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Abstract In this study, the plane contact problem for a rigid cylindrical punch and a functionally graded
bilayer is considered. The layers have different thicknesses and elastic constants. The normal and tangential
forces are applied to the upper layer with a rigid cylindrical punch, and the lower layer is fully bonded to a
rigid substrate. Poisson’s ratios are taken as constant, and elasticity moduli are assumed to vary exponentially
through the thickness of the layers. With the use of Fourier integral transform, the plane contact problem is
reduced to a singular integral equation in which the unknowns are the contact pressure and the contact width.
The singular integral equation is solved numerically using Gauss–Jacobi integration formula. The effect of
several geometrical and physical parameters such as the material inhomogeneity, the friction coefficient, the
layers’ height, the mismatch in the material properties at the interface, and the contact width on the contact
stress and in-plane stress are investigated in detail.

1 Introduction

Functionally graded materials (FGMs) are relatively novel multi-functional materials, which are made up
of a mixture of disparate materials, such as ceramics and metals with gradual variation in the mechanical
properties with position. The volume fractions of the constituent materials can be arranged so that there is
smooth and continuous gradual variation using various manufacturing methods, such as powder metallurgy,
vapor deposition techniques, centrifugal methods, and solid free-form methods [19].

The studies in the contact mechanics pertaining to FGMs are mostly related to the contact problems of
functionally graded (FG) layers or FG half planes. The contact problem of an FG half plane was studied by
Bakirtas [2], Giannakopoulos and Suresh [12,13], Giannakopoulos and Pallot [11], Dag et al. [9], Chen et al.
[4], and Guler et al. [16]. Giannakopoulos and Suresh [12,13] treated the axisymmetric contact problem both
analytically and computationally when the medium is subjected to a point force or a rigid indenter. The plane
contact problem was treated when the elastic modulus is assumed to vary exponentially in depth direction
[2], according to a power law variation [11], in an exponential form either in the lateral direction [9], in the
thickness direction [16] or in an arbitrary direction [4].

The plane strain contact problems of a single FG layer bonded to a rigid substrate or Winkler foundation
are studied by Choi [6] and Comez [7,8]. The FG layer is loaded by a frictional sliding flat punch [6] and by
a frictionless rigid cylindrical punch [7]. The moving contact problem for an FG layer was studied by Comez
[8].
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Contact problems involving the graded coatings bonded to a homogeneous substrate are widely considered
by several researchers. The frictional sliding contact problem of a graded coating bonded to a homogeneous
substrate is solved under plane strain-state assumption by Guler and Erdogan [14,15], Ke and Wang [18], and
Chen and Chen [3], and by Alinia et al. [1] using Fourier integral transform techniques. Guler and Erdogan
[14,15] and Alinia et al. [1] studied the frictional sliding contact problems analytically where the loading was
provided by a sliding rigid stamp whose profile can be flat, triangular, cylindrical or semicircular by assuming
an exponential variation in the elastic modulus. Amultilayered model for the frictional sliding contact problem
with arbitrarily varying elastic modulus is investigated by Ke and Wang [18]. The elastic modulus is assumed
to vary according to a linear law in Chen and Chen [3]. The axisymmetric frictionless contact of the graded
coatings with arbitrary spatial variations of elastic modulus bonded to a homogeneous substrate is investigated
by Ke and Wang [17] and Liu et al. [20] using Hankel integral transform technique. The frictionless and
frictional contact problems of a homogeneous coating-graded interlayer–substrate structure are considered by
Yang and Ke [22] and Chidlow and Teodorescu [5]. Miranda et al. [21] studied the contact-induced transverse
fracture modes in trilayers consisting of brittle bilayer coating on soft substrates, and they calculated the critical
loads for radial cracking with the finite element method.

Although there are many studies in the literature that deal with a graded coating perfectly bonded to a
homogeneous half plane, the sliding frictional contact problem between a rigid circular punch and a graded
bilayer is not considered in the open literature. In this study, the contact problem of an FG coating bonded to a
homogeneous substrate is extended to the contact problem of a graded bilayer in the presence of friction. The
normal and tangential forces are applied to the upper layer with a rigid cylindrical punch, and the lower layer is
fully bonded to a rigid substrate. Poisson’s ratios are taken as constant, and the elasticity moduli are assumed
to vary exponentially through the thickness of the layers. With the use of Fourier integral transform, the plane
contact problem is reduced to a singular integral equation in which the unknowns are the contact pressure and
the contact width. The singular integral equation is solved numerically usingGauss–Jacobi integration formula.
The effect of the material inhomogeneity, the coefficient of friction, the height of the layers, mismatch in the
shear modulus at the interface, and contact width on the contact pressure and the in-plane stress is examined
in detail.

2 Formulation of the problem

Consider the frictional plane strain contact problem shown in Fig. 1. A rigid cylindrical punch with radius
R transmits a concentrated normal force P and a tangential force Q(=ηP) to the upper FG elastic layer of
thickness h2. The FG layers are fully bonded to each other, and the lower FG layer of thickness h2 is supported
by a rigid foundation. Poisson’s ratios νi (i = 1, 2) are taken as constants, and the shear moduli μi (i = 1, 2)
are assumed to vary exponentially through the thickness of the layers as follows:

μ1(y) = μ10e
γ1y, −h1 ≤ y ≤ 0, (1.1)

μ2(y) = μ20e
γ2y, −h ≤ y ≤ −h1 (1.2)

whereμ10 andμ20 are the shearmoduli defined at the top surface (y = 0) of the graded bilayer, and γi (i = 1, 2)
is the inhomogeneity parameter controlling the variation of the shearmodulus for the corresponding i’th graded
layer. The subscript i denotes the related layer, that is, the subscripts 1 and 2 refer to the upper and lower layers,
respectively.

Defining

�1 = μ11

μ10
= e−γ1h1, (2.1)

�2 = μ22

μ21
= e−γ2h2 , (2.2)

�0 = μ21

μ11
= μ20e−γ2h1

μ10e−γ1h1
, (2.3)

the inhomogeneity parameter may be expressed as:

γi hi = − log�i , i = 1, 2 (3)

where �0 is the parameter defining the mismatch in the shear modulus at the interface of the layers.
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Fig. 1 Geometry of the problem

Assuming that the functionally graded layers are isotropic, for the plane strain contact problem Hooke’s
law can be written as follows:

σxi (x, y) = μi (y)

κi − 1

[
(κi + 1)

∂ui
∂x

+ (3 − κi )
∂vi

∂y

]
, i = 1, 2, (4.1)

σyi (x, y) = μi (y)

κi − 1

[
(3 − κi )

∂ui
∂x

+ (κ + 1)
∂vi

∂y

]
, i = 1, 2, (4.2)

τxyi = μi (y)

[
∂ui
∂y

+ ∂vi

∂x

]
, i = 1, 2 (4.3)

where ui ,vi are the x- and y-components of the displacement vector.
Substituting Eq. (4) into the equilibrium equations, Navier’s equations in terms of the ui (x, y) and vi (x, y)

can be obtained as follows:

(κi + 1)
∂2ui
∂x2

+ (κi − 1)
∂2ui
∂ y2

+ 2
∂2vi

∂x∂y

+ 2γi (κi − 1)

[
∂ui
∂y

+ ∂vi

∂x

]
= 0, i = 1, 2, (5.1)

(κi − 1)
∂2vi

∂x2
+ (κi + 1)

∂2vi

∂ y2
+ 2

∂2ui
∂x∂y

+ γi

[
(3 − κi )

∂ui
∂x

+ (κi + 1)
∂vi

∂y

]
= 0. i = 1, 2. (5.2)

By using the Fourier transforms, the displacement components may be written as:

ui (x, y) = 1

2π

∞∫
−∞

ũi (α, y)e−Iαxdα, i = 1, 2, (6.1)

vi (x, y) = 1

2π

∞∫
−∞

ṽi (α, y)e−Iαxdα, i = 1, 2 (6.2)

where ũi (α, y) and ṽi (α, y) are Fourier transforms of ui (x, y) and vi (x, y), respectively, and I = √−1.
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Substituting Eq. (6) into Eq. (5), the following ordinary differential equations are obtained:

(κi − 1)
d2ũi
dy2

− 2Iα
dṽi
dy

− α2(κi + 1)ũi

+ γi (κi − 1)

(
dũi
dy

− Iαṽi

)
= 0, i = 1, 2, (7.1)

(κi + 1)
∂2ṽi

∂ y2
− 2Iα

∂ ũi
∂y

− α2(κi − 1) ṽi

+ γi (κi + 1)

(
∂ṽi

∂y
− Iα

3 − κi

κi + 1

)
ṽi = 0. i = 1, 2. (7.2)

Equation (7) can be solved for ũi , ṽi , and the following associated characteristic polynomial may be obtained:

n4i + 2γi n
3
i + (γi

2 − 2α2)n2i − 2α2γi ni + α2
(

α2 + γ 2
i
3 − κi

κi + 1

)
= 0, (8)

The roots of the characteristic Eq. (8) are given by

ni1 = −1

2

⎛
⎜⎝γi +

√√√√4α2 + γi 2 + 4I |α| |γi |
√
3 − κi

κi + 1

⎞
⎟⎠ , i = 1, 2, (9.1)

ni2 = −1

2

⎛
⎜⎝γi +

√√√√4α2 + γi 2 − 4I |α| |γi |
√
3 − κi

κi + 1

⎞
⎟⎠ , i = 1, 2, (9.2)

ni3 = −1

2

⎛
⎜⎝γi −

√√√√4α2 + γi 2 + 4I |α| |γi |
√
3 − κi

κi + 1

⎞
⎟⎠ , i = 1, 2, (9.3)

ni4 = −1

2

⎛
⎜⎝γi −

√√√√4α2 + γi 2 − 4I |α| |γi |
√
3 − κi

κi + 1

⎞
⎟⎠ . i = 1, 2. (9.4)

The solution of Eq. (7) can be obtained in terms of the roots of the characteristic equation as follows:

ũi (y) =
4∑
j=1

Ai j e
ni j y, i = 1, 2, (10.1)

ṽi (y) = −I
4∑
j=1

Ai jmi j e
ni j y . i = 1, 2 (10.2)

where

mi j =
[
2ni j + γi(3 − κi )

] [
n2i j (1 + κi ) + ni jγi (1 + κi ) − α2(3 + κi )

]
α

[
4α2 + γi 2(3 − κi )(1 + κi )

] ,

i = 1, 2, j = 1, . . . , 4. (11)

Substituting Eqs. (9–11) into Eq. (6) and further substituting into Eq. (4), the stress components for the
layers are readily obtained as

σxi (x, y) = 1

2π
I

∞∫
−∞

μi (y)

κi − 1

4∑
j=1

Ai j
[
(κi − 3)mi jni j − α(κi + 1)

]
eni j ye−Iαxdα, (12.1)
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σyi (x, y) = 1

2π
I

∞∫
−∞

μi (y)

κi − 1

4∑
j=1

Ai j
[
α(κi − 3) − (κi + 1)mi jni j

]
eni j ye−Iαxdα, (12.2)

τx yi (x, y) = 1

2π

∞∫
−∞

4∑
j=1

μi (y)Ai j
[
(ni j − αmi j )

]
eni j ye−Iαxdα (12.3)

where Ai j are the unknowns, which will be determined from the boundary conditions of the problem.

3 The boundary conditions and the singular integral equation

The plane contact problem outlined above is subjected to the following boundary conditions:

σy1(x, 0) =
{

−p(x), −a < x < b
0, x ≤ a, x ≥ b,

(13.1)

τxy1(x, 0) =
{

−ηp(x), −a < x < b
0, x ≤ a, x ≥ b,

(13.2)

σy1(x,−h1) = σy2(x,−h1) (−∞ ≤ x < ∞), (13.3)

τxy1(x,−h1) = τxy2(x,−h1) (−∞ ≤ x < ∞), (13.4)

u1(x,−h1) = u2(x,−h1) (−∞ ≤ x < ∞), (13.5)

v1(x,−h1) = v2(x,− h1) (−∞ ≤ x < ∞), (13.6)

u2(x, −h) = 0 (−∞ ≤ x < ∞), (13.7)

v2(x, −h) = 0 (−∞ ≤ x < ∞) (13.8)

where p(x) is the a priori unknown contact pressure between the rigid punch and the layer on the contact area
(−a, b). By using the boundary conditions (13), eight of the unknown functions Ai j appearing in Eq. (10) may
be obtained in terms of the unknown function p(x) as follows:

Ai j = 1

μ10

b∫
−a

p(t)eIαt (Ap
i j + η Aq

i j )dt, (14)

The unknown contact pressure p(x) is determined from the following mixed condition:

∂v1(x, 0)

∂x
= x

R
− a < x < b. (15)

Condition (15) gives the following singular integral equation:

η
φ2

φ1
p(x) + 1

π

b∫
−a

p(t)

[
1

t − x
+ k(x, t)

]
dt = μ10

φ1

x

R
(16)

where

k(x, t) = k1(x, t) + η k2(x, t), (17.1)

k1(x, t) = 1

φ1

∞∫
0

( M1(α) − φ1) sin α(t − x)dα, (17.2)

k2(x, t) = 1

φ1

∞∫
0

( M2(α) − φ2) cosα(t − x)dα, (17.3)
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M1(α) = −Iα
4∑
j=1

Ap
1 jm1 j , (17.4)

M2(α) = −α

4∑
j=1

Aq
1 jm1 j , (17.5)

φ1 = lim
α→∞ M1(α) = −κ1 + 1

4
, (17.6)

φ2 = lim
α→∞ M2(α) = κ1 − 1

4
. (17.7)

In the singular integral equation (16), the contact areas a and b are also unknown a priori, as well as the contact
pressure p(x). To complete the solution of the problem, the contact stress p(x) must satisfy the following
equilibrium condition:

b∫
−a

p(t)dt = P. (18)

4 On the solution of the singular integral equation

Because of the smooth contact at the end points x = −a, x = b, the physics of the problem requires that the
index of the integral equation (16) is −1 [10]. Applying the following transformations:

t = a + b

2
r + b − a

2
, x = a + b

2
s + b − a

2
, (19.1)

α = z/R, ϕ(r) = p(r)

μ10
(19.2)

the integral equation (16) and the equilibrium condition (18) may be expressed in the following form:

η
φ2

φ1
ϕ(s) + 1

π

1∫
−1

ϕ(r)

[
1

r − s
+ a + b

2R
k(s, r)

]
dr = 1

φ1

(
a + b

2R
s + b − a

2R

)
, (20)

a + b

2R

1∫
−1

ϕ(r)dr = P

μ10R
. (21)

The solution of the integral equation can be expressed as:

ϕ(r) = g(r)w(r) (22)

where g(r) is a continuous and bounded function in the interval [−1, 1]. w(r) is the weight function related
to Jacobi polynomial,

w(r) = (1 − r)α(1 + r)β, (23.1)

α = 1

2π i
ln

[
η

φ2
φ1

− I

η
φ2
φ1

+ I

]
+ N0, (23.2)

β = − 1

2π i
ln

[
η

φ2
φ1

− I

η
φ2
φ1

+ I

]
+ M0 (23.3)
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where N0 and M0 are arbitrary (positive, zero, or negative) integers and must be determined considering
0 < Re[α, β] < 1 for the index −1. By using Gauss–Jacobi integration formulas, the integral equation (20)
can be converted to the equivalent system of algebraic equations as follows [10]:

N∑
ξ=1

WN
ξ

[
1

rξ − sk
+ a + b

2R
k(sk, rξ )

]
g(rξ ) = 1

φ1
(
a + b

2R
sk + b − a

2R
),

k = 1, . . . , N + 1 (24)

where ri and sk are the roots of the related Jacobi polynomials and WN
ξ is the weighting constant:

P(α,β)
N (rξ ) = 0, ξ = 1, 2, . . . , N , (25.1)

P(−α,−β)
N+1 (sk) = 0, k = 1, 2, . . . , N + 1, (25.2)

WN
ξ = − 1

π

(2N + α + β + 2)

(N + 1)!
�(α + N + 1)�(β + N + 1)

�(N + α + β + 1)

2(α+β)

P
′(α,β)
N (rξ )P

(α,β)
N+1 (rξ )

. (25.3)

For a given value of the contact width (a + b)/R, Eq (25) gives N + 1 equations to determine the N + 1
unknowns, which are g(rξ ) and (b− a)/R. Note that there are N + 1 equations to determine the N unknowns

Fig. 2 Comparison of the stress distribution on the surface of the FGM layers with that of Guler and Erdogan [15]; the solid
curves present the current and the symbols present Guler and Erdogan [15] solution. (η = 0, �1 = μ11/μ10, �2 = μ22/μ21 =
1, R/h1 = 100, (a + b)/R = 0.01, h2/h1 → ∞)
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g(rξ ) in Eq. (25). The additional equation (provided by s1, . . . , sN+1) is equivalent to the consistency condition
of the integral equation, and an equation corresponding to one of the sk is extracted from (24) to determine the
eccentricity parameter (b−a)/R. The system of equations is linear in terms of the g(rξ ) but highly nonlinear in
variable (b−a)/R. Therefore, an iterative method is used to obtain the unknowns. Note that in the frictionless
case it is no need to iteration because the eccentricity parameter is zero, and the (N/2+ 1)-th equation in (25)
is automatically satisfied. Once Eq. (25) is solved, the dimensionless load parameter can be calculated from
the equilibrium condition (21) as

P

μ10R
= π

a + b

2R

N∑
ξ=1

WN
ξ g(rξ ). (26)

The surface stress components in dimensionless form can be computed using the following relations:

σy1(x, 0)

μ10
= − p(x)

μ10
, (27)

τxy1(x, 0)

μ10
= −η

p(x)

μ10
, (28)

σx1(x, 0)

μ10
=

{
φ3 p(x)/μ10 + H(x), −a < x < b
H(x), x ≤ −a, x ≥ b

}
(29)

Fig. 3 Contact stress and in-plane stress distribution for various values of the stiffness ratio, �1 = μ11/μ10, �2 = μ22/μ21 =
1, R/h1 = 100, (a + b)/R = 0.01, h2/h1 = 1
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where

H(x) = 1

πμ10

b∫
−a

p(t)

[
φ4

η

t − x
+ k3(x, t) + η k4(x, t)

]
dt, (30.1)

k3(x, t) =
∞∫
0

( M3(α) − φ3) cosα(t − x)dα, (30.2)

k4(x, t) =
∞∫
0

( M4(α) − φ4) sin α(t − x)dα, (30.3)

M3(α) = I
1

κ1 − 1

4∑
j=1

Ap
1 j

[
(κ1 − 3)m1 j n1 j − α(κ1 + 1)

]
, (30.4)

M4(α) = − 1

κ1 − 1

4∑
j=1

Aq
1 j

[
(κ1 − 3)m1 j n1 j − α(κ1 + 1)

]
, (30.5)

Fig. 4 Contact stress and in-plane stress distribution for various values of the stiffness ratio, �2 = μ22/μ21, �1 = μ11/μ10, η =
0.5, R/h1 = 100, (a + b)/R = 0.05, h2/h1 = 1
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φ3 = lim
α→∞ M3(α) = −1, (30.6)

φ4 = lim
α→∞ M4(α) = −2. (30.7)

5 Numerical results and discussion

In this study, the plane frictional contact problem between a rigid cylindrical punch and an FG bilayer, is
investigated. The main quantities of interest are the contact stress, the in-plane stress component on the surface
of the FG bilayer, and the load versus contact width for various material and geometrical parameters such as
the stiffness ratios, �1, �2, the friction coefficient, η, the thickness ratio, h1/h2, the stiffness discontinuity
at the interface, �0, and the contact width, (a + b)/R. Poisson’s ratios of the FG bilayers are assumed to be
constant, ν1 = ν2 = 0.3, and unless otherwise stated, the stiffness discontinuity at the interface, �0, is taken
to be unity in the following analysis.

The results of the current study can be validated with those of Guler and Erdogan [15] by letting h2 → ∞
and �2 = 1. Figure 2 shows an excellent match in the validation results in terms of contact pressure and
in-plane stress distribution as well as load versus the contact length results.

The distributions of normalized contact pressure σy1(x, 0)/μ10 and normalized in-plane surface stress
component σx1(x, 0)/μ10 are plotted for various values of the stiffness ratio, �1 = μ11/μ10 by taking �2 =
μ22/μ21 = 1, R/h1 = 100, (a+ b)/R = 0.01, h2/h1 = 1 in Fig. 3. Note that Fig. 3a, b is for the frictionless

Fig. 5 Contact stress and in-plane stress distribution for various values of the thickness ratio, h2/h1, �2 = μ22/μ21 = 1, �1 =
μ11/μ10, η = 0.5, R/h1 = 100, (a + b)/R = 0.05
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case (η = 0), and Fig. 3c, d is for the frictional case with the friction coefficient η = 1. The effect of stiffening
(�1 > 1) or softening (�1 < 1) layer 1 on the contact stresses can readily be observed. There is a symmetric
behavior on the contact pressure for the frictionless case. The in-plane contact stress, σx1(x, 0), has a tensile
peak at both ends of the contact for the stiffening layer (�1 = 7) and the homogeneous layer (�1 = 1) for the
frictionless contact. However, there is no tensile peak for the softening layer (�1 = 1/7) at the contact ends.
The in-plane stress component is important for the fatigue crack propagation issues related to the contact field.
Observe that the lowest peak in the in-plane contact stress is observed for the softening layer (�1 = 1/7) in
the case of frictional contact. If Figs. 2b and 3b are compared for the frictionless contact and homogeneous
materials (� = 1), one can see that there is no tensile stress on the contact area (Fig. 2b); however, there exist
tensile stresses at both ends of the contact for bilayers due to the support effect of the bottom layer (Fig. 3b).

The effect of material property grading for both layers is investigated in detail in Fig. 4. In Fig. 4a and
4b, the effect of stiffness ratio �2 is investigated by taking �2 = 1 (homogeneous second layer). Again when
the stiffness ratio �2 is decreased or the layer softens, both contact pressure and in-plane stresses decrease.
The stiffness ratio �2 has the same effect on the contact stresses as the stiffness ratio �1. However, the effect
of �2 on the in-plane stresses at the trailing edge of the contact is small when �1 is fixed at 7. Note that the
tensile peak in in-plane stresses at the trailing edge of the contact decreases for the softening layer �1 = 1/7.
In Fig. 4c, d, the effect of the stiffness ratio �2 is investigated by taking �1 = 7. When the layer 1 gets stiffer
(see for example �1 = 7), there is a diverse effect on the contact stress levels.

The effect of the thickness ratio on the contact and in-plane stresses is shown in Fig. 5. It is evident that
when the thickness of layer 2 is increased or the layer 2 becomes half plane (h2 → ∞), the value of the contact

Fig. 6 Contact stress and in-plane stress distribution for various values of the coefficient of friction, η, �2 = μ22/μ21 = 1, �1 =
μ11/μ10, R/h1 = 100, (a + b)/R = 0.01, h2/h1 = 1
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and in-plane stresses decrease due to the support effect. Note that the contact stress values for any h1/h2 would
be in the range between the contact stress of (h1/h2 = 0) and (h1/h2 → ∞).

Figure 6 depicts the effect of the coefficient of friction, η, on the contact stress distribution. As the friction
coefficient gets larger, the tensile peak increases for the in-plane stresses at the trailing edge.

6 Conclusions

The results obtained from this study show that in sliding contact problems for a graded bilayer the influence
of not only the coefficient of friction (which is expected) but also the material inhomogeneity constants γ1, γ2
as well as stiffness mismatch at the interface on the contact stresses, particularly the in-plane component of
the stress state at the surface, can be quite significant.

The most important point of this study is the behavior of in-plane stresses at the trailing edge of the contact
for the problems involving friction and at both ends of the contact for the frictionless case. It is seen that the
trailing edge of the contact is more prone to contact damage and possible location for surface crack that would
lead to fatigue crack initiation and propagation.

For the equivalent values of the external load, the contact areas decrease with increasing stiffness of the
layers, increase with increasing height of the lower layer, and become almost the same as in the frictionless
case if the friction coefficient increases.

Another important conclusion drawn from this study is that the contact stress behavior at the ends of the
contact is completely different as opposed to one layer bonded to a half plane.
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