energy balance equation (53) as

ρ
δU

δt
= τ T

e · ·δge
δt

+ Te E · ·δΘe

δt
+ (

Me × E
) · ·δΘe

δt
. (73)

Next we reduce the energy balance equation (73) in view of Eq. (57.2), according to which the stress tensor τ
is the symmetric tensor. As a result of the transformation (see Appendix D), we obtain

ρ
δU

δt
= τ s · ·δgs

δt
+ Te

δΘe

δt
+ Me · δΨ e

δt
, (74)

under the notations

τ s = gT · τ · g, gs = 1

2
g−1 · g−T , Θe = trΘe, Ψ e = (

Θe
)
×. (75.1–4)

We consider only the elastic deformations. In this case, in accordance with the energy balance equation
(74) the mass density of internal energy is the function of three arguments, namely

U = U
(
gs, Θe, Ψ e

)
. (76)

Substituting Eq. (76) into Eq. (74), we obtain the Cauchy–Green relations

τ s = ρ
∂U

∂gs
, Te = ρ

∂U

∂Θe
, Me = ρ

∂U

∂Ψ e
. (77)

In view of Eq. (75.1) and relations (64), (66), from Eq. (77) we obtain

τ = ρ g−T · ∂U

∂gs
· g−1, T = �

∂U

∂Θe
, M = �

∂U

∂Ψ e
. (78)

Often it is convenient to split the stress tensor into its spherical part and its deviatoric part, namely

τ = pE + dev τ , E · · dev τ = 0. (79)

Here p is the pressure, and dev τ is the stress deviator. Let us write the energy balance equation (74) by using
the representation of stress tensor (79). After necessary transformations (see Appendix E), we obtain

ρ
δU

δt
= − p

I3

δ I3
δt

+
(
GT · (dev τ ) · G

)
· ·δGs

δt
+ Te

δΘe

δt
+ Me · δΨ e

δt
, (80)

under the notations

G = I−1/3
3 g, Gs = 1

2
G−1 · G−T . (81)

Since deformations are considered to be elastic, in accordance with the energy balance equation (80) we
conclude that the mass density of internal energy is the function of four arguments, namely

U = U
(
I3, Gs, Θe, Ψ e

)
, (82)

and then, we obtain the Cauchy–Green relations, two of which (for Te and for Me) are given by Eq. (77) and
the remainder have the form

p = −ρ I3
∂U

∂ I3
, dev τ = ρ G−T · ∂U

∂Gs
· G−1 − 2

3
ρ Gs · · ∂U

∂Gs
E. (83.1,2)

Equation (83.1) is obvious. Equation (83.2) is less obvious; however, it can be derived by the standard methods
(see Appendix E).
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By using Eq. (50), which relates the velocity gradient and the strain measure g, we can rewrite the mass
balance equation (37) as

1

ρ

δρ

δt
= δg

δt
· ·g−1 ⇒ 1

ρ

δρ

δt
= 1

I3

δ I3
δt

. (84)

Now we introduce the notations

Θρ = �−1Θe, Ψ ρ = �−1Ψ e, (85)

where the quantity � is determined by Eq. (66.1). Taking into account Eqs. (64), (66), (85), it is easy to show
that

Te
δΘe

δt
= ρT

δΘρ

δt
, Me · δΨ e

δt
= ρM · δΨ ρ

δt
. (86)

In view of Eqs. (84), (86), the energy balance equation (80) can be rewritten as

ρ
δU

δt
= − p

ρ

δρ

δt
+

(
GT · (dev τ ) · G

)
· ·δGs

δt
+ ρT

δΘρ

δt
+ ρM · δΨ ρ

δt
. (87)

From Eq. (87), it follows that the mass density of internal energy can be considered as the function

U = U
(
ρ, Gs, Θρ, Ψ ρ

)
. (88)

Substituting Eq. (88) into Eq. (87), we obtain the Cauchy–Green relations

p = −ρ2 ∂U

∂ρ
, T = ∂U

∂Θρ

, M = ∂U

∂Ψ ρ

, (89)

and the Gauchy–Green relation for the stress deviator. The latter relation coincides with Eq. (83.2).
We note that the energy balance equation (87), as well as the consequences of this equation, is valid only in

the case when there are no sources in the mass balance equation (37), i.e., there is no mass production within
the control volume. Otherwise, the relations (84) used in deriving the energy balance equation (87) become
more complicated.

7.4 The determination of the structure of the moment of viscous damping acting on the rotors

In order to determine the structure of the moment of viscous damping Lf , we use the physical model which is
exactly the same as the model used when constructing the linear theory. To be exact, we suppose that particles
of the conventional substance are immersed in the ether. With respect to the ether, we make the assumptions
stated in Sect. 4. Now we briefly repeat these assumptions:

(i) The ether particles are much smaller than particles of the conventional substance. With respect to our
model, this means that the ether particles are much less than the rotors of gyrostats.

(ii) The ether is the medium having a very low density in comparison with the conventional substance. The
ether particles fill the space between elementary particles of the conventional substance.

(iii) The interactions of ether particles with each other are based only on the rotational degrees of freedom
and the principle of moment interactions. Thus, the model of the ether is the special case of the Cosserat
continuum (see Appendix F).

(iv) The ether is elastic. However, due to its infinite extent the ether can carry away the energy of rotational
motion of matter particles located in it. Thereby, the ether creates the moment viscous damping acting
on the matter particles.

Particles of the conventional substance are modeled by the gyrostats. With respect to the character of
interactions between the gyrostats and the ether, we make the following assumptions:

(i) The rotors of gyrostats interact with the ether directly. The ether can influence the motion of the carrier
bodies of gyrostats only indirectly; namely, it can convey its influence via the rotors.
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Fig. 4 A model of the interaction between the rotor and the ether

(ii) Rotational motion of the rotors disturbs the ether. The disturbance generated by the given rotor is much
smaller at a great distance away from the rotor than in the immediate vicinity of it. Therefore, at all
points of space that are located at a distance r ≥ r0 from the rotor, the angular strains of the ether can be
considered to be small even under finite rotations of the rotor. However, in the layer of ether that occupies
the region r∗ < r < r0 where r∗ is the radius of the rotor, the angular strains of the ether will be finite
under finite rotations of the rotor.

(iii) The ratios of parameters of the ether and the material medium satisfy some conditions, under which the
layer of ether r∗ < r < r0 can be considered to be inertialess. The physical sense of the conditions is that
the mass of the layer of ether r∗ < r < r0 is small as compared to the mass of the rotor. That is why this
part of the ether can be considered as inertialess. A mathematical formulation of the conditions will be
discussed below.

Thus, we consider the following simplified model of the interaction between the rotor and the ether—see
Fig. 4. The rotor is a spherical body of radius r∗, possessing the mass m and the moment of inertia mJ . It
is depicted in the center of Fig. 4. (The carrier body of the gyrostat is not shown in Fig. 4 since it does not
interact directly with the ether.) The rotor is surrounded by the layer r∗ < r < r0 of an inertialess elastic
medium capable of large angular deformations. This layer is, in turn, surrounded by an inertial elastic medium
of infinite extent, which can be described by the linear theory. The boundary between two parts of the elastic
medium is shown in Fig. 4 by a dotted line. It is important to note that the ether is the same in all areas of space.
The only difference is the state of the ether near the rotor and far from the rotor. Therefore, the boundary that
divides the ether parts is a fictitious boundary. We have to introduce the fictitious boundary in order to simplify
the model problem.

At the initial moment of time, the medium surrounding the rotor is at rest. The rotor has a nonzero initial
angular velocity vector, and its initial rotation tensor is not equal to the unit tensor. As a result, the rotor begins
to rotate, and its rotation disturbs the ether.

Wenow turn to themathematical formulation of the problem.Webeginwith a description of the ethermodel.
The nonlinear model of the ether, which is presented in Appendix F, is based on the following assumptions: the
ether is the Cosserat continuum; the mass production in a volume is impossible; external forces and moments
are absent; the stress tensor is equal to zero; and the moment stress tensor has the same structure as the moment
stress tensor characterizing the rotor interactions in the material medium.

The ether layer r∗ < r < r0 is considered to be inertialess with respect to rotational degrees of freedom.
This part of ether is described by the set of equations

∇ · T̂ = 0, T̂ = ĝ−T · T̂e · P̂T , T̂e = T̂eE − M̂e × E,

T̂e = ρ̂
∂Û

(
Θ̂e, Ψ̂ e

)
∂Θ̂e

, M̂e = ρ̂
∂Û

(
Θ̂e, Ψ̂ e

)
∂Ψ̂ e

, Θ̂e = tr Θ̂e, Ψ̂ e = (
Θ̂e

)
×, (90)

Θ̂e = ĝ−1 · Θ̂ · P̂, ∇P̂ = Θ̂ × P̂,
δ̂ρ̂

δt
+ ρ̂ ∇ · v̂ = 0,

δ̂ĝ
δt

· ĝ−1 = −∇v̂, ρ̂
δ̂v̂
δt

= 0
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where T̂ is the moment stress tensor in the ether, P̂ is the rotation tensor of ether particles, ρ̂ is the ether density,
ĝ and Θ̂ are the strain measure, and v̂ is velocity vector of ether particles. The meaning of the other quantities
is clear from the equations. The final concretization of the ether model consists in a specification of the mass
density of internal energy Û

(
Θ̂e, Ψ̂ e

)
.

Due to the fact that in the considered ether model the velocity field is determined irrespective of the
determination of rotational motion characteristics, the solution of the last equation in Eq. (90) allows us to
find the strain measure ĝ and the density ρ̂. We note that the last three equations in Eq. (90) have the trivial
solutions

v̂ = const, ρ̂ = const, ĝ = E, (91.1–3)

though other solutions are also possible. Let us assume that the initial conditions for the ether are homogeneous
and the rotor motion does not disturb the ether with respect to translational degrees of freedom. In this case,
we can assert that the aforesaid trivial solution is realized. In view of Eq. (91), the set of equations (90) is
simplified and takes the form

∇ · T̂ = 0, T̂ = T̂e · P̂T , T̂e = T̂eE − M̂e × E, Θ̂e = Θ̂ · P̂, ∇P̂ = Θ̂ × P̂,

T̂e = ρ̂
∂Û

(
Θ̂e, Ψ̂ e

)
∂Θ̂e

, M̂e = ρ̂
∂Û

(
Θ̂e, Ψ̂ e

)
∂Ψ̂ e

, Θ̂e = tr Θ̂e, Ψ̂ e = (
Θ̂e

)
×. (92)

The part of the ether occupying the region r ≥ r0 is described by the linearized ether model, which is
represented in Appendix G. As shown in Appendix G, the linearized ether model can be reduced to two wave
equations

Δϑ̂ − 1

c2v

d2ϑ̂

dt2
= 0, Δψ̂ − 1

c2s

d2ψ̂

dt2
= 0. (93)

Here ϑ̂ = ∇ · θ̂ and ψ̂ = ∇ × θ̂ have the meaning of angular strains, and θ̂ is the small rotation vector
of the ether particles. The wave propagation velocities are expressed in terms of the ether parameters by the
formulas

c2v = k̂v

ρ̂ Ĵ
, c2s = k̂s

ρ̂ Ĵ
(94)

where Ĵ is the mass density of inertia moments, k̂v is the torsional stiffness, and k̂s is the bending stiffness.
The moment stress tensor is determined as

T̂ = T̂E − M̂ × E, T̂ = k̂vϑ̂, M̂ = k̂s ψ̂ . (95)

Thus, the ether is divided into two parts by the imagined spherical surface r = r0. The considered ether
parts are connected on the imagined surface r = r0. There are two conditions of the connection. The first one
is the equality of the rotation tensors. The second one is the equality of the moment stress vectors er · T̂ where
er is the basis vector of the spherical coordinate system, the origin of which is at the rotor center. For the part
of ether occupying the region r ≥ r0, the absence of sources at infinity must be assured. For the part of ether
occupying the region r∗ < r < r0, it is necessary to formulate boundary conditions on the surface r = r∗. The
latter conditions we discuss in detail.

Let us assume that the ether particles, contacting with the rotor, “adhere” to the rotor and move together
with it. For simplicity sake, the rotor center is considered to be fixed. If the ether was modeled by the Cosserat
continuum of a general type, the kinematic conditions of contact of the ether particles and the rotor would have
the form

v̂
∣∣
r=r∗ = ω × r∗er , ω̂

∣∣
r=r∗ = ω (96.1,2)

where ω and ω̂ are the angular velocities of the rotor and the ether particles, respectively. However, according
to the suggested models, the stress tensor in the ether is considered to be equal to zero, and the interactions
between the rotors of gyrostats in the material medium are also characterized only by the moment stress tensor.
Taking into account the aforesaid features of the models, it is reasonable to assume that the “adhesion” of the
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ether particles to the rotor occurs only with respect to rotational degrees of freedom. Translational velocities
of the ether particles situated on the rotor surface can differ from velocities of the corresponding points of
the rotor. Then, the first condition in Eq. (96) can be excluded from consideration. In this case, the use of the
particular solution (91) does not contradict anything, and it is quite reasonable. Since at the initial moment of
time the ether is at rest, from Eq. (91.1) it follows that v̂ = 0. Then from Eq. (96.2), it follows that

P̂
∣∣∣
r=r∗

= P(θ) (97)

where P(θ) is the rotation tensor of the rotor and θ is the rotation vector of the rotor. We note that the set of
equations (92) includes the equation for the rotation tensor, whereas the angular velocity vector is absent in
it. Therefore, Eq. (97) should be used as the boundary condition instead of Eq. (96.2). Since vector θ is an
unknown quantity, the boundary condition (97) is not sufficient. It should be supplemented with an integral
boundary condition. The angular momentum balance equation for the rotor plays the role of the integral
boundary condition. Since we assume that the ether is the only external factor acting on the rotor, the angular
momentum balance equation for the rotor is written as

mJ
dω

dt
=

∫
σ∗
er · T̂

∣∣∣
r=r∗

dσ. (98)

The formulation of the model problem is completed. Now we turn to a discussion of prospects of its
numerical and analytical study. There is no way to solve the problem analytically because of the complexity of
the nonlinear set of equations (92).When we try to solve the problem by numerical methods, we are confronted
with two obstacles. The first obstacle consists in the fact that the differential equations are formulated in the
infinite region of space. Only certain numerical methods allow us to solve such problems. The majority of
numerical methods are not applicable for solving differential equations in the infinite region of space. The
specificity of the problem in question is such that it is impossible to replace the infinite region by some finite
region. Indeed, the energy dissipation takes place because the infinite region is considered and the absence of
sources at infinity is assured. If a region is bounded, then all waves will be returning after reflection from the
boundary. As a result, there will be no energy dissipation. A constructive approach to overcome the obstacle
consists in constructing a semi-analytical solution of the problem. To be exact, it is necessary to construct an
analytical solution of the linear problem in the infinite region r ≥ r0. As a result, the boundary conditions for the
nonlinear problem will be obtained. The nonlinear problem formulated in the finite region r∗ < r < r0 can be
solved by a numerical method. However, we are confronted with the second obstacle, which consists in the fact
that the numerical analysis is impossiblewithout specifying themass density of the internal energy Û

(
Θ̂e, Ψ̂ e

)
.

Any assumptions about the form of function Û
(
Θ̂e, Ψ̂ e

)
can only be made on the basis of experimental data

for specific materials. Consequently, it is important to know how the form of function Û
(
Θ̂e, Ψ̂ e

)
influences

the moment of viscous damping Lf , and in the final analysis, how the form of function Û
(
Θ̂e, Ψ̂ e

)
influences

the heat conduction equation. Thus, in the way of a numerical study we are confronted with two formidable
obstacles. Therefore, an analytical study of the problem gains in importance even if we have to take additional
simplifying assumptions in order to carry out this study. This is theway that we choose for further advancement.

Let us accept two simplifying assumptions. It is difficult to substantiate these assumptions bymeans of some
asymptotic considerations, but we are compelled to accept these assumptions in order to have the opportunity
to construct an analytical solution of the problem.

(i) In the dynamical problem for the part of ether occupying the region r ≥ r0, we will disregard the waves
propagating along the angular coordinates. These waves are not immediately associated with the energy
dissipation. The energy is dissipated due to the waves propagating along the radial coordinate. However,
the waves propagating along the radial coordinate interact with the waves propagating along the angular
coordinates because of the boundary conditions. This interaction is that what we ignore when we accept
the simplifying assumption in question.

(ii) The boundary between the inertial part of the ether and the inertialess part of the ether, i.e., the imagined
spherical surface r = r0, will be assumed to move like a rigid body. This statement applies only to
rotational degrees of freedom. It means that all ether particles located on the surface r = r0 at the given
moment of time are assumed to have the same rotation tensors and the same angular velocities. Due to
this simplifying assumption, instead of solving the problem of a quasi-static deformation of the nonlinear
ether part, we will introduce an elastic potential (as a function of the vector of the rotor rotation relative



2324 E. A. Ivanova

to the ether particles located on the imagined spherical surface r = r0), and thereupon, we will calculate
the elastic moment corresponding to this elastic potential. This elastic moment is essentially the total

moment
∫
σ∗ er · T̂

∣∣∣
r=r∗

dσ acting on the rotor by the ether. Indeed, in this approach it is impossible to

determine the stress–strain state of the ether in the region r∗ < r < r0. However, this is not necessary for
our research purpose. We need to know only the total moment acting on the rotor.

The solution of the problem formulated above is contained in Appendix H. The main result obtained in
Appendix H is the set of equations describing the rotor motion, namely

mJ
dω

dt
= T̂σ , ω = Z−1(θ) · dθ

dt
, Z(θ) = E − 1

2
R(θ) + 1 − g(θ)

θ2
R2(θ) (99)

where Z(θ) is the Zhilin tensor, which was first introduced in [64],R(θ) is the logarithmic rotation tensor, and
g(θ) is the scalar function that depends on the rotation vector magnitude, namely

R(θ) = θ × E, g(θ) = θ sin θ

2(1 − cos θ)
, θ = |θ | (100)

The moment T̂σ is the integrated characteristic that describes the influence of the ambient ether on the
rotor. This moment can be expressed in terms of the rotor kinematic characteristics θ and ω by the formula

T̂σ = −c(θ2)θ − mχ(θ) ·
(

ω + p
∫ θ

0
Z−1(θ̃) · dθ̃ − q

∫ t

0

[∫ t

0
eκ(τ−t)Z−1(θ(τ )

) · dθ(τ )

]
dt

)

(101)

where

χ(θ) = χ
[
c(θ2)ZT (θ) + k(θ2)θθ

]
, c(θ2) = −2

dΠ(θ2)

d(θ2)
, k(θ2) = 4

d2Π(θ2)

d(θ2)2
,

χ = 3J

4πr20 ρ̂ Ĵ (cv + 2cs)
, κ = 3cvcs

r0(cv + 2cs)
, p = c2v + 2c2s

r0(cv + 2cs)
, q = 2cvcs(cv − cs)2

r20 (cv + 2cs)2
.

(102)

Here Π(θ2) is the potential, which determines the elastic moment acting on the rotor from the part of ether
that occupies the region r∗ < r < r0. The basic properties of tensors Z and χ are set out in Appendix I.

The problem of specification of the potential Π(θ2) is beyond the scope of this study. We note that even

in the simplest case, when Π(θ2) = 1

2
c θ2 where c = const, the expression for the moment T̂σ is essentially

nonlinear.
In deriving formula (101) for the moment T̂σ , we used a number of assumptions, two of which are

asymptotic ones. The first assumption is that the part of ether occupying the region r∗ < r < r0 is considered
to be inertialess. This is acceptable if a representative frequency of the dynamic process is much less than
the first eigenfrequency of this layer. The second assumption is that the linear theory can be used for the part
of ether occupying the region r ≥ r0. This is acceptable if all rotation angles of ether particles are small.
The mentioned assumptions impose certain restrictions upon the ratio of parameters of the problem. The
corresponding asymptotic analysis is found in Appendix J. These asymptotic estimates allow us to compare
the asymptotic order of the terms in the expression for the moment T̂σ and to draw the following conclusions.
The first term on the right-hand side of Eq. (101) is much larger than all other terms. However, this is a
conservative moment. This moment has no relation to the rotor energy dissipation, and it need not be taken
into account when determining the structure of the viscous damping moment Lf . The following estimates hold
for the terms in parentheses:

|ω | �
∣∣∣∣∣ p

∫ θ

0
Z−1(θ̃) · dθ̃

∣∣∣∣∣ �
∣∣∣∣ q

∫ t

0

[∫ t

0
eκ(τ−t)Z−1(θ(τ )

) · dθ(τ )

]
dt

∣∣∣∣ . (103)

We note that the second inequality in Eq. (103) is violated when cv ≈ cs, because in this case the parameter q
tends to zero.
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It would seem that the asymptotic analysis convinces us that when determining the structure of the viscous
damping moment Lf , first of all, the term containing

∫ t
0 [∫ t

0 e
κ(τ−t)Z−1

(
θ(τ )

) · dθ(τ )]dt should be taken
into account. However, this conclusion is contrary to the results that were obtained earlier for the linear
approximation. Indeed, in the linear theory, according to Eq. (16) the viscous damping moment has the form
Lf = −β Jω. It is this moment that allows us to obtain the hyperbolic type heat conduction equation (as well
as the classical heat conduction equation as its special case) within the framework of the suggested model. In
order to clarify the situation, we write the expression (101) by using the linear approximation, namely

T̂σ ≈ −cθ − mχc

(
ω + pθ − q

∫ t

0

[∫ t

0
eκ(τ−t)dθ(τ )

]
dt

)
, c = const. (104)

As can be seen from Eq. (104), all three terms in parentheses are retained in the linearized expression. The term
containing pθ is a conservative moment, and therefore, it need not be taken into account when determining the
structure of moment Lf . The term containing the integral is not a conservative moment. Generally speaking,
this term must be contained in the expression for Lf . If the integral term is taken into account, then instead of
the hyperbolic type heat conduction equation we will obtain a heat conduction equation of more complicated
form. It is well known that the classical heat conduction equation possesses sufficiently high accuracy in most
cases when a linear approximation is acceptable. Based on this fact, we must conclude that the integral term
in the expression (104) is small because of the smallness of parameter q . As noted above, the parameter q is
small in the case of cv ≈ cs.

Nowwe return to the nonlinear expression (101) for themoment T̂σ and discuss the physical meaning of the
non-conservative terms contained therein. The term proportional to vector ω is the typical dissipative moment
both under small rotations and under finite ones. The term containing

∫ θ
0 Z−1(θ̃) · dθ̃ is a position moment,

which is, in general, not a conservative moment. This moment may cause both the dissipation of the rotor
energy into the ether and the pumping of energy from the ether. Let us consider the last term on the right-hand
side of Eq. (101). If this term was proportional to

∫ t
0 e

κ(τ−t)Z−1
(
θ(τ )

) · dθ(τ ) , it would be an analogy of the
constitutive equations for the stress tensor in continua with fading memory. Such constitutive equations are
typical for viscoelastic materials. Hence, they contain both the conservative part and the dissipative part. It is
evident that the additional integral over time cannot transform the moment under discussion into a conservative
moment.

In order to define the structure of the viscous damping moment Lf , we will use the results of the model
problem analysis. To be exact, we will define the viscous damping moment Lf by analogy with the viscous
damping moment T̂σ . As mentioned above, the non-conservative terms in the expression (101) for the moment
T̂σ are different by nature. Consequently, all these terms can appreciably influence the rotormotion irrespective
of their asymptotic orders. That is why, when defining the structure of viscous damping moment Lf , all the
non-conservative terms in Eq. (101) should be taken into account.

Now we introduce the mass density of the non-conservative part of the moment (101), namely

L̂σ = −χ(θ) ·
(

ω + p
∫ θ

0
Z−1(θ̃) · dθ̃ − q

∫ t

0

[∫ t

0
eκ(τ−t)Z−1(θ(τ )

) · dθ(τ )

]
dt

)
. (105)

It is easy to show that the integral equation (105) is equivalent to the differential equation

d2(χ−1 · L̂σ )

dt2
+ κ

d(χ−1 · L̂σ )

dt
= −

(
d2ω

dt2
+ cv + cs

r0

dω

dt
+ cvcs

r20
ω

)
. (106)

Now we define the viscous damping moment Lf by the differential equation analogous to Eq. (106) for the
moment L̂σ . The only difference consists in replacing the total derivatives in Eq. (106) by the corresponding
material derivatives, i.e.,

δ2(χ−1 · Lf)

δt2
+ κ

δ(χ−1 · Lf)

δt
= −

(
δ2ω

δt2
+ cv + cs

r0

δω

δt
+ cvcs

r20
ω

)
. (107)

In view of the notations (70) and the properties of tensor χ [see Appendix I, formulas (185)], Eq. (107) can
be rewritten as

δ2(χ−T · L∗
f )

δt2
+ κ

δ(χ−T · L∗
f )

δt
= −

(
δ2ω

δt2
+ cv + cs

r0

δω

δt
+ cvcs

r20
ω

)
. (108)
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We note that in the case of cv = cs Eqs. (107), (108) take the more simple form

δ(χ−1 · Lf)

δt
= −

(
δω

δt
+ cv

r0
ω

)
,

δ(χ−T · L∗
f )

δt
= −

(
δω

δt
+ cv

r0
ω

)
. (109.1,2)

Thus, based on the model problem analysis we have obtained the following results:

(i) In the general case, the moment of viscous damping Lf , which occurs in the angular momentum balance
equation for the rotors (68), is defined by the differential equation (107). In the special case of cv = cs ,
this moment is defined by Eq. (109.1).

(ii) In the general case, the moment of viscous damping L∗
f , which occurs in the angular momentum balance

equation for the rotors (71), is defined by Eq. (108). In the special case of cv = cs , the moment L∗
f is

defined by Eq. (109.2).

7.5 A summary of the basic equations

In this study, we apply the spatial description of continuum kinematics. When the spatial description is used,
as a rule, only an actual configuration of the continuum is considered. A velocity vector is the basic kinematic
characteristic. Therefore, the relation between the velocity vector and the displacement vector should be
considered as the definition of the displacement vector. Often, the displacement vector does not have a definite
physical meaning and it is an auxiliary variable that is necessary in order to derive the basic equations.
The constitutive equations and the relations between the deformation and kinematic characteristics can be
formulated without using the displacement vector. Therefore, when the spatial description is applied, the
displacement vector can be eliminated. Somewhat different is the case with the rotation tensor. On the one
hand, the rotation tensor is presented in many equations formulated above. On the other hand, in the case of
spatial description for rotational degrees of freedom the conception of reference configuration can be introduced
by the sameway as it is done in the case of material description. Indeed, the rotation tensorP(r, t) characterizes
the orientation of a particle, located at a given point of space in a given moment of time, relative to the triplet
of reference vectors specified at this point of space. Thus, in order to introduce the conception of reference
configuration it is sufficient to specify the field of reference vectors Dk(r) (k = 1, 2, 3) and to postulate that
at the reference configuration the rotation tensors of all particles are equal to the unit tensor. We note that in
the case of spatial description the rotation tensor is introduced by the formal method, and often it has a more
vague sense than the angular velocity vector and the angular strain measure. Therefore, it is better to eliminate
the rotation tensor and all quantities, related to it by the algebraic formulas, from the set of basic equations.
One way to implement this idea is presented in Appendix K. This approach is based on the introduction of the
supplementary strain characteristic ϑρ = g−1

ρ · ∇θ .
By using two strain characteristics, Θρ and ϑρ , the set of basic equations can be written as

∇ · τ + ρf = ρ
δv
δt

, τ = pE + dev τ , ∇v = −δg
δt

· g−1,

g−1
ρ · ∇T − g−1

ρ · ×∇M − T Ψ ρ + Θρ M − Θρ · M + L∗
h + L∗

f = J
δΩ

δt
,

Θρ = trΘρ, Ψ ρ = (
Θρ

)
×, ∇Ω = gρ ·

[
δΘρ

δt
− Θρ × Ω

]
,

gρ = ρ

I3
g, I3 = Det g,

δ(ρ/I3)

δt
= 0, G = I−1/3

3 g, Gs = 1

2
G−1 · G−T ,

p = −ρ2 ∂U
(
ρ, Gs, Θρ, Ψ ρ

)
∂ρ

, T = ∂U
(
ρ, Gs, Θρ, Ψ ρ

)
∂Θρ

, M = ∂U
(
ρ, Gs, Θρ, Ψ ρ

)
∂Ψ ρ

,

dev τ = ρ G−T · ∂U
(
ρ, Gs, Θρ, Ψ ρ

)
∂Gs

· G−1 − 2

3
ρ Gs · ·∂U

(
ρ, Gs, Θρ, Ψ ρ

)
∂Gs

E,

δ2(χ−T · L∗
f )

δt2
+ κ

δ(χ−T · L∗
f )

δt
= −

(
δ2ω

δt2
+ cv + cs

r0

δω

δt
+ cvcs

r20
ω

)
,

ω = ϑ−1
ρ · Θρ · ϑT

ρ · Θ−T
ρ · Ω,

δϑρ

δt
= g−1

ρ · ∇ (
Ω · Θ−1

ρ · ϑρ

)
,
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χ−T = 1

χ

[
1

c(θ2)
ϑ−1

ρ · Θρ − k(θ2)

c(θ2)
[
c(θ2) + θ2k(θ2)

] Θ−1
ρ · ×ϑρ Θ−1

ρ · ×ϑρ

]
,

c(θ2) = −2
dΠ(θ2)

d(θ2)
, k(θ2) = 4

d2Π(θ2)

d(θ2)2
, θ2 = (

Θ−1
ρ · ×ϑρ

) · (
Θ−1

ρ · ×ϑρ

)
. (110)

Here f and L∗
h are external actions, which must be specified. The functions U

(
ρ, Gs, Θρ, Ψ ρ

)
and Π(θ2)

must also be specified.

8 A determination of temperature and entropy in the framework of the suggested nonlinear model

In the linear theory, the analogies of temperature and entropy were introduced on the basis of the energy
considerations. To be exact, the last term in the energy balance equation (18) was considered as the thermo-
dynamic one. Appropriately, the scalar quantity characterizing the spherical part of the moment stress tensor
was interpreted as the analogy of temperature, and the conjugate strain characteristic was interpreted as the
analogy of volume density of entropy. In what follows, we extend these mechanical analogies to the nonlinear
case. Further, we discuss the physical meaning of the additional terms in the heat conduction equation, and we
also suggest a generalization of the ideal gas model taking into account electromagnetic effects.

8.1 An extension of the mechanical analogies of temperature and entropy to the nonlinear case

Now we turn to the energy balance equation (53) in order to introduce mechanical analogies of temperature
and entropy in the framework of the nonlinear model. According to the assumption (59), the energy moment
stress tensor Te, which characterizes the interaction of rotors, is the sum of the spherical part of tensor TeE
and the antisymmetric tensor−Me ×E. By substituting Eq. (59) into Eq. (53), we obtained the energy balance
equation (80), which contains two terms characterizing the power of moment interaction of the rotors, namely

Te
δΘe

δt
and Me · δΨ e

δt
. Let us assume that Eq. (80) is the energy balance equation for the classical continuum.

Then, the term Te
δΘe

δt
can be interpreted as a thermodynamic one.

Now we draw attention to a problem that arises when we turn from the linear theory to the nonlinear one.
In the case of the linear theory, in the balance equations of linear momentum, angular momentum, and energy
the volume density of mass can be considered as a time-independent quantity that is specified in the reference
configuration. Therefore, it does not matter what kind of entropy density, the mass density or the volume
density, appears in the energy balance equation under the sign of time derivative. The situation is different in

the nonlinear theory. Therefore, when considering the nonlinear model, the interpretation of Te
δΘe

δt
as the

thermodynamic term in the energy balance equation does not give us grounds to interpret the quantity Te as an
analogy of temperature. It is necessary to make the change of variables so that the thermodynamic term would
take the form conventional for nonlinear continuum mechanics. In other words, the volume density of mass
should appear as a coefficient in the thermodynamic term.

The change of variables given by Eqs. (63), (85) allowed us to transform the energy balance equation (80)

to the form (87), where the terms Te
δΘe

δt
and Me · δΨ e

δt
are replaced by the terms ρT

δΘρ

δt
and ρM · δΨ ρ

δt
.

The term ρT
δΘρ

δt
has the same structure as the thermodynamic term in nonlinear continuum mechanics.

Consequently, we can interpret the quantity T as a mechanical analogy of temperature and the quantity Θρ

as a mechanical analogy of the mass density of entropy. The quantities T and Θρ are related to the absolute
temperature Ta and the mass density of entropy Θa by

T = aTa, Θρ = 1

a
Θa (111)

where a is the normalization factor. As previously shown, in the linear theory the normalization factor a
can be eliminated from all equations. Now we cannot answer the question on the possibility to eliminate the
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normalization factor from the nonlinear equations. Note that the normalization factor a in the suggested theory
is analogous to the Boltzmann constant in the kinetic theory.

We note that if assumption (59) is replaced by the similar assumption in relation to the true moment stress
tensor T, then it will be more difficult to separate a term in the energy balance equation that could be naturally
interpreted as a thermodynamic one. This circumstance was the decisive factor for the choice of the underlying
assumption, which was necessary in order to extend the previously suggested linear model to the nonlinear
case. Certainly, the simplicity of mathematical realization cannot be considered as a serious argument in favor
of the chosen way. Especially as various energy stress tensors with the corresponding energy strain measures
can be introduced in nonlinear models. All of the energy stress tensors are, in fact, equivalent, and it is difficult
to prefer one to another. Therefore, in order to finally decide an issue on the introduction of temperature and
entropy in the framework of the suggested nonlinear theory, it is necessary to consider the different ways, as
well as to analyze their consequences and to compare these consequences with the known experimental data.
A study of this issue is beyond the scope of this paper, and it will be the subject of a separate publication. Here
we were only going to identify the problems that arise when trying to extend the thermodynamic analogies to
the case of a nonlinear model and to outline the ways of solving the problems.

8.2 The nonlinear heat conduction equation and the meaning of the quantities contained in it

In the linear model, the heat conduction equation (21) was obtained by taking the divergence of both sides
of the angular momentum balance equation for the rotors. It is evident that in the nonlinear model the same
approach should be used. However, in the nonlinear model there are several different formulations of the
angular momentum balance equation for the rotors. They are given in Sect. 7.2. For simplicity sake, we
exclude from consideration the possibility of mechanical deformations of the material, i.e., we suppose that
g = E, ρ = const. In this case, there exist two alternatives, namely Eqs. (68) and (71), which differ from
each other only by rotation. It is difficult to find physical arguments in favor of one of these equations. For
further studies, we choose Eq. (71) because the qualitative results do not depend on the equation choice and
Eq. (71) is simpler than Eq. (68). Thus, by taking the divergence of both sides of Eq. (71) and taking into
account Eq. (72), we obtain

ρ−1ΔT − (∇T ) · Ψ ρ − T∇ · Ψ ρ + (∇Θρ) · M + Θρ∇ · M − M · (∇ · Θρ) − (∇M) · ·ΘT
ρ

+ ∇ · L∗
h + ∇ · L∗

f = ρ J
δ

δt

(
δΘρ

δt
− Ω · Ψ ρ

)
. (112)

It is easy to see that Eq. (112) depends not only on the mechanical analogies of temperature and entropy but
also on the quantities M and Ψ ρ . That is why the heat conduction equation (112) cannot be considered as an
independent equation. This equation must be considered together with another equation, which also follows
from the angular momentum balance equation for the rotors. In order to derive this additional equation, we
take the curl operator of both sides of Eq. (71) and take into account Eq. (72). As a result, we obtain

ρ−1[ΔM − ∇ · ∇M
] − (∇T ) × Ψ ρ − T∇ × Ψ ρ + (∇Θρ) × M + Θρ∇ × M

− (∇ × Θρ) · M − (∇M) · ×ΘT
ρ + ∇ × L∗

h + ∇ × L∗
f = ρ J

δ

δt

(
δΨ ρ

δt
+ ΘρΩ − Ω · Θρ

)
. (113)

Thus, in the nonlinear theory Eqs. (112), (113) are the coupled system of equations. The latter remains
true even when the quasi-static processes are considered and the internal energy has a special structure such
that the constitutive equations for T and M are independent, i.e., T = T (Θρ) and M = M(Ψ ρ). Therefore,
in discussing the heat conduction equation, it is necessary to discuss the physical meaning of vector M,
which characterizes the antisymmetric part of the moment stress tensor, as well as the physical meaning of
the corresponding strain measure Ψ ρ . In order to clarify the physical meaning of vectors M and Ψ ρ , we
refer to the mechanical model suggested in [63]. This mechanical model is based on the rotational degrees
of freedom, and the moment stress tensors are considered to be antisymmetric at that. As shown in [63], the
mathematical description of the model is reduced to the equations that are similar to the equations describing
the electromagnetic field in a substance. In particular, under certain simplifying assumptions, the analogies of
the Lorentz force andMaxwell’s equations have been obtained in the framework of the suggested model. Thus,
in [63] the antisymmetric parts of moment stress tensors and the corresponding strain measures are considered
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as analogies of the quantities describing the electromagnetic interactions. Developing the ideas of [63], we
attribute to vectorsM andΨ ρ in Eqs. (112), (113) themeaning of quantities associatedwith the electromagnetic
interactions between the particles of matter. Now we give some arguments in favor of such an interpretation.
We also express our view concerning the need to incorporate some electromagnetic characteristics into the
mathematical model describing nonlinear thermal processes.

(i) In many cases, thermal effects exert influence on the processes of chemical reactions, structural trans-
formations, and phase transitions. The chemical reactions, the structural transformations, and the phase
transitions are, in fact, the striking changes in interatomic interactions. It is well known that interatomic
interactions have electromagnetic character. That is why, whenmodeling the chemical reactions, the struc-
tural transformations, and the phase transitions, it is important to take into account the interdependence
between thermal and electromagnetic effects at the microlevel.

(ii) We are convinced that the electromagnetic interactions between particles of matter is one of the factors
generating the internal damping. Therefore, the electromagnetic interactions at the microlevel must be
taken into account when modeling acoustic processes in material media. The original approach to the
description of the internal damping by means of taking into account the spherical and antisymmetric parts
of the moment stress tensor has been developed in [52]. The cited paper demonstrates the possibility to
determine the model parameters in terms of the known physical characteristics of the material. In partic-
ular, the model parameters characterizing the internal damping are determined by using the experimental
data on the acoustic wave attenuation factors.

(iii) We believe that it is important to consider the mutual influence of thermal and electromagnetic effects
when describing radiation processes. In essence, the model problem considered in Sect. 7.4 demonstrates
the description of the radiation process. In view of the suggested physical–mechanical analogies, the
“transversal” waves propagating with velocity cs are considered to be electromagnetic waves, and the
“longitudinal” waves propagating with velocity cv are assumed to be heat waves. The heat transfer
by radiation can be represented in different ways. On the one hand, it is generally accepted that only
electromagnetic waves propagate, and it are precisely these waves that cause heating of matter when
interacting with it. On the other hand, we can assume that waves of different nature, namely heat waves,
propagate together with electromagnetic waves. The model problem in Sect. 7.4 is the realization of the
latter viewpoint. We note that in order to determine the model problem parameters it is necessary to use
experimental data relating to the laws of radiation. However, it is the subject of a separate study that is
beyond the scope of this work.

A detailed discussion of electromagnetic processes occurring in matter at the microlevel is also beyond the
scope of this study. In [63], the electromagnetic analogies were suggested for the specific cases. In order to
extend these analogies to a sufficiently general nonlinear model, we must solve a number of problems similar
to those which were solved when extending the thermodynamic analogies, firstly used in the linear theory, to
the nonlinear case.

8.3 Generalized models of an ideal gas

Now we show that the known equation of an ideal gas can be obtained in the framework of the suggested
model, without excluding the quantities that are assumed to be of an electromagnetic nature.

Let us reduce the energy balance equation (87), eliminating the deviator of stress tensor, using the thermo-
dynamic analogies (111), and taking into account the term that contains vectors M and Ψ ρ . As a result, we
obtain

ρ
δU

δt
= − p

ρ

δρ

δt
+ ρTa

δΘa

δt
+ ρM · δΨ ρ

δt
. (114)

As can be seen from Eq. (114), the mass density of internal energy depends on the scalar arguments ρ, Θa,
and the vector argument Ψ ρ . Since the medium is isotropic, the mass density of internal energy is a function
of the form U = U (ρ, Θa, Ψ 2

ρ ), where Ψ 2
ρ = Ψ ρ · Ψ ρ . Next, we give a few specific examples.

Example 1 Let us consider the expression for the mass density of internal energy,

U = Υ (Ψ 2
ρ )

(
ρ

ρ0

)(cp−cv)/cv
eΘa/cv , cp = const, cv = const, (115)
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where cp is the specific heat of the gas at constant pressure, cv is the specific heat of the gas at constant volume,
and ρ0 is the gas density under normal conditions. By using the Cauchy–Green relations (89), we obtain the
constitutive equations for pressure and temperature,

p = −Υ (Ψ 2
ρ )

ρ0(cp − cv)

cv

(
ρ

ρ0

)cp/cv
eΘa/cv , Ta = Υ (Ψ 2

ρ )
1

cv

(
ρ

ρ0

)(cp−cv)/cv
eΘa/cv , (116)

and the constitutive equations for vector M,

M = 2
dΥ (Ψ 2

ρ )

d(Ψ 2
ρ )

(
ρ

ρ0

)(cp−cv)/cv
eΘa/cv Ψ ρ. (117)

The known equation of the ideal gas and the known relation between the temperature and the internal energy
of the ideal gas

p = −(cp − cv)ρTa, U = cvTa (118)

follow from Eqs. (115), (116). It is easy to see that the dependence of the internal energy onΨ ρ has no effect on
the form of Eq. (118). The expression for entropy differs from the known expression for the entropy of an ideal
gas. However, the entropy plays a subsidiary role in continuum mechanics. The entropy is usually used for
deriving the constitutive equations and the heat conduction equation. As a rule, the entropy is excluded from
the final system of equations. In order to appreciate the adequacy of a model, only the behavior of temperature
(not the entropy!) is verified by means of a comparison with experimental data. That is why, when the model
contains the known equation of the ideal gas and the known relation between the temperature and the internal
energy, the expression for the entropy is not very important.

Example 2 Now we modify the expression for the mass density of internal energy (115) as follows:

U = Υ

(
ρ

ρ0

)(cp−cv)/cv
eΘa/cv +U0(Ψ

2
ρ ), cp = const, cv = const, Υ = const. (119)

In this case, the constitutive equations for pressure and temperature take the form

p = −Υ
ρ0(cp − cv)

cv

(
ρ

ρ0

)cp/cv
eΘa/cv , Ta = Υ

1

cv

(
ρ

ρ0

)(cp−cv)/cv
eΘa/cv . (120.1,2)

The constitutive equation for vectorM is given by the formula

M = 2
dU0(Ψ

2
ρ )

d(Ψ 2
ρ )

Ψ ρ. (121)

Equation (120.2) coincides with the known relation between the temperature, density, and entropy of the ideal
gas. The relations

p = −(cp − cv)ρTa, U = cvTa +U0(Ψ
2
ρ ) (122.1,2)

follow from Eqs. (119), (120). It is easy to see that Eq. (122.1) coincides with the equation of the ideal gas.
Equation (122.2) demonstrates that the mass density of internal energy linearly depends on temperature, as it
should be for an ideal gas.

Example 3 Now we consider the expression for the mass density of internal energy,

U = Υ

(
ρ

ρ0

)(cp−cv)/cv
eΘa/cv , cp = cp(Ψ

2
ρ ), cv = cv(Ψ

2
ρ ), Υ = const, (123)

wherein the specific heats are the functions of Ψ 2
ρ . The constitutive equations for pressure and temperature are

given by the expressions

p = −Υ
ρ0(cp − cv)

cv

(
ρ

ρ0

)cp/cv
eΘa/cv , Ta = Υ

1

cv

(
ρ

ρ0

)(cp−cv)/cv
eΘa/cv . (124.1,2)
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The constitutive equation for vectorM takes the form

M = 2Υ

(
ρ

ρ0

)(cp−cv)/cv
eΘa/cv

[
ln(ρ/ρ0)

cv

dcp(Ψ 2
ρ )

d(Ψ 2
ρ )

− ln(ρ/ρ0) cp + Θa

c2v

dcv(Ψ 2
ρ )

d(Ψ 2
ρ )

]
Ψ ρ. (125)

From Eqs. (123), (124), it follows that

p = − (
cp(Ψ

2
ρ ) − cv(Ψ

2
ρ )

)
ρTa, U = cv(Ψ

2
ρ )Ta. (126)

Formulas (126) differ from the known relations only by the fact that the specific heats depend on Ψ 2
ρ . The

expression for entropy that follows from Eq. (124.2) is also different from the known relation only by the fact
that cp and cv are functions of Ψ 2

ρ .

We believe that the models of an ideal gas including the quantities Ψ ρ and M can be useful in modeling
an ideal plasma.

9 Nonlinear models of heat transfer: state of the art and the peculiarity of the suggested model

Nonlinear thermal processes are actively studied and discussed in the modern literature. Without claiming
to be an exhaustive literature review, we indicate the main research areas in the field of nonlinear thermal
conductivity and denote a place of the suggested theory among the other models.

Many papers covering only mathematical questions are regularly published for several decades. Various
aspects of constructing analytical, semi-analytic and numerical solutions of the nonlinear heat conduction
equations are discussed in such papers—see, e.g., [65–69]. Suchworks usually deal with the simplest nonlinear
heat conduction equations. The nonlinearity of these equations consists in the fact that the material constants
of the linear equations are replaced by some functions of temperature (more often by polynomials). Among
the mathematical works, it is worth mentioning the papers where the authors consider laser heat sources (see,
e.g., [70]), as this type of thermal influences is most often found in the modern literature. Another large
group of publications consists of applied works, which are devoted to modeling nonlinear thermal processes in
technical devices—see, e.g., [71–74]. In such works, the mutual influence of thermal processes and processes
of other physical nature (optical, electrical, magnetic) is usually taken into account. Other distinctive features
of applied works are the use of numerical methods, the use of parameters of specific technical devices in
calculations, and the comparison of modeling results with the experimental data. We note that the models
of nonlinear thermal processes in the widest scale range, from geophysical processes (see, e.g., [75]), up to
biological processes at the molecular level (see, e.g., [76]), are presented in the modern literature. There are
a large number of papers devoted to studying nonlinear effects associated with thermal radiation—see, e.g.,
[77,78]. There exists a variety of mathematical models used to describe various thermal processes. Some of
them are based on classical concepts, and others are based on quantum-mechanical concepts. However, purely
empirical relations, which are not based on any models, play an important role in all nonlinear theories.

The main feature of the research presented in this paper is that it provides the description of two fundamen-
tally different processes of heat transfer (heat conduction and thermal radiation) within the framework of one
model. Another feature of the present study is the fact that it is based on the mechanical model different from
those used in statistical physics and quantum mechanics. Similarity between the suggested model and other
modern models consists in considering the mutual influence of thermal processes and processes of different
physical nature. In addition, this model (as well as many other modern models) contains a sufficient number
of undetermined functions. If we determine these functions by using empirical data, we will be able to model
thermal processes that occur in specific materials under specific conditions.

In future, we plan to develop the suggested theory in several directions. The first direction is a comparative
analysis of the different methods of introducing temperature and entropy that are based on modifications
of assumption (59). The second direction is to define the analogies of electromagnetic quantities using and
developing the ideas stated in [63]. The third direction is to specify the form of internal energy and to determine
the model parameters based on experimental data on the thermodynamic properties of materials. The fourth
direction consists in the further development of the internal dampingmodel by combining the ideas of this paper
with the ideas of [52]. The fifth direction is to determine the ether parameters based on a comparative analysis
of the heat and electromagnetic waves behavior at the boundary of the ether and some material medium.
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Appendix A: The proof of identity ∇ · D−T = 0

Tensor D = I−1
3 g possesses the property

∇ · D−T = 0. (127)

In order to prove this fact, we perform the following transformations:

D−T · DT = E ⇒ ∇ · (
D−T · DT ) = 0 ⇒ (∇ · D−T ) · DT + D−1 · ·∇DT = 0.

Next, we solve the last equation with respect to ∇ · D−T and carry out a number of identity transformations:

∇ · D−T = −(
D−1 · ·∇DT ) · D−T =

[
g−1 · ·

(
(∇ I3) gT − I3∇gT

)]
· g−T

=
[
(∇ I3) · g−T · gT − I3 g−1 · ·∇gT

]
· g−T =

[
∇ I3 −

(∂ I3
∂g

)T · ·∇gT
]

· g−T .

The last transformation is done by using the known identity

g−1 = 1

I3

(∂ I3
∂g

)T
, (128)

which is true for an arbitrary second-rank tensor. Further transformations are based on the specific properties
of tensor g:

∇gT = ri
∂

∂qi

(
E − (∇u)T

)
= −ri

∂2u
∂qi∂q j

r j = −∂(∇u)

∂q j
r j = ∂g

∂q j
r j

⇒
(∂ I3

∂g

)T · ·∇gT =
(∂ I3

∂g

)T · · ∂g
∂q j

r j = ∂ I3
∂q j

r j = ∇ I3

⇒ ∇ · D−T =
[
∇ I3 −

(∂ I3
∂g

)T · ·∇gT
]

· g−T = (∇ I3 − ∇ I3
) · g−T ≡ 0.

The proof of identity (127) is complete.

Appendix B: The derivation of the rotors’ motion equation in the case of
T = T D−T · PT − D−T · (M × PT )

Let us take the divergence of the moment stress tensor (63) and fulfill some transformations taking into account
the last formula in Eq. (61):

∇ · T = ∇ ·
(
TD−T · PT − D−T · (M × PT )

)
= ∇T · D−T · PT + T D−1 · ·∇PT − D−1 · ·(∇M × E) · PT + (M × D−1) · ·∇PT

= ∇T · I3 g−T · PT − (
T I3 g−1 + M × I3g−1) · ·(Θ · P × PT ) − (

I3 g−1 · ×∇M
) · PT

= I3
[
∇T · g−T − (

T E + M × E
) · ·(g−1 · Θ · P × E

) − g−1 · ×∇M
]

· PT

= I3
[
g−1 · ∇T − g−1 · ×∇M − T

(
g−1 · Θ · P)

× + tr(g−1 · Θ · P)M − (g−1 · Θ · P) · M
]

· PT .

By using the notation (52), we write the result of the above transformations in terms of the energy strain
measure Θe as

∇ · T = I3
[
g−1 · ∇T − g−1 · ×∇M − T

(
Θe

)
× + (trΘe)M − Θe · M

]
· PT .
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In view of the last relation, the rotors motion equation (43) takes the form[
g−1 · ∇T − g−1 · ×∇M − T

(
Θe

)
× + (trΘe)M − Θe · M

]
· PT + �L = �J

δω

δt
, � = ρ

I3
. (129)

The derivation of the rotors motion equation is complete.

Appendix C: The proof of identity
δ�

δ t
= 0

Now we prove that the quantity � = ρ/I3 possesses the property

δ�

δt
= 0. (130)

In view of identity (128) and Eq. (50.1), which relates the velocity gradient and the strain measure g, we obtain

∇v = −δg
δt

· g−1 ⇒ ∇ · v = −δg
δt

· ·g−1 ⇒ ∇ · v = − 1

I3

δ I3
δt

.

Let us write the mass balance equation (37) taking into account the above identities and carry out a number of
simple transformations. As a result, we have

δρ

δt
= ρ

I3

δ I3
δt

⇒ δ(ρ/I3)

δt
= 0 ⇒ δ�

δt
= 0.

The proof of identity (130) is complete.

Appendix D: The transformation of the energy balance equation in the case of τ = τ T , μ = 0,
Te = TeE − Me × E

Let us write the energy balance equation (73) taking into account expressions (51), (52) for the energy stress
tensor τe and the energy strain measure ge:

ρ
δU

δt
= τ · ·

(
g · δ(g−1 · P̃)

δt
· P̃T

)
+ Te E · ·δΘe

δt
+ (

Me × E
) · ·δΘe

δt
.

By using the identities

Te E · ·δΘe

δt
= Te

δ(trΘe)

δt
,

(
Me × E

) · ·δΘe

δt
= Me · δ

(
Θe

)
×

δt
,

we reduce the energy balance equation to the form

ρ
δU

δt
= τ · ·

(
g · δ(g−1 · P̃)

δt
· P̃T

)
+ Te

δ(trΘe)

δt
+ Me · δ

(
Θe

)
×

δt
.

Since τ is a symmetric tensor, the energy balance equation depends on only the symmetric part of the expression
in parentheses. We take this fact into account as follows:

ρ
δU

δt
= τ · ·1

2

(
g · δ(g−1 · P̃)

δt
· P̃T + P̃ · δ(P̃T · g−T )

δt
· gT

)
+ Te

δ(trΘe)

δt
+ Me · δ

(
Θe

)
×

δt
.

By simple transformations, the rotation tensor P̃ can be eliminated from the expression in parentheses. As
a result, the energy balance equation takes a more simple form
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ρ
δU

δt
= τ · ·1

2

(
g · δg−1

δt
+ δg−T

δt
· gT

)
+ Te

δ(trΘe)

δt
+ Me · δ

(
Θe

)
×

δt
.

Further, in view of the identical transformation

1

2

(
g · δg−1

δt
+ δg−T

δt
· gT

)
= 1

2
g · δ(g−1 · g−T )

δt
· gT ,

we transform the energy balance equation to the form

ρ
δU

δt
=

(
gT · τ · g

)
· ·1
2

δ(g−1 · g−T )

δt
+ Te

δ(trΘe)

δt
+ Me · δ

(
Θe

)
×

δt
.

Introducing the notations

τ s = gT · τ · g, gs = 1

2
g−1 · g−T ,

we rewrite the energy balance equation as

ρ
δU

δt
= τ s · ·δgs

δt
+ Te

δ(trΘe)

δt
+ Me · δ

(
Θe

)
×

δt
. (131)

The transformation of the energy balance equation is complete.

Appendix E: The derivation of the Cauchy–Green relation for the deviator of the stress tensor

Now we introduce the strain measure

G = I−1/3
3 g, DetG = 1,

characterizing the change in form. Next, we write the energy balance equation (74) by using expression (79)
for the stress tensor. After the necessary transformations of the energy balance equation, we separate the term
that characterizes the power of internal interactions related to the change in volume and the term characterizing
the power of internal interactions related to the changes in form. As a result, we obtain

ρ
δU

δt
= − p

I3

δ I3
δt

+
(
GT · (dev τ ) · G

)
· ·1
2

δ(G−1 · G−T )

δt
+ Te

δΘe

δt
+ Me · δΨ e

δt
.

Making the transition from (74) to the above energy balance equation, we used the identical transformations

0 = δ(DetG−1)

δt
=

(
∂(DetG−1)

∂G−1

)T

· ·δG
−1

δt
= (DetG−1)G · ·δG

−1

δt
= G · ·δG

−1

δt
,

E · ·
(
g · δg−1

δt

)
= tr

(
g · δg−1

δt

)
= g · ·δg

−1

δt
= − 1

3I3

δ I3
δt

G · ·G−1 + G · ·δG
−1

δt
= − 1

I3

δ I3
δt

,

and the transformations similar to those that were carried out when deriving the energy balance equation in
the form of (131). In view of the notation

Gs = 1

2
G−1 · G−T ,

the energy balance equation takes the form

ρ
δU

δt
= − p

I3

δ I3
δt

+
(
GT · (dev τ ) · G

)
· ·δGs

δt
+ Te

δΘe

δt
+ Me · δΨ e

δt
.

In the case of elastic strains, in view of Eq. (82) the Cauchy–Green relations for p, Te, andMe can be derived
from the last equation in an obvious way. Only the constitutive equation for the deviator of the stress tensor
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Fig. 5 An elementary volume of the continuum consisting of the body points

deserves a special discussion. Since the determinant of tensorGs is equal to the fixed value, the Cauchy–Green
relation for dev τ is determined up to the spherical part of the tensor, i.e.,

dev τ = ρ G−T · ∂U

∂Gs
· G−1 + λE.

The coefficient λ is calculated as follows:

tr (dev τ ) = 0 ⇒ λ = −2

3
ρ Gs · · ∂U

∂Gs
.

As a result, the Cauchy–Green relation for dev τ takes the form

dev τ = ρ G−T · ∂U

∂Gs
· G−1 − 2

3
ρ Gs · · ∂U

∂Gs
E. (132)

The derivation of the Cauchy–Green relation for the deviator of stress tensor is complete.

Appendix F: The nonlinear model of the ether

Now we consider a continuum consisting of body points—see Fig. 5. The body points are similar to the rotors
of the gyrostats simulating particles of matter. We introduce the following notations: ρ̂(r, t) is the mass density
of the continuum at a given point of space; v̂(r, t) is the velocity field; P̂(r, t), ω̂(r, t) are the fields of the
rotation tensors and the angular velocity vectors of the body points, respectively. The relation between P̂(r, t)
and ω̂(r, t) is

ω̂ = −1

2

(
δ̂P̂
δt

· P̂T

)
×

,
δ̂

δt
= d

dt
+ v̂ · ∇, (133)

where the operator
δ̂

δt
is the material derivative.

The volume densities of the kinetic energy, the linear momentum, and the angular momentum of the
continuum are

ρ̂ K̂ = ρ̂

(
1

2
v̂ · v̂ + 1

2
Ĵ ω̂ · ω̂

)
, ρ̂K̂1 = ρ̂v̂, ρ̂K̂2 = ρ̂

(
r × v̂ + Ĵ ω̂

)
, (134)

where constant Ĵ is the mass density of inertia moments of the body points. The angular momentum density
ρ̂K̂2 is calculated with respect to the origin of the reference frame.

The mass production in a volume is considered to be impossible. There are no external body forces and
body moments acting on the ether particles. Interactions between the ether particles that are characterized by
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forces are also absent. In view of these assumptions, the mass balance equation, the linear momentum balance
equation, and the angular momentum balance equation are formulated as

δ̂ρ̂

δt
+ ρ̂ ∇ · v̂ = 0, ρ̂

δ̂v̂
δt

= 0, ∇ · T̂ = ρ̂ Ĵ
δ̂ω̂

δt
(135.1–3)

where T̂ is themoment stress tensor in the ether.Wenote that Eq. (135) is not the coupled systemof equations.At
the beginning, one can find v̂(r, t) by solving Eq. (135.2). After that, one can find ρ̂(r, t) by solving Eq. (135.1).
Thus, the problem is reduced to solving Eq. (135.3) where ρ̂ and v̂ are considered to be known functions.

Now we introduce the strain measure Θ̂ and give the relation between this strain measure and the angular
velocity gradient:

∇P̂ = Θ̂ × P̂, ∇ω̂ = δ̂Θ̂

δt
+ Θ̂ × ω̂ + (∇v̂) · Θ̂ . (136)

Next we introduce the energy moment stress tensor T̂e and the energy strain measure Θ̂e in the same way as
it is done in Sect. 6.4:

T̂e = ĝT · T̂ · P̂, Θ̂e = ĝ−1 · Θ̂ · P̂,
δ̂ĝ
δt

· ĝ−1 = −∇v̂. (137)

Further, we assume that an energy supply from on external source is absent and there is not any energy
flow of “non-mechanical” nature. In this case, the energy balance equation can be reduced to the form

ρ̂
δ̂Û

δt
= T̂T

e · · δ̂Θ̂e

δt
(138)

where Û is themass density of internal energy. Assuming the continuum to be elastic, fromEq. (138) we obtain

Û = Û
(
Θ̂e

) ⇒ T̂e = ρ̂
∂Û

∂Θ̂e
⇒ T̂ = ρ̂ ĝ−T · ∂Û

∂Θ̂e
· P̂T . (139)

In order to specify the model of the ether, we accept an assumption analogous to hypothesis (59), which
was accepted in relation to the moment interactions in the material medium, namely

T̂e = T̂eE − M̂e × E. (140)

In view of Eq. (140), the energy balance equation (138) can be rewritten as

ρ̂
δ̂Û

δt
= T̂e

δ̂Θ̂e

δt
+ M̂e · δ̂Ψ̂ e

δt
, Θ̂e = tr Θ̂e, Ψ̂ e = (

Θ̂e
)
×. (141)

Taking into account Eq. (141), we obtain

Û = Û
(
Θ̂e, Ψ̂ e

) ⇒ T̂e = ρ̂
∂Û

∂Θ̂e
, M̂e = ρ̂

∂Û

∂Ψ̂ e
. (142)

In order to ultimately elaborate the ether model, we should specify function Û
(
Θ̂e, Ψ̂ e

)
. This issue is beyond

the scope of the present study.
It is easy to see that the suggested model of the ether is based on the same hypotheses as the model of the

internal dynamics of those gyrostats that constitute the continuum modeling of some material medium. This
coincidence is not accidental. It is the consequence of two ideas that are the foundation of the suggested model.
The first idea is that the non-mechanical properties of matter (in particular, the thermodynamic ones) are partly
provided by the internal structure of atoms, all the components of which are formed of the ether particles and
retain the ether properties. The second idea is that the non-mechanical properties of matter are provided by
not only the properties of atoms but also due to the ether that occupies the space between the atoms, interacts
with the atoms, and provides the interactions between the atoms.
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Appendix G: The linearized model of the ether

In the case of the linear theory, the density of mass is considered to be constant when formulating the balance
equations of linear momentum, angular momentum, and energy. The description of rotational motion becomes
more simple that leads, in particular, to simplification of the expressions for the strain measures. In the linear
theory, the energy stress tensor and the energy moment stress tensor coincide with the true ones, as well as
the energy strain measures coincide with the true strain measures. Upon linearizing, we get rid of the material
derivatives that leads to simplification of the kinematic relations as well as the dynamic terms in the balance
equations. These factors are of a technical nature. They are important in solving problems rather than for stating
them. Now we discuss the factor that is important for stating the problems. In the linear theory, the internal
energy density is a quadratic form of the strain tensors, whereas in the nonlinear theory the specification of
internal energy is a complicated problem, solving which is based on various considerations of the informal
nature as well as the results of physical experiments. In this paper, the equations of the ether dynamics are not a
subject of investigation. They are used only in order to formulate and to solve the model problem. That is why,
for purposes of this study, it is important to specify the constitutive equations and to simplify the differential
equations as much as possible.

If for the undisturbed ether the rotation tensors of the body points P̂(r, t) are assumed to be equal to the
unit tensor, then upon linearizing near this state tensors P̂(r, t) take the form

P̂(r, t) = E + θ̂(r, t) × E (143)

where θ̂(r, t) is the field of the rotation vectors of the body points. In the linear approximation, the expressions
for the angular velocity vector and the angular strain tensor are

ω̂ = dθ̂

dt
, ϑ̂ = ∇ θ̂ . (144)

In view of the above-stated simplifications, the balance equations of linear momentum and angular momen-
tum take the form

dv̂
dt

= 0, ∇ · T̂ = ρ̂ Ĵ
d2θ̂

dt2
. (145.1,2)

The energy balance equation is formulated as

d(ρ̂Û )

dt
= T̂T · ·dϑ̂

dt
. (146)

In view of the fact that in the linear theory assumption (140) takes the form

T̂ = T̂E − M̂ × E, (147)

the energy balance equation (146) reduces to the form

d(ρ̂Û )

dt
= T̂

dϑ̂

dt
+ M̂ · dψ̂

dt
, ϑ̂ = ∇ · θ̂ , ψ̂ = ∇ × θ̂ . (148.1–3)

By specifying the internal energy density in the simplest form, we obtain the constitutive equations as follows:

ρ̂Û = 1

2
k̂vϑ̂

2 + 1

2
k̂s ψ̂ · ψ̂ ⇒ T̂ = k̂vϑ̂, M̂ = k̂s ψ̂ . (149)

Substituting Eqs. (147), (149) into Eq. (145.2), we obtain

k̂v ∇ϑ̂ − k̂s ∇ × ψ̂ = ρ̂ Ĵ
d2θ̂

dt2
. (150)

It is easy to show that taking into account Eqs. (148.2,3) one can transform Eq. (150) to the two wave
equations

Δϑ̂ − 1

c2v

d2ϑ̂

dt2
= 0, c2v = k̂v

ρ̂ Ĵ
, Δψ̂ − 1

c2s

d2ψ̂

dt2
= 0, c2s = k̂s

ρ̂ Ĵ
. (151.1–4)

Equations (151.1) and (151.3) describe the propagation of the “longitudinal” and “transverse” waves in the
ether, respectively.
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Fig. 6 The simplified model of the interaction between the rotor and the ether

Appendix H: The approximate solution of the model problem

Now we consider the mechanical system that models the interaction of a rotor with the ether. The system
consists of the rotor and the ether occupying the whole infinite space—see Fig. 6. The rotor is assumed to be
a spherically symmetric rigid body of radius r∗ with mass m and inertia moment mJ . The detailed description
of the nonlinear model of the ether is contained in Appendix F. The ether layer r∗ < r < r0 is considered
to be an elastic continuum, capable of large angular deformations and inertialess with respect to the rotational
degrees of freedom. The stress strain state of the continuum is described by Eq. (92). The kinematic boundary
condition on the contact surface between the rotor and the ether has the form of Eq. (97). The ether located
outside the layer r∗ < r < r0 is modeled by the inertial elastic continuum that is described by two linear wave
equations—see Appendix G. In addition, we suppose that the waves propagating along the angular coordinates
can be disregarded. Also, we assume the boundary between the inertial part of ether and the inertialess part of
ether to be rotating as a rigid body. At the initial moment of time, the ether is not disturbed.

Since we consider only the waves propagating in the radial direction, the wave equations (93) can be
rewritten in the form

∂2(r ϑ̂)

∂r2
= 1

c2v

∂2(r ϑ̂)

∂t2
,

∂2(rψ̂)

∂r2
= 1

c2s

∂2(rψ̂)

∂t2
. (152)

In view of the absence of sources at infinity, the solutions of Eq. (152) are

ϑ̂ =
⎧⎨
⎩

0, r > r0 + cvt,
1

r
f (r − cvt), r0 ≤ r ≤ r0 + cvt,

ψ̂ =
⎧⎨
⎩

0, r > r0 + cst,
1

r
h(r − cst), r0 ≤ r ≤ r0 + cst

(153)

where f and h are arbitrary functions of their arguments. These functions are determined by the boundary
conditions on the surface r = r0. For the purposes of this study, the specific forms of functions f and h are
not required.

It is easy to show that expressions (153) satisfy the relations

∂ϑ̂

∂r
= − 1

cv

∂ϑ̂

∂t
− 1

r
ϑ̂,

∂ψ̂

∂r
= − 1

cs

∂ψ̂

∂t
− 1

r
ψ̂ . (154)

Wenote that ϑ̂ and ψ̂ depend not only on the arguments r and t . They also can depend on the angular coordinates
of the spherical coordinate system. If the wave processes along the angular coordinates are excluded from
consideration, it does not mean that the dependence of ϑ̂ and ψ̂ on these coordinates is also excluded from
consideration. The dependence of ϑ̂ and ψ̂ on the angular coordinates as parameters may occur due to the
boundary conditions. However, the wave process along the coordinate r is assumed to be sufficiently shortwave
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in order that the terms containing the derivatives with respect to the angular coordinates can be considered as
negligible compared to the terms containing the derivativeswith respect to r . In otherwords, the approximations

∇ϑ̂ ≈ er
∂ϑ̂

∂r
, ∇ × ψ̂ ≈ er × ∂ψ̂

∂r
(155)

are assumed to be acceptable. In view of expression (95) for the moment stress tensor and Eqs. (154) (155),
we obtain

∇ · T̂ ≈ kver
∂ϑ̂

∂r
− kser × ∂ψ̂

∂r

= −
(
C−1

w

∂

∂t
+ E

1

r

)
·
(
kver ϑ̂ − kser × ψ̂

)
= −

(
C−1

w

∂

∂t
+ E

1

r

)
· (er · T̂) (156)

where

Cw = cverer + cs(E − erer ). (157)

Let us write the angular momentum balance equation for the ether taking into account Eq. (156). As a result,
we have

−
(
C−1

w

∂

∂t
+ E

1

r

)
· (er · T̂) = ρ̂ Ĵ

∂2θ̂

∂t2
. (158)

By solving Eq. (158) with respect to er · T̂ and taking into account the fact that at the initial moment of time
the ether is at rest, we obtain

er · T̂ = −ρ̂ Ĵ

(
Cw · ∂ θ̂

∂t
− r−1C2

w · θ̂ + r−2C3
w ·

∫ t

0
eCwr−1(τ−t) · θ̂(τ ) dτ

)
. (159)

Now we calculate the total moment T̂σ ≡
∫

σ0

er · T̂
∣∣∣
r=r0

dσ acting on the spherical surface of radius r0.

We note that vector θ̂ depends not only on t and r but also on the angles of the spherical coordinate system. In
accordance with the accepted boundary conditions, the spherical surface r = r0 rotates as a rigid body. This

means that θ̂0 = θ̂

∣∣∣
r=r0

depends only on time. Because of this, at r = r0 the surface integral of the function

er · T̂ given by Eq. (159) can be easily calculated. As a result, after a series of transformations, we obtain the
following expression for the moment vector T̂σ :

T̂σ = −4πr20
3

(
kv
cv

+ 2ks
cs

)
dθ̂0
dt

+ 4πr0
3

(kv + 2ks) θ̂0(t)

− 4π

3

∫ t

0

[
cvkve

cvr
−1
0 (τ−t) + 2cskse

csr
−1
0 (τ−t)

]
θ̂0(τ ) dτ. (160)

Next, we consider the part of the ether occupying the region r∗ < r < r0. This part of the ether is assumed
to be inertialess. Consequently, the total moment acting on this part of the ether must be equal to zero. The
inertialess part of the ether undergoes the action of the rotor and the inertial part of the ether. Hence,

−
∫

σ∗
er · T̂

∣∣∣
r=r∗

dσ +
∫

σ0

er · T̂
∣∣∣
r=r0

dσ = 0 ⇒ T̂σ =
∫

σ∗
er · T̂

∣∣∣
r=r∗

dσ. (161)

Thus, in fact, the rotor undergoes the action of the moment vector T̂σ determined by Eq. (160). Hence, the
angular momentum balance equation for the rotor can be written as

mJ
dω

dt
= T̂σ (162)
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where ω is the angular velocity vector of the rotor. The system of equations (160), (162) is not closed, because
it contains three unknown vectors, namely θ̂0, T̂σ , and ω. In order to close this system, it is necessary to take
into account the elastic properties of the ether occupying the region r∗ < r < r0, and also to use the kinematic
relation between the angular velocity vector ω and the corresponding rotation vector θ (the rotation vector is
defined as the product of the rotation angle on the unit vector that is directed along the rotation axis), namely

ω = Z−1(θ) · dθ
dt

. (163)

Here Z(θ) is the Zhilin tensor [64], which can be expressed in terms of the rotation vector θ as

Z(θ) = E − 1

2
R + 1 − g

θ2
R2, R(θ) = θ × E, g(θ) = θ sin θ

2(1 − cos θ)
, θ = |θ |. (164)

In order to take full account of the elastic properties of the part of the ether occupying the region r∗ < r < r0,
it is necessary to solve the problem (92). This problem is very complicated. If it can be solved analytically, it
is only in the case of the special form of function Û

(
Θ̂e, Ψ̂ e

)
. It is unlikely that such Û

(
Θ̂e, Ψ̂ e

)
has some

physical meaning. However, for our purposes it is not necessary to know all the functions that characterize the
stress–strain state of the ether. We need to know only the total elastic moment T̂σ acting on the rotor. Taking
into account the peculiarity of the boundary conditions, i.e., the fact that the outer boundary of the region
r∗ < r < r0 rotates as a rigid body and the inner boundary contacting with the rotor also rotates as a rigid
body, it can be argued that the elastic moment T̂σ is a function of rotation vector γ characterizing the relative
rotation of the inner and outer boundaries. Vector γ is defined by the relation

P(γ ) = P(θ) · PT (θ̂0). (165)

Therefore, instead of specifying the mass density of internal energy Û
(
Θ̂e, Ψ̂ e

)
and solving the problem (92),

we can directly specify a potential Π(γ ) corresponding to the elastic moment that models the influence of the
ether occupying the region r∗ < r < r0 on the rotor. As shown in [64], the elastic moment corresponding to
the potential Π(γ ) is calculated by the formula

T̂σ = −ZT (γ ) · dΠ(γ )

dγ
. (166)

In the case of an isotropic continuum (the ether is considered to be isotropic), the elastic potential depends on
the square modulus of γ rather than vector γ itself, i.e., the elastic potential has the form ofΠ(γ ) = Π(γ · γ ).
In this case, the expression for the elastic moment (166) is significantly simplified and takes the form

T̂σ = −2
dΠ(γ · γ )

d(γ · γ )
γ . (167)

Since the rotation vector θ̂0 is considered to be small, i.e., P(θ̂0) ≈ E+ θ̂0 ×E, the relative rotation vector
γ can be represented by the approximate expression

γ = θ − ZT (θ) · θ̂0. (168)

Substituting Eq. (168) into Eq. (167), after a series of asymptotic transformations retaining the terms linear
with respect to θ̂0, we obtain

T̂σ = −c(θ2)θ +
[
c(θ2)ZT (θ) + k(θ2)θθ

]
· θ̂0 (169)

where the scalar functions c(θ2) and k(θ2) have the form

c(θ2) = −2
dΠ(γ · γ )

d(γ · γ )

∣∣∣∣
γ=θ

, k(θ2) = 4
d2Π(γ · γ )

d(γ · γ )2

∣∣∣∣
γ=θ

. (170)
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Equations (160), (162), (163), (169) are a closed system of equations for vectors ω, θ , θ̂0, and T̂σ . Next
we eliminate vector θ̂0 from this system. In order to do this, first we substitute Eq. (160) into Eq. (162), and
after simple transformations, we obtain the differential equation relating θ̂0 and ω:

d2θ̂0
dt2

+ κ
dθ̂0
dt

= −mχ

(
d2ω

dt2
+ cv + cs

r0

dω

dt
+ cvcs

r20
ω

)
(171)

where the parameters κ and χ are determined by the formulas

κ = 3cvcs
r0(cv + 2cs)

, χ = 3J

4πr20 ρ̂ Ĵ (cv + 2cs)
. (172)

In view of Eq. (163), the solution of Eq. (171) with respect to θ̂0 is

θ̂0 = −mχ

(
ω + p

∫ θ

0
Z−1(θ̃) · dθ̃ − q

∫ t

0

[∫ t

0
eκ(τ−t)Z−1(θ(τ )

) · dθ(τ )

]
dt

)
(173)

where

p = c2v + 2c2s
r0(cv + 2cs)

, q = 2cvcs(cv − cs)2

r20 (cv + 2cs)2
. (174)

Substituting Eq. (173) into Eq. (169), we obtain the final expression for the moment acting on the rotor, namely

T̂σ = −c(θ2)θ − mχ
[
c(θ2)ZT (θ) + k(θ2)θθ

]
· ω

−mχ
[
c(θ2)ZT (θ) + k(θ2)θθ

]
·
(
p

∫ θ

0
Z−1(θ̃) · dθ̃ − q

∫ t

0

[∫ t

0
eκ(τ−t)Z−1(θ(τ )

) · dθ(τ )

]
dt

)
.

(175)

Equations (162), (163), (175) are a closed system of equations for vectors ω, θ , and T̂σ . The influence of
the ambient ether on the rotor is taken into account integrally in this system of equations.

Appendix I: The properties of tensor Z(θ) and tensor χ(θ)

In [64], it is shown that the Zhilin tensor

Z(θ) = E − 1

2
R + 1 − g(θ)

θ2
R2, g(θ) = θ sin θ

2(1 − cos θ)
, θ = |θ | (176)

possesses the following properties:

ZT (θ) = P(θ) · Z(θ) = Z(θ) · P(θ), Z(θ) · θ = θ , θ · Z(θ) = θ . (177)

In [64], it is also shown that the determinant of tensor Z(θ) is not zero (except the singular points of θ = 2πk
where k is an integer), and the inverse tensor has the form

Z−1(θ) = E + 1 − cos θ

θ2
R + θ − sin θ

θ3
R2. (178)

If the rotation about a fixed axis is ignored, without loss of generality, we can assume that 0 ≤ θ < π . The
inverse tensor exists for any θ within this range. The inverse tensor possesses properties similar to (177), namely

Z−T (θ) = PT (θ) · Z−1(θ) = Z−1(θ) · PT (θ), Z−1(θ) · θ = θ , θ · Z−1(θ) = θ . (179)

Taking into account the formula R = θ × E , it is easy to show that from Eq. (176) it follows that

θ = Z×(θ), θ = |Z×(θ)| . (180)
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We note that Eq. (177) allows us to express the rotation tensor in terms of the Zhilin tensor, namely

P(θ) = Z−1(θ) · ZT (θ). (181)

Let us now discuss the properties of tensor χ(θ) defined by the formula

χ(θ) = χ
[
c(θ2)ZT (θ) + k(θ2)θθ

]
. (182)

The determinant of tensor χ(θ) is related to the determinant of tensor Z(θ) by

Det χ(θ) = χ3 [
c(θ2) + θ2k(θ2)

]
c2(θ2) DetZ(θ). (183)

If Det χ(θ) �= 0, there exists the inverse tensor, which has the form

χ−1(θ) = 1

χ

[
1

c(θ2)
Z−T (θ) − k(θ2)

c(θ2)
[
c(θ2) + θ2k(θ2)

] θθ

]
. (184)

Taking into account Eqs. (177), (179), it is easy to show that tensorsχ andχ−1 possess the following properties:

χT (θ) = PT (θ) · χ(θ) = χ(θ) · PT (θ), χ−T (θ) = P(θ) · χ−1(θ) = χ−1(θ) · P(θ). (185)

Appendix J: The asymptotic analysis of the model problem solution

When deriving formula (101) for moment T̂σ , we used a number of assumptions (see Appendix H), two of
which are of an asymptotic nature. They impose certain restrictions on the ratio of the problem parameters.
Nowwe carry out the appropriate asymptotic analysis.We suppose that the dynamic process with characteristic
frequency ν is considered, i.e., ω ∼ νθ .

When stating the problem, we supposed that the part of ether occupying the region r∗ < r < r0 can be
considered to be inertialess. Such a simplification is acceptable, if the characteristic frequency of the dynamic
process ν is small in comparison with the first eigenfrequency of this layer of the ether. Now we carry out
non-rigorous asymptotic considerations allowing us to estimate the order of the first eigenfrequencies. To
describe free oscillations of the ether layer r∗ < r < r0, we will use the linear equations (152). In addition,
we assume the following conditions at the boundaries of the region:

ϑ̂

∣∣∣
r=r∗

= 0, ϑ̂

∣∣∣
r=r0

= 0, ψ̂

∣∣∣
r=r∗

= 0, ψ̂

∣∣∣
r=r0

= 0. (186)

The solutions of Eq. (152) satisfying the boundary conditions (186) are

ϑ̂n = An

r
sin

(
πn

r0−r∗
(r−r∗)

)
sin

(
πncv
r0−r∗

t

)
, ψ̂n = Bn

r
sin

(
πn

r0−r∗
(r−r∗)

)
sin

(
πncs
r0−r∗

t

)
. (187)

Certainly, ignoring the nonlinear effects and using some boundary conditions in place of the other ones, we
make a significant error in the determination of eigenfrequencies, but unlikely this may affect the order of their
magnitudes. Thus, we can conclude that the frequency ν of the dynamic process should be much smaller than
the first eigenfrequencies that are determined by the solution (187). Consequently, the problem parameters
must satisfy the inequalities

r0−r∗ � πcv
ν

, r0−r∗ � πcs
ν

. (188)

When stating the problem, we supposed that the part of the ether occupying the region r ≥ r0 can be
described by the linear theory. This assumption means that the rotation vector θ̂0 that is given by Eq. (173)
has to be small.

At first, we assume that cv ∼ cs ∼ |cv − cs|. Let us consider the different variants:
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(i) All the terms in Eq. (173) have the same order. This is possible if r0 ∼ cv
ν

and r0 ∼ cs
ν
. These conditions

do not contradict Eq. (188) if
r0−r∗
πr0

� 1. The smallness of the rotation vector θ̂0 is ensured by the

condition νmχ � 1. In the present case, this condition takes the form
mJ

m̂ Ĵ
� 1 where m̂ = 4πr30 ρ̂

3
.

(ii) Let r0  cv
ν

and r0  cs
ν
. In this case, the third term in Eq. (173) is much smaller than the second one,

and the second term is much smaller than the first one. Contradiction with Eq. (188) does not occur

if
r0−r∗
πr0

� 1 while r0−r∗ � πcv
ν

� πr0 and r0−r∗ � πcs
ν

� πr0. The smallness of the rotation

vector θ̂0 is ensured by the condition νmχ � 1, as in the previous case. However, in this case the latter

condition can be reduced to a slightly different form, namely
mJ

m̂ Ĵ
� cv + 2cs

νr0
� 1.

(iii) Let r0 � cv
ν

and r0 � cs
ν
. In this case, the first term in Eq. (173) is much smaller than the second one,

and the second term is much smaller than the third one. Conditions (188) are satisfied automatically.

The smallness of the rotation vector θ̂0 is ensured by the condition
mχq

ν
� 1. In the present case, this

condition takes the form
mJ

m̂ Ĵ
� νr0(cv + 2cs)3

2cvcs(cv − cs)2
� 1.

Thus, for any ratio of the parameters, the condition
mJ

m̂ Ĵ
� 1 is a necessary smallness condition for the

rotation vector θ̂0. Since the parameters m̂, Ĵ are the inertial characteristics of the ether and the parameters
m, J are the inertial characteristics of the rotor, it is clear that the above condition does not contradict common
sense only if r0 is sufficiently large. This means that r0  r∗. Consequently, only the last of the three options
is realistic. Since we consider the case of cv ∼ cs ∼ |cv − cs|, the main result can be rewritten as

mJ

m̂ Ĵ
� νr0

cv
∼ νr0

cs
� 1. (189)

Now we assume that cv  cs or cs  cv. After analyzing the options similar to those described above,
we conclude that

cv  cs : mJ

m̂ Ĵ
� νr0

cs
� 1; cs  cv : mJ

m̂ Ĵ
� νr0

cv
� 1. (190)

In this case, as well as in the case of cv ∼ cs ∼ |cv − cs|, the first term in Eq. (173) is much smaller than the
second one, and the second term is much smaller than the third one.

Next we assume that cv ≈ cs. After analyzing the options similar to those considered above, we obtain

mJ

m̂ Ĵ
� 1,

νr0
cv

≈ νr0
cs

� 1. (191)

In this case, the second term in Eq. (173) is much larger than the first and third terms. The smallness of the
third term is ensured by the smallness of (cv − cs)2 compared to cvcs.

We note that the radius r0, which appears in the above inequalities, is not a physical parameter, because it
is related to the imagined spherical surface in the ether.

Appendix K: The representation of tensors Z, χ and χ−1 in terms of the strain characteristics

According to Eqs. (180), (182), (184), tensors χ and χ−1 are related to the tensor Z by the formulas

χ = χ
[
c(θ2)ZT + k(θ2)Z×Z×

]
, θ = |Z×| ,

χ−1 = 1

χ

[
1

c(θ2)
Z−T − k(θ2)

c(θ2)
[
c(θ2) + θ2k(θ2)

] Z×Z×

]
. (192)
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Therefore, the problem of representation of tensors χ and χ−1 in terms of the strain characteristics is reduced
to the representation of tensor Z in terms of these strain characteristics.

It is known that the relation between the rotation and the angular velocity vector can be written in the
following equivalent forms [64]:

δP
δt

= ω × P,
δP
δt

= P × Ω ⇔ δθ

δt
= ω · ZT ,

δθ

δt
= Ω · Z. (193)

Similarly, the relation between the rotation and the angular strain measure Θ can be written in two equivalent
forms

∇P = Θ × P ⇔ ∇θ = Θ · ZT . (194)

Since, when tensor Θ is a non-degenerate tensor, the second relation in Eq. (194) allows us to express tensor
ZT in terms of the strain characteristics of the continuum: ZT = Θ−1 · ∇θ . In view of Eqs. (52), (67), (177),
the last formula can be rewritten in the form

Z = Θ−1
ρ · g−1

ρ · ∇θ . (195)

Taking the gradient operator of both sides of Eq. (193) and performing the following transformations:

∇ δθ

δt
= δ(∇θ)

δt
+ (∇v) · ∇θ = δ(∇θ)

δt
+ g · δg−1

δt
· ∇θ = g · δ

(
g−1 · ∇θ

)
δt

= gρ · δ
(
g−1
ρ · ∇θ

)
δt

,

in view of Eq. (195), we obtain

gρ · δ
(
g−1
ρ · ∇θ

)
δt

= ∇ (
Ω · Θ−1

ρ · g−1
ρ · ∇θ

)
. (196)

Introducing the notation ϑρ = g−1
ρ · ∇θ , we rewrite Eqs. (195), (196) as

Z = Θ−1
ρ · ϑρ,

δϑρ

δt
= g−1

ρ · ∇ (
Ω · Θ−1

ρ · ϑρ

)
. (197)

Taking into account identity (177), the problem (197) can be reformulated via the left angular velocity vector
ω = P · Ω:

Z = Θ−1
ρ · ϑρ,

δϑρ

δt
= g−1

ρ · ∇ (
Θ−1

ρ · ϑρ · ω
)
. (198)

From the above expression for tensor Z and the identity (177), it follows that

P = ϑ−1
ρ · Θρ · ϑT

ρ · Θ−T
ρ , θ = Θ−1

ρ · ×ϑρ, ω = ϑ−1
ρ · Θρ · ϑT

ρ · Θ−T
ρ · Ω. (199)

Thus, tensors Z and P as well as vector θ are expressed in terms of the strain characteristics Θρ and
ϑρ . Tensor ϑρ is an auxiliary quantity that is determined by means of gρ and Θρ as the solution of the
differential equation.
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