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Abstract The anti-plane stress analysis in an infinite elastic isotropic plane is carried out by using the dis-
tributed dislocation techniques in the framework of strain gradient theory. The technique involves the solution
of a screw Volterra dislocation in the region. Employing a distributed dislocation solution indicated that the
stress components reveal the familiar hypersingularity at the site of the dislocation. The solution for stress
fields in integral form is obtained for a plane containing a Volterra-type screw dislocation via Fourier transform
of the biharmonic equation. This method is extended to allow the solution of integral equations in the regions
weakened bymultiple smoothed curved cracks under anti-plane deformation. The integral equations are solved
numerically for the density of dislocation on the crack surfaces. The numerical method in Chebyshev series
forms is used to solve the hypersingular integral equations. The effects of interaction among cracks with dif-
ferent arrangements and those of the size effect on the stress intensity factors are discussed. To confirm the
validity of the formulations, numerical values of the results are compared. The predicted results via the afore-
mentioned approach are in excellent agreement with those in the literature. Some new examples are solved to
demonstrate the applicability of the procedure.

1 Introduction

In many structures, crack creation is one of the most significant fracture mechanisms. To predict these fracture
mechanisms, accuratemodeling is necessary [1]. Nowadays, synthesis andmanipulation ofmaterials on a nano-
scale, which lead to the fabrication of innovative materials suitable for certain behaviors, have increasingly
gained attention on the part of a good number of scientists and engineers during the past decade. An accurate
description of the behavior of nano-material requires consideration of its pertinent nano-structural features
[2–4].

Some studies on the behavior of materials in macro-scales have been carried out by previous researchers
during the previous decade. But these studies have not been done at nano-scale [5–8]. By decreasing the dimen-
sions to sub-micron, the nano-scale phenomena (length effect) emerge, which should be taken into account
in theoretical models [9–11]. The important phenomenon in nano-scale is size-dependency of the mechanical
performance of nano-structures. It shows itself significantly in the deformation tests of microstructures [9].

Due to the discrete nature of materials at atomic scale, the size-dependent behavior of materials and
structures at sub-micron distances cannot be modeled using classical continuummechanics [12]. Furthermore,
this method has some innate weaknesses since it proposes physically unrealistic singularities, which appear in
the strain and stress fields in the vicinity of such defects as dislocations and cracks. On the other hand, usual
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continuum theory fails to give an accurate solution near the crack tip. Moreover, it implies that a solid is able
to sustain an infinite stress at the Griffith–Inglis crack tips.

As a remedy to deal with the above problems, various enriched theories have been proposed in the literature.
In this regard, non-local elasticity [13], Cosserat continuum theory [2], strain gradient elasticity [14], couple
stress theory [15,16], and simulation technics such as molecular dynamics (MD), which are widely used in
monitoring the behavior of a specific system of atoms during dynamic processes [17], have been developed
to incorporate the size effect into theoretical models. These methods are widely employed in the nano-scale
studies of thin films, nano-composites, nano-beams and quantum dots, among others [18–21].

In the strain gradient theory, the second-order deformation gradient tensor is used [22]. Mindlin [23,24]
established strain gradient and couple stress theory to enable continuum theories to consider size effects.
Mindlin also [25] employed couple stress theory to determine the stress concentration factor of circular and
spherical holes, which have only one characteristic length. Lubarda [26] presented a solution pertinent to
inclusions, voids, and inhomogeneities in anti-plane strain problems with couple stress. Shodja and Ghazisaedi
[27] applied the couple stress theory to the anti-plane problems in piezoelectric media containing a circular
void or a circular piezoelectric inhomogeneity. Haftbaradaran and Shodja [28] considered elliptical inclusions
and inhomogeneities subjected to uniform far-field anti-plane shear stress via couple stress theory to study
the stress and strain fields of elliptic inhomogeneities. Zhang et al. [29] employed strain gradient elasticity
to study the interactions between defects within graphene. They observed that in the vicinity of a defect the
results of gradient elasticity are in line with those of semi-empirical quantum mechanics, whereas the solution
of classical elasticity becomes inaccurate as the defect line is approached. Shodja and Tehranchi [30] evaluated
the length scales associated with the first gradient theory for various FCC metals and compared the elastic
fields of a nano-void as predicted by the gradient theory with those obtained by atomic simulation. Shodja et
al. [31] used a simplified version of strain gradient elasticity for an accurate determination of the displacement,
strain, and stress fields of a screw dislocation in a nanowire. Davoudi et al. [32] used a more elaborated version
of strain gradient elasticity to analyze the stress field of the nanowire.

Aifantis in his work developed non-singular close-form solutions for the stress and strain fields, which
vanish as the crack tip is approached. He presented expressions that are convenient to use for revisiting many
engineering problems in the field of LEFM and for checking their validity [33].

The gradient (Laplacian enriched) expressions for the stress and strain fields were derived and discussed
in [34] where a comparison with Eringen’s non-local elasticity theory was made. A further discussion on
the physical meaning of these non-singular solutions for the (micro) stresses and (micro) strains at the crack
tip and their consistency with experimental observations was presented in [35] where some misunderstand-
ings and rather misleading statements on equilibrium and compatibility -readily satisfied by the conventional
(macro)stress and (macro)strain fields- appearing in the Literature [36] were pointed out.

Lazar and Polyzos [36] studied the physical meaning and the rendition of the non-singular stress and strain
fields of the tip cracks in LEFM. They claimed that the proposed solutions convince the equilibrium, boundary,
and compatibility conditions. This treatment should be regarded together with the challenge between the works
of these authors with publishing some articles of Aifantis such as Ref. [34] (and at the following Ref. [52]),
along with a “Comment” by Aifantis that criticizes their article. For answer to the Aifantis Comment, Lazar
and Polyzos by publishing the article ”On gradient enriched elasticity theories: A reply to “Comment on ‘On
non-singular crack fields in Helmholtz type enriched elasticity theories” and important theoretical aspects” by
means of acquit and aboveboard arguments could dispute Aifantis’ Comment.

Gutkin and Aifantis employed screw dislocation in gradient elasticity. The main purpose of their work was
to eliminate the elastic strain singularity at the dislocation line [37].

The physical meaning and style of the strain gradient terms for whole of the materials, along with the
nature of material behavior, was studied by Aifantis [38].

The physical meaning, implications, and general behavior of size-dependent phenomena of non-classical
theory can be better understood from the “Appendix A”. Also it should be mentioned that an attracting and
rather conclusive treatment on the origin and physical meaning of non-singular crack-tip solutions for strains
and stresses in strain gradient theory can be establish in a new manuscript from Aifantis [35].

The determination of the stress intensity factor (SIF) at the tip of the nano-crack has also been taken up
with a particular interest. Recently, Paulino et al. [39] examined the problem of a crack perpendicular to the
direction of material gradation of FGM plane based on anisotropic strain gradient elasticity theory. The stress
intensity factor in an FGM plane containing a crack parallel to the material gradation was obtained by Chan
et al. [40] with anisotropic strain gradient elasticity. In the above works, the sensitivity of the stress intensity
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factor to size effects was demonstrated. Georgiadis [41] investigated the elastic stress and displacement fields
around a crack by drawing upon the dipolar gradient theory.

While some size effect models based on strain gradient have been used to calculate SIF, few researches
have utilized strain gradient theory for analyzing media with multiple defects. One of the first works in this
field has been conducted by Paulino et al. [39] who calculated the SIF of an infinite plane using strain gradient
elasticity theory. However, they did not consider the effects of multiple cracks in their models. Other researches
have been addressed in [42–47]. It should be mentioned that all of the above works have been conducted on
SIF of a plane with a single crack. Indeed, while the stress intensity factor of such a plane has been widely
addressed in the literature, few studies have been dedicated to modeling this plane with multiple defects.

To the best knowledge of the authors, as it is observed, the stress intensity factor of a plane incorporating both
influences of size effects and interaction among multiple cracks with different geometry has not hitherto been
investigated in the previous researches. Hence, in this work, the infinite plane under anti-plane deformations
weakened via multiple defects is considered to scrutinize the influence of the nano-scale phenomena on the
behavior of the plane, also the material in nano-scale is modeled by considering the strain gradient elasticity
and is analytically implemented by a dislocation approach to calculate the stress intensity factor. The obtained
results are quite plausible compared with those in the literature.

2 Fundamentals of strain gradient theory

In Mindlin’s work [23], the strain energy density function is expressed as a function of strain εi j and strain
gradient εi j,k for a linear, elastic, and isotropicmaterial, respectively. It is worthmentioning that the theory used
in the present work, introduced by Casal [43], is a special case of a Mindlin-type with two non-classical length
scale parameters relevant to volume (internal length (L)) and surface strain gradient elastic energy contribution
tensors (director length (L

′
)) that affect the behavior of nano-structures [48]. Although in Mindlin-type 2nd,

fully presented in [49], along with what was mentioned above, rotation gradients are in the strain energy
density. Often, for simplicity and reduction in the number of material length scale constants, these parameters
can be regarded as only one single measurable parameter (rotation gradient) under the assumptions of couple
stress theory [50]. Altan and Aifantis, and Ru and Aifantis [51,52], proposed the gradient elasticity with only
one material constant. This assumption may also be beneficial for experimental measurements.

Regarding the strain gradient theory modified and suggested by Casal [43],U as the strain energy density
function in the linear elastic and isotropic material is written as follows:

U = 1

2
λεi iε j j + Gεi jε j i + GL2κki jκk ji + GL

′ (
κki jε j i + εi jκk ji

)
(1)

where

εi j = 1

2

(
ui, j + u j,i

)
, κi jk = ∂iε jk, λ = Eυ/ (1 + υ) (1 − 2υ) , G = E/2 (1 + υ) . (2)

In the above equations, ui , εi j , κi jk , λ, and G indicate components of displacement vector, the infinitesimal
strain and strain gradient, Lame constant, and shear modulus, respectively. The last two terms in Eq. (1) are
corresponsive with surface energy. It should be noted that the following result was obtained in a special case.
Letting L

′ = L = 0, the relations are simplified to those obtained by classic continuum theory. The selected
size of the parameter variation (L

′
, L) is chosen based on the sensitivity of the parameter to strain energy

density, as
∣
∣∣L

′
/L

∣
∣∣ < 1, L �= 0, and 3λ + 2G > 0 because the strain energy density function needs to be

non-negative [23]. Work conjugates of strain and strain gradient with constitutive relation for the gradient
elasticity are identified as follows [39]:

τi j = ∂U

∂εi j
= λεkkδi j + 2Gεi j + 2GL

′
κki j , μi jk = ∂U

∂κi jk
= 2GL2κi jk + 2GL

′
ε jk,

σ jk = τ jk − ∂iμi jk = λεi iδ jk + 2G
(
1 − L2∇2) ε jk . (3)

In the above equation ∇2 denotes the Laplacian operator, δ jk is the Kronocker delta, τi j is symmetric in
indices i and j, and μi jk is symmetric in indices j and k. τi j , μi jk , and σi j are components of Cauchy’s stress,
high-order stress tensors, and total stresses, respectively. By neglecting body force, the equations of motion in
static equilibrium in the framework of strain gradient theory are obtained as (λ + 2G)(1 − L2∇2)∇∇.w = 0
[39].
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2.1 Plane with screw dislocation

Under conditions of anti-plane deformation, the only non-zero component of the displacement is the out-of-
plane component w(x, y). The displacement field is stated as follows:

u = v = 0, w = w (x, y) . (4)

In the above equation (4), u, v, and w indicate displacement in the direction of the x, y, and z axis,
respectively. Consequently, the constitutive relationships and components of stress and double stress in strain
gradient theory read as [39]:

σyz = 2G(εyz − L2∇2εyz) = G

(
∂w

∂y

)
− GL2

(
∂3w

∂y3
+ ∂3w

∂y∂x2

)
, (5.1)

σxz = 2G(εxz − L2∇2εxz) = G

(
∂w

∂x

)
− GL2

(
∂3w

∂x3
+ ∂3w

∂x∂y2

)
, (5.2)

μyyz = 2G

(
L2 ∂

∂y
εyz − L

′
εyz

)
= GL2

∂2w

∂y2
− GL

′ ∂w

∂y
. (6)

The equilibrium equation in strain gradient theory may be written as [39]:

∂σxz

∂x
+ ∂σyz

∂y
= 0. (7)

Substituting (5.1) into Eq. (7), one can obtain an equation in terms of displacement as follows:

∇2w − L2∇4w = 0. (8)

Equation (8) is solved by means of the complex Fourier transform. The complex Fourier transformation is
defined as:

f ∗(ξ) =
∫ ∞

−∞
f (x)eiξ xdx (9)

where i = √−1. The inversion of (9) is:

f (x) = 1

2π

∫ ∞

−∞
f ∗(ξ)eiξ xdξ. (10)

Applying Fourier transform (9) to Eq. (8), the following result is gained:

L2 d
4w∗ (ξ, y)

dy4
− (

2L2ξ2 + 1
) d2w∗ (ξ, y)

dy2
+ (

L2ξ4 + ξ2
)
w∗ (ξ, y) = 0. (11)

In Eq. (11), w∗ (ξ, y) is the Fourier transform of the displacement field. Solving the resultant equation (11)
and in conjunction with the property of decaying behavior of displacement components as |y| → ∞ we arrive
at:

w∗ (ξ, y) = A (ξ) e−|ξ |y + B (ξ) e
−
√

ξ2+ 1
L2

y
. (12)

In the above equation, A(ξ) and B(ξ) are unknown. We consider an infinite plane (Fig. 1) made up of isotropic
material, where G is the elastic shear modulus.

Let a Volterra-type screw dislocation with Burgers vector bz be situated in the plane. The dislocation line
is depicted in Fig. 1. The conditions representing the dislocation and stress continuity are:

w
(
x, 0+) − w

(
x, 0−) = bzH(x), σyz

(
x, 0+) = σyz

(
x, 0−) , μyyz

(
x, 0+) = μyyz

(
x, 0−) (13.1–3)

In the above relation, H(x) is the Heaviside-step function. Equation (13.1) enforces the multivaluedness
of displacement, while (13.2) and (13.3) imply the continuity of traction along the dislocation line. Due to
the symmetry of geometry and antisymmetric loading condition, only the upper-half of the plane has been
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Fig. 1 Schematic view of a plane with a screw dislocation

modeled. Therefore, we continue our discussion based on boundary condition and stress continuity in the
following manner:

w (x, 0) = 1

2
bzH(x), (14)

μyyz (x, 0) = 2G

(
L2 ∂εyz

∂y
− L

′
εyz

)∣∣∣
∣
y=0

= G

(
L2 ∂2w

∂y2
− L

′ ∂w

∂y

)∣∣∣
∣
y=0

= 0. (15)

The Fourier transform of (14) and (15) by virtue of (9) results in:

w∗ = 1

2
bz

(
πδ(ξ) + i

ξ

)
, (16)

μ∗
yyz (x, 0) = GL2

d2w∗ (ξ, y)

dy2
− GL

′ dw∗ (ξ, y)

dy

∣∣
∣∣
y=0

= 0. (17)

In the above relation δ(s) is the Dirac delta function. By substituting A(ξ) and B(ξ) with (12) and applying
the Fourier transform inversion formula (10), the displacement field in the infinite plane is yielded as [46]:

w(x, y) = bz
4π

,

×
∞∫

−∞

⎛

⎝
− (πδ (ξ) ξ + i)

(
L3ξ2 + L + L

′√
1 + L2ξ2

)

(
LL ′ |ξ | − L − L ′√1 + L2ξ2

)
ξ

e−|ξ |y

+
(πδ (ξ) ξ + i)

(
L3ξ2 + LL

′ |ξ |
)

(
LL ′ |ξ | − L − L ′√1 + L2ξ2

)
ξ
e
−
√

ξ2+ 1
L2

y

⎞

⎠ e−i xξdξ. (18)

The stress components in view of (5.1) and (5.2) with (18) may be expressed as:

σxz = −iG

2π

∞∫

−∞
ξ A(ξ)e−|ξ |ye−i xξdξ, σyz = −G

2π

∞∫

−∞
|ξ | A(ξ)e−|ξ |ye−i xξdξ. (19)

Using the property of the Dirac delta function and splitting the integrals in (19) into odd and even parts
with respect to the parameter ξ and after some manipulation, the stress fields are written as:

σxz = −Gbz
2π

∞∫

0

κ (ξ) e−ξ y cos (xξ)dξ,

σyz = Gbz
2π

∞∫

0

κ (ξ) e−ξ y sin (xξ)dξ, κ (ξ) = L3ξ2 + L + L
′√

1 + L2ξ2

LL ′
ξ − L − L ′√1 + L2ξ2

. (20)
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In order to specify the singularity of the stress components, the asymptotic behavior of the integrands in
(20) should be examined. Since the integrands are continuous functions of ξ and also finite at ξ = 0, the
singularity must occur as ξ tends to infinity. An asymptotic analysis allows splitting of the kernel κ (ξ) into
the singular κ∞ (ξ) = lim|ξ |→∞ κ (ξ) and non-singular parts: κ(ξ) = κ∞(ξ) + [κ(ξ) − κ∞(ξ)] and κ∞ (ξ) =

−L2ξ2 − 1
2 L

′
ξ − 1 +

(
L

′
/2L

)2
. By virtue of the following identities:

∞∫

0

e−ξ |y| cos(xξ)dξ = |y|
r2

,

∞∫

0

ξe−ξ |y| cos(xξ)dξ = y2 − x2

r4
,

∞∫

0

ξ2e−ξ |y| cos(xξ)dξ = −2 |y| (3x2 − y2)

r6
,

0∫

∞
e−ξ |y| sin(xξ)dξ = x

r2
,

∞∫

0

ξe−ξ |y| sin(xξ)dξ = 2 |y| x
r4

,

∞∫

0

ξ2e−ξ |y| sin(xξ)dξ = −2x(x2 − 3y2)

r6
, (21)

the stress fields in the entire region read

σxz = Gbz
2π

×
⎧
⎨

⎩

⎛

⎝1 −
(
L

′

2L

)2
⎞

⎠ |y|
r2

+ sgn (y) L
′ (
y2 − x2

)

2r4
+ 2L2 |y| (y2 − 3x2

)

r6

− sgn (y)

∞∫

0

(κ (ξ) − κ∞ (ξ)) e−ξ |y| cos (xξ)dξ

⎫
⎬

⎭
,

σyz = Gbz
2π

×
⎧
⎨

⎩

⎛

⎝

(
L

′

2L

)2

− 1

⎞

⎠ x

r2
− L

′
sgn (y) |y| x

r4
+ 2L2x

(
x2 − 3y2

)

r6

+
∞∫

0

(κ (ξ) − κ∞ (ξ)) e−ξ |y| sin (xξ)dξ

⎫
⎬

⎭
. (22)

In the above equations r2 = x2 + y2 is the distance from the dislocation site. Equation (22) reveals that
the stress fields are Cauchy type as well as hypersingular at the dislocation position. Moreover, the integrands
in (22) decay quite rapidly as ξ → ∞, which makes the integrals susceptible to numerical evaluation.

It can be seen that as L and L
′
tend to be zero or the effects of the characteristic length vanish in (22), these

equations are reduced to those of the classic theory.

3 Crack formulation

The dislocation solutions accomplished in the preceding Section may be employed to analyze the plane and
to derive the integral equations for the crack problem, with several arbitrarily oriented cracks. The stress
components caused by a screw dislocation located at (x0, y0) with dislocation line parallel to the x-axis may
be written from Eq. (22) as [53,54]:
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σxz = Gbz
2π

×
⎧
⎨

⎩

⎛

⎝1 −
(
L

′

2L

)2
⎞

⎠ (y − y0)

r21
+ L

′

2

(y − y0)2 − (x − x0)2

r41
+ 2L2 (y − y0)

(
(y − y0)2 − 3 (x − x0)2

)

r61

−
∞∫

0

(κ (ξ) − κ∞ (ξ)) e−ξ(y−y0) cos ((x − x0) ξ)dξ

⎫
⎬

⎭
for y0 ≤ y,

σxz = Gbz
2π

×
⎧
⎨

⎩

⎛

⎝1 −
(
L

′

2L

)2
⎞

⎠ (y − y0)

r21
− L

′

2

(y − y0)2 − (x − x0)2

r41
+ 2L2 (y − y0)

(
(y − y0)2 − 3 (x − x0)2

)

r61

+
∞∫

0

(κ (ξ) − κ∞ (ξ)) eξ(y−y0) cos ((x − x0) ξ)dξ

⎫
⎬

⎭
for y < y0,

σyz = Gbz
2π

×
⎧
⎨

⎩

⎛

⎝

(
L

′

2L

)2

− 1

⎞

⎠ (x − x0)

r21
− L

′
(y − y0) (x − x0)

r41
+ 2L2 (x − x0)

(
(x − x0)2 − 3 (y − y0)2

)

r61

+
∞∫

0

(κ (ξ) − κ∞ (ξ)) e−ξ(y−y0) sin ((x − x0) ξ)dξ

⎫
⎬

⎭
for y0 ≤ y,

σyz = Gbz
2π

×
⎧
⎨

⎩

⎛

⎝

(
L

′

2L

)2

− 1

⎞

⎠ (x − x0)

r21
+ L

′
(y − y0) (x − x0)

r41
+ 2L2 (x − x0)

(
(x − x0)2 − 3 (y − y0)2

)

r61

+
∞∫

0

(κ (ξ) − κ∞ (ξ)) eξ(y−y0) sin ((x − x0) ξ)dξ

⎫
⎬

⎭
for y < y0. (23)

In the above relation r21 = (x − x0)2 + (y − y0)2 , and Eq. (23) can be stated as Eq. (24):

σ j z (x, y) = bz ×
{
k1j z (x, y, x0, y0) , y0 ≤ y

k2j z (x, y, x0, y0) , y < y0
, j = x, y (24)

where klj z (x, y, x0, y0) , l = 1, 2, j = x, y in Eq. (24) are the coefficients of bz and may be deduced from
(23). In order to solve the problem of the crack of arbitrary orientation, it is essential to appraise the shear
stresses along the line of the surface crack in terms of a dislocation with Burgers vector in a coordinate system
local to the crack. The former solution is applicable wherever the line joining the dislocation site and the point
under consideration on the crack surface is parallel to the dislocation line (x-axis), whereas another solution
should be chosen otherwise.

Equation (22) may be recast to more appropriate forms, for this purpose the coordinate axes local to the
crack (X,Y), are oriented at an angle θ to the global axes(x,y), where θ is measured from the positive x-axis
counterclockwise.

Now we need the stresses due to a dislocation placed at an arbitrary position (θ), Fig. 2.
Let the locations of the dislocation be (x0, y0) = (α (s) , β (s)) with a sidling angle θ as shown in Fig.

2, and the screw dislocation with density bz (s) is distributed on a surface crack, so that the local stress
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Fig. 2 Schematic view of a plane with a screw dislocation at a crooked angle

field σXz, σY z may be written in terms of the local coordinates (X, Y) after rotation by substituting X =
(x − α (s)) cos (θ) + (y − β (s)) sin (θ), Y = (y − β (s)) cos (θ) − (x − α (s)) sin (θ) in Eq. (22) [55]. The
stress components on the local coordinates X–Y as seen in Fig. 2, located on the surface of the crack in terms
of the stress components in x–y coordinates, become [56]:

σXz = G

2π

1∫

−1

bz (s)
√[

α
′
(s)

]2 + [
β

′
(s)

]2 ×
⎧
⎨

⎩

⎛

⎝1 −
(
L

′

2L

)2
⎞

⎠ |(y − β (s)) cos (θ) − (x − α (s)) sin (θ)|
r22

+ L
′

2
sgn ((y − β (s)) cos (θ) − (x − α (s)) sin (θ))

× ((y − β (s)) cos (θ) − (x − α (s)) sin (θ))2 − ((x − α (s)) cos (θ) + (y − β (s)) sin (θ))2

r42
+ {|(y − β (s)) cos (θ) − (x − α (s)) sin (θ)|}

×
[

2L2

(
((y − β (s)) cos (θ) − (x − α (s)) sin (θ))2 − 3 ((x − α (s)) cos (θ) + (y − β (s)) sin (θ))2

)

r62

]

− sgn ((y − β (s)) cos (θ) − (x − α (s)) sin (θ))

×
∞∫

0

(κ (ξ) − κ∞ (ξ)) e−ξ |(y−β(s)) cos(θ)−(x−α(s)) sin(θ)|

cos (((x − α (s)) cos (θ) + (y − β (s)) sin (θ)) ξ) dξ} ds,

σY z = G

2π

1∫

−1

bz (s)
√[

α
′
(s)

]2 + [
β

′
(s)

]2 ×
⎧
⎨

⎩

⎛

⎝

(
L

′

2L

)2

− 1

⎞

⎠ (x − α (s)) cos (θ) + (y − β (s)) sin (θ)

r22

− L
′
sgn ((y − β (s)) cos (θ) − (x − α (s)) sin (θ))

× |(y − β (s)) cos (θ) − (x − α (s)) sin (θ)| ((x − α (s)) cos (θ) + (y − β (s)) sin (θ))

r42
+ [

2L2 ((x − α (s)) cos (θ) + (y − β (s)) sin (θ))
]

×
(
((x − α (s)) cos (θ) + (y − β (s)) sin (θ))2 − 3 ((y − β (s)) cos (θ) − (x − α (s)) sin (θ))2

)

r62
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Fig. 3 Schematic view of the plane with a curved crack

+
∞∫

0

(κ (ξ) − κ∞ (ξ)) e−ξ |(y−β(s)) cos(θ)−(x−α(s)) sin(θ)| sin (((x − α (s)) cos (θ)

+ (y − β (s)) sin (θ)) ξ) dξ} ds. (25)

Note that Eq. (25) is the local stress in θ angle. The stresses in the local (X,Y) axis (Eq.25) are identical with
those in the global (x, y) set given in (22) at θ = 0.

It is worth emphasizing that in Eq. (25), a prime denotes differentiation with respect to the arguments,
the and r22 = ((x − α (s)) cos (θ) + (y − β (s)) sin (θ))2 + ((y − β (s)) cos (θ) − (x − α (s)) sin (θ))2. If N
is the number of cracks in the plane, Fig. (3), the curved crack configuration with respect to the coordinate
system x, y may be described in a parametric form as:

xi = αi (q) , yi = βi (q) , i = 1, 2, . . . , N , −1 ≤ q ≤ 1. (26)

In the above relation, q is a parameter so that the coordinate of a crack configuration may be described based
in parametric form.

The moveable orthogonal t, n local coordinate system is chosen in a way so that the origin may move on
the crack, while the t-axis remains tangent to the crack surface [56].

The anti-plane traction on the surface of the i-th crack in terms of the stress components in the local
Cartesian coordinates becomes:

σnz(xi , yi ) = σY z cos(ψi ) − σXz sin(ψi ) (27)

where θ = φ j is the angle between the axis of the local coordinate axes (X) relative to the x axis coordinate and
ϕi (q) = tan−1(β ′

i (q)/α′
i (q)) is the angle between x and the moveable orthogonal t axis, also ψi = φi − φ j .

Equation (27) means that the local stress σnz is related to the local stresses σY z , σXz by the elementary stress
transformation [57]. Suppose that the screw dislocation with unknown densities Bzj (s) is distributed on the

infinitesimal segment
√

[α′
j (s)]2 + [β ′

j (s)]2ds at the surface of the j-th crack where the parameter−1 ≤ s ≤ 1.

The anti-plane traction on the surface of the i-th crack in the plane due to the presence of the above-mentioned
distribution of dislocations on all N cracks yields:

σnz(αi (q), βi (q)) =
N∑

j=1

∫ 1

−1
Ki j (q, s)Bzj (s)ds, −1 ≤ q ≤ 1, i = 1, 2, . . . , N . (28)
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Incorporating the crack angleψi (q), as seen in Fig. 3, into Eq. (28), the kernel is recast in a more convenient
form as:

Ki j (q, s)

=
{−k1xz(αi , βi , α j , β j ) sinψi + k1yz(αi , βi , α j , β j ) cosψi ,

(
αi (q) − α j (s)

)
sin (θ) ≤ (

βi (q) − β j (s)
)
cos (θ)

−k2xz(αi , βi , α j , β j ) sinψi + k2yz(αi , βi , α j , β j ) cosψi ,
(
βi (q) − β j (s)

)
cos (θ) <

(
αi (q) − α j (s)

)
sin (θ)

.

(29)

The functions khjz(αi , βi , α j , β j ), h = 1, 2, j = x, y are introduced in (24). We should point out that in
(29) quantities with subscript i are functions of q , whereas those with subscript j are functions of s. Drawing
on the Buckner’s principal [57,58], the elasticity problem of a plane in the absence of cracks under external
loading should be solved which yields the traction on the crack surfaces with the opposite sign. Therefore, the
left-hand side of Eq. (28), with the opposite sign, is the traction caused by external loading in the infinite plane
without cracks on the presumed surfaces of cracks and may be distinct from Eq. (28). The applied tractions at
the far-field σ0 are considered to be uniform, and the kernel of integral (28) becomes:

K 1
i j (q, s) = G

2π

√[
α′
j (s)

]2 +
[
β ′
j (s)

]2

×
⎧
⎨

⎩

⎡

⎣

⎛

⎝

(
L

′

2L

)2

− 1

⎞

⎠ χ

R2 − L
′ ϑχ

R4 + 2L2χ

R6

(
χ2 − 3ϑ2)

+
∞∫

0

(κ (ξ) − κ∞ (ξ)) e−ξϑ sin (χξ)dξ

⎤

⎦ cosψi (q)

−
⎡

⎣

⎛

⎝1 −
(
L

′

2L

)2
⎞

⎠ ϑ

R2 + L
′

2

ϑ2 − χ2

R4 + 2L2ϑ

R6

(
ϑ2 − 3χ2)

−
∞∫

0

(κ (ξ) − κ∞ (ξ)) e−ξϑ cos (χξ)dξ

⎤

⎦ sinψi (q)

⎫
⎬

⎭
, ϑ ≥ 0,

K 2
i j (q, s) = G

2π

√[
α′
j (s)

]2 +
[
β ′
j (s)

]2

×
⎧
⎨

⎩

⎡

⎣

⎛

⎝

(
L

′

2L

)2

− 1

⎞

⎠ χ

R2 + L
′ ϑχ

R4 + 2L2χ

R6

(
χ2 − 3ϑ2)

+
∞∫

0

(κ (ξ) − κ∞ (ξ)) eξϑ sin (χξ)dξ

⎤

⎦ cosψi (q)

−
⎡

⎣

⎛

⎝1 −
(
L

′

2L

)2
⎞

⎠ ϑ

R2 − L
′

2

ϑ2 − χ2

R4 + 2L2ϑ

R6

(
ϑ2 − 3χ2)

+
∞∫

0

(κ (ξ) − κ∞ (ξ)) eξϑ cos (χξ)dξ

⎤

⎦ sinψi (q)

⎫
⎬

⎭
, ϑ < 0 (30)

in which χ = (
αi (q) − α j (s)

)
cos (θ) + (

βi (q) − β j (s)
)
sin (θ) , ϑ = (

βi (q) − β j (s)
)
cos (θ) −(

αi (q) − α j (s)
)
sin (θ). It should be noted that in the absence of length effect parameters the obtained equa-

tions of strain gradient theory are turned into the same equations presented in the classicmechanics. The kernels
of Eq. (28) are singular as R → 0, or for i = j as q → s and R2 = χ2 + ϑ2. To extract the hypersingular



Anti-plane analysis of an infinite plane with multiple cracks 1803

terms, the Taylor series expansion of α j (s) and β j (s) in the vicinity of the points q is plugged into Eq. (30)
yielding [56]:

K j j (q, s) =

⎧
⎪⎪⎨

⎪⎪⎩

a1−3 j (q)

(s−q)3
+ a1−2 j (q)

(s−q)2
+ a1−1 j (q)

(s−q)
+

∞∑
m=0

a1mj (s − q)
m
, ϑ ≥ 0

a2−3 j (q)

(s−q)3
+ a2−2 j (q)

(s−q)2
+ a2−1 j (q)

(s−q)
+

∞∑
m=0

a2mj (s − q)
m
, ϑ < 0.

(31)

All of the coefficients of singular and hypersingular terms (a p
−nj , p = 1, 2, n = 1, 2, 3) are addressed in

“Appendix B”.
The series in (31) are regular, and the coefficients of the regular terms (a p

mj , p = 1, 2, m = 1, 2, . . .) are
functions of variable q in the interval −1 ≤ q ≤ 1, which do not take part in the ensuing analysis and are also
too lengthy to be presented here.

As was discussed previously, the dominant singularity of stress fields for a dislocation as R → 0 is of
hypersingularity type. Consequently, Eq. (28) is a hypersingular integral equation for the dislocation densities.
Employing the definition of dislocation density function, the equation for the crack opening displacement
across the j-th crack becomes:

w−
j (q) − w+

j (q) =
∫ q

−1

√
[α′

j (s)]2 + [β ′
j (s)]2Bzj (s)ds, j = 1, 2, . . . , N . (32)

The displacement field is single-valued out of the crack the surfaces. Thus, the dislocation densities are
subjected to the following closure requirements:

∫ 1

−1

√
[α′

j (s)]2 + [β ′
j (s)]2Bzj (s)ds, j = 1, 2, . . . , N . (33)

To obtain the dislocation density, the integral equations (28) and (33) are to be solved simultaneously. This is
accomplished by means of Gauss–Chebyshev quadrature scheme developed in Erdogan et al. [59]. The stress
fields exhibit hypersingularity at the crack tips; therefore, the dislocation densities are taken in the following
forms [39]:

BSGT
zj (s) =

√
1 − s2

M∑

n=0

A j
nUn (s),Un (s)

= sin[(n + 1) cos−1 (s)]
sin[cos−1 (s)] , −1 ≤ s ≤ 1, j = 1, 2, . . . , N , n = 0, 1, 2, . . . (34)

In relation (34) Un (s) is the Chebyshev polynomial of the second kind. In order to circumvent the difficulties
which may be encountered in the numerical solution of the hypersingular integral Eq.(28) for cracks, we
substitute (34) with (33). Formally, the integration with the closure requirement, i.e., w−

j (1) − w+
j (1) = 0,

leads to the following equation [39]:

∫ 1

−1

√
1 − s2

M∑

n=0

A j
nUn (s) ds =

{
π
2 A

j
0 for n = 0

0 for n �= 0.
(35)

According to the behavior of function Un (s), Eq. (33) is satisfied, when it requires the relation A j
0

= 0
(see Eq.35). The hypersingular parts of the kernels in the integral equation (28) should be separated from the
regular part. Eq. (28), in light of (31), and may be rewritten as:

σnz(αi (q), βi (q))

=
M∑

n=1

∫ 1

1

{

Ai
n

[
a−3i k (q)

(s − q)3
+ ak−2i (q)

(s − q)2
+ ak−1i (q)

(s − q)
+

(

Kii (q, s) − ak−3i (q)

(s − q)3
− ak−2i (q)

(s − q)2
− ak−1i (q)

(s − q)

)]
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+
N∑

j=1
j �=i

A j
nKi j (q, s)

⎫
⎪⎪⎬

⎪⎪⎭
Un (s)

√
1 − s2ds, −1 ≤ q ≤ 1, i = 1, 2, 3, . . . , N , k = 1, 2. (36)

It is worth mentioning that in the right-hand sides of Eq. (36) the first two terms are hypersingular. The
next term is Cauchy singular, and the remaining terms are regular in the domain of integration.

3.1 Solution of the integral equations

Substitution of (31), (B.1–B.3) with the relevant terms of Eq. (36), in conjunction with the application of the
following integration formulas [42]:

1∫

−1

Un (s)
√
1 − s2

s − q
ds = π

2

[
Un−1 (q) −Un+1 (q)

]
,

1∫

−1

Un (s)
√
1 − s2

(s − q)2
ds = −π (n + 1)Un (q) for n = 0,

1∫

−1

Un (s)
√
1 − s2

(s − q)3
ds =

{
π

π
4(1−q2)

[− (
n2 + 3n + 2

)
Un−1 (q) + (

n2 + n
)
Un+1 (q)

] for 1 ≤ n (37)

modifies Eq. (36) as:

σnz(αi (q), βi (q)) =
M∑

n=1

⎛

⎜⎜
⎜⎜
⎜
⎝
Ai
n Fn(q) +

N∑

j = 1
i �= j

A j
nGni j (q)

⎞

⎟⎟
⎟⎟
⎟
⎠

, −1 ≤ q ≤ 1, i = 1, 2, 3, . . . , N (38)

and

Fn (q) = πak−3i (q)

4
(
1 − q2

)
[− (

n2 + 3n + 2
)
Un−1 (q) + (

n2 + n
)
Un+1 (q)

] − ak−2i (q) π (n + 1)Un (q)

+πak−1i (q)

2

[
Un−1 (q) −Un+1 (q)

]

+
1∫

−1

(

Kii (q, s) − ak−3i (q)

(s − q)3
− ak−2i (q)

(s − q)2
− ak−1i (q)

(s − q)

)

Un (s)
√
1 − s2ds,

Gni j (q) =
1∫

−1

Ki j (q, s)Un (s)
√
1 − s2ds, k = 1, 2. (39)

The unknown coefficients (A j
n) for cracks are determined by solving the system of algebraic Eq. (38). The

integral in Eq. (38) is calculated by Gauss–Chebychev and Gauss–Kronrod quadrature rules [60]. For the sake
of numerical expediency, the collocation points qi for discretizing the domain, −1 ≤ q ≤ 1, in Eq. (38), and
for the coefficients of the integral density of dislocation as sk are chosen in the middle of Gauss–Chebychev
quadrature points, and the integral equations reduced to the following system of t × M algebraic equations,
where the collocation point (integration point) is presented below [60]:

qi = cos

(
(2i − 1) π

2 (t + 1)

)
i = 1, 2, . . . , t − 1. (40)

Taking t > M+1, the resultant over-determined system of equations should be solved in terms of least-squares
minimization. The number of terms in series, the number of collocation points on cracks, and interaction with
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Fig. 4 Schematic view of a crack in polar coordinates to calculate the SIF

them are different. Nonetheless, a sufficient number of collocation points should be taken on a crack to ensure
the convergence of the coefficients of the series. Considering the examples solved in this study, we realized
that accurate results may be obtained by taking the number of collocation points about 1.2 times higher than
the number of series terms.

3.2 Calculation of the stress intensity factor

In order to investigate the stress hypersingularity near the crack tip, we need to obtain stress expressions for our
problem. We recognized that while the stresses inside the crack give us the system of hypersingular integral
equations, these equations also provide us with the stress expressions outside the crack at the q axis (Fig. 4),
provided the density functions are known [61].

In Fig. 4 the movable orthogonal coordinate system n − q is chosen on the i th crack such that the origin
locates on the crack, while the q-axis remains tangent to the crack surface.

By using the following relation (41), Eq. (36) can be stated as Eq. (42) [39]:

1∫

−1

Un (s)
√
1 − s2

(s − q)3
= −π

2
(n + 1)

(
q − |q|

q

√
q2 − 1

)n−1
⎡

⎣n

(

1 − |q|
√
q2 − 1

)2

+ q − |q|
q

√
q2 − 1

√
q2 − 1

3

⎤

⎦, |q| > 1,

1∫

−1

Un (s)
√
1 − s2

(s − q)2
ds = −π (n + 1)

(

1 − |q|
√
q2 − 1

)(
q − |q|

q

√
q2 − 1

)n

, |q| > 1,

1∫

−1

Un (s)
√
1 − s2

(s − q)
ds = −π

(
q − |q|

q

√
q2 − 1

)n+1

, |q| > 1, (41)

σnz(αi (q), βi (q))

=
M∑

n=1

Ai
n

⎧
⎨

⎩
−πak−3i (q)

2
(n + 1)

(
q − |q|

q

√
q2 − 1

)n−1
⎡

⎣n

(

1 − |q|
√
q2 − 1

)2

+ q − |q|
q

√
q2 − 1

√
q2 − 1

3

⎤

⎦

− πak−2i (q) (n + 1)

(

1 − |q|
√
q2 − 1

)(
q − |q|

q

√
q2 − 1

)n

− πak−1i (q)

(
q − |q|

q

√
q2 − 1

)n+1

+
∫ 1

−1

[

Kii (q, s) − ak−3i (q)

(s − q)3
− ak−2i (q)

(s − q)2
− ak−1i (q)

(s − q)

]

Un (s)
√
1 − s2ds

}

+
N∑

j=1
j �=i

∫ 1

−1
Ki j (q, s)

M∑

n=1

A j
nUn (s)

√
1 − s2ds, |q| > 1, i = 1, 2, 3, . . . , N , k = 1, 2. (42)

The SIFs in the strain gradient are calculated as [39]:

L (KIII)Ri = lim
ρ→0

2ρ
√
2πρσnz (ρ, 0) , L (KIII)Li = lim

ρ→0
2ρ

√
2πρσnz (ρ, π) . (43)
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We expect the stresses to be hypersingular at the crack tips. Furthermore, from Eq. (41), we infer that any
singular terms in the stresses weaker than the square and cubic root singularity, as well as regular terms, will
vanish because of the expressions in the limiting process. Also considering that the terms involving kernels are
bounded everywhere, the limiting process will serve to eliminate them, and we just need to concern ourselves
with the hypersingular terms. We may express the leading terms of shear stress at the beginning of the crack
tip. So, in the evaluation of SIF, only the hypersingular term of stress is considered. By substituting the
hypersingular term of (41) with (43), it leads to:

L (KIII)
SGT
Ri = −1

2
π

3
2 � (1)

3
4

[

a−3i (1)
M∑

n=1

Ai
n (n + 1)

]

,

L (KIII)
SGT
Li = 1

2
π

3
2 � (−1)

3
4

[

a−3i (−1)
M∑

n=1

Ai
n (−1)n (n + 1)

]

(44)

where � (q) =
(
α′
j (q)

)2 +
(
β ′
j (q)

)2
. In the above calculation, we use [61]:

ρRi =
√((

αi (q) − α j (1)
))2 + ((

βi (q) − β j (1)
))2 ≈ � (1)

1
2 (q − 1) , q → 1,

ρLi =
√((

αi (q) − α j (−1)
))2 + ((

βi (q) − β j (−1)
))2 ≈ � (−1)

1
2 (q + 1) , q → −1. (45)

The stress intensity factors for cracks in the vicinity of crack tips in terms of the density of dislocation
coefficient, Ai

n , in strain gradient theory are given in Eq. (46):

L (KIII)
SGT
Ri = −G

√
π

4

M∑

n=1

Ai
n (n + 1) � (1)

3
4

×
{
2L2 cosψi (1)

� (1)
5
2

(
η (1)3 − 3η (1) ε (1)2

) − 2L2 sinψi (1)

� (1)
5
2

(
ε (1)3 − 3ε (1) η (1)2

)
}

,

L (KIII)
SGT
Li = G

√
π

4

M∑

n=1

Ai
n (−1)n (n + 1) � (−1)

3
4

×
{
2L2 cosψi (−1)

� (−1)
5
2

(
η (−1)3 − 3η (−1) ε (−1)2

) − 2L2 sinψi (−1)

� (−1)
5
2

(
ε (−1)3 − 3ε (−1) η (−1)2

)
}

.

(46)

In the above equation η (q) = −α′
j (q) cos (θ) − β ′

j (q) sin (θ) , ε (q) = −β ′
j (q) cos (θ) + α′

j (q) sin (θ).
For each crack, since the difference between angle(ϕ j ) and (ϕi ) is zero, the above equations are reformed by
replacing ψ j (−1) = ψ j (1) = 0, also after some elaborations on trigonometric relations, the final forms of
stress intensity factors are obtained as follows:

(KIII)
SGT
Ri = GL

√
π

2
� (1)

−1
4

M∑

n=1

Ai
n (n + 1) ,

(KIII)
SGT
Li = −GL

√
π

2
� (−1)

−1
4

M∑

n=1

Ai
n (−1)n (n + 1) . (47)

In relation (47) the subscripts L and R designate the left and the right crack tips, respectively. The solutions
of Eq. (38) are plugged into (47) to calculate the stress intensity factors for strain gradient theory. In Eq.(47),
the dimensionless quantities and the new variable L̃ = L/a and L̃ ′ = L

′
/a can be utilized.
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Table 1 Comparison of the non-dimensional SIF for different dimensionless parameters L̃, L̃
′

Size effect [39] [42] [46] Present work Error%

L̃ = 0.2 0.87921 0.8803 0.1239
L̃

′ = 0.04
L̃ = 0.05 0.97113 0.9722 0.110
L̃

′ = 0.01
L̃ = 0.1 0.9438 0.9377 0.650
L̃

′ = 0.01
L̃ = 0.05 0.9720 0.9687 0.340
L̃

′ = 0.005
L̃ = 0.025 0.9863 0.9789 0.750
L̃

′ = 0.0025
L̃ = 0.8 0.5280 0.5280 0
L̃

′ = 0
L̃ = 0.5 0.6978 0.6978 0
L̃

′ = 0
L̃ = 0.2 0.8934 0.8934 0
L̃

′ = 0
L̃ = 0.1 0.9486 0.9486 0
L̃

′ = 0
L̃ = 0.05 0.9747 0.9747 0
L̃

′ = 0

4 Results and discussion

In this Section, some examples are demonstrated to show the ability and the accuracy of the distributed disloca-
tion technique. In the first three examples, the quantity for making the stress intensity factors dimensionless is
k0 = σ0

√
πa where a is the half length of a straight crack and all lengths are dimensionless by the half length

of the straight crack. Also, the plane is considered under uniform traction in far field σ0. The first example is
for the validation of results, and the others are new problems considered for the first time in the framework of
strain gradient theory.

4.1 Comparison with literature

In order to verify the distributed dislocation solution, stress intensity factors of the infinite plane are determined.
Indeed, this value is directly related to the stress intensity factor as it is predicted by the integral solution
method [39,42,46]. The percentage of the error of the distributed dislocation solution was calculated using
the comparison between the stress intensity factor predicted via the present work and those in the literature
(integral solution), which is reported in Table 1.

As seen, for the first case in Table 1, one can achieve less than 2% error which is in an excellent range for
most engineering applications.

Also, as it is shown, both internal length (L̃) and director length (L̃ ′
) have an effect on the SIF and may

be significant. However, the effects of these internal lengths can be negligible beyond the nano-scale. The
function of the internal length L̃ is to cover the applied tractions leading to crack stiffening, and the function

of the director length L̃ ′ is to magnify the applied tractions leading to crack compliance by raising the energy
relinquish rate of the crack.

Although L̃ and L̃ ′ have similar impacts (all are positive), i.e., the influence of variation of L̃ is similar

to that of L̃ ′ , the effect of the internal length on the SIF is more significant than that of the director length

since the value of L̃ ′ does not appear in Eq (47). Furthermore, the director length L̃ ′ cannot exist alone (i.e.

L̃ = 0 and L̃ ′ �= 0 is not acceptable conformation) because the strain energy density function requires to be

non-negative. Therefore, it will be quite adequate if we only study the effect of L̃ on the SIF. (L̃ ′ is not crucial,

hence, it can be claimed that the inclusion of L̃ ′ is not necessary).
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Fig. 5 Dimensionless mode III stress intensity factors for two collinear cracks (L̃ ′ = 0.9L̃)

As was mentioned before, normalizing these internal lengths with the crack length was done by a new
variable L̃ = L/a and L̃ ′ = L

′
/a. In this study, the reasonable values of normalized internal lengths are to

be considered. It must be noted that these values based on which the results were derived were qualitative. In
other words, with changes in the internal lengths, only the values will change but the trends will not change.

The only limitation of the values of normalized internal lengths is that
∣∣
∣L̃ ′

/L̃
∣∣
∣ < 1, L̃ �= 0.

In the next Sections, some examples will be demonstrated using strain gradient theory, and the continuum
classic theory along with size effect will be studied. It should be noted that at nano-scale distances both size
effects (L̃) should be taken into account for the precise calculation of the stress intensity factor parameters of
the nano-structures.

4.2 Two parallel collinear cracks

Let us consider an the infinite plane weakened by two collinear straight cracks of length 2a, under anti-plane
deformation, Fig. 5. This Figure depicts the dependence of the ratio SIF upon the ratio of the distance between
cracks b/a for classic and strain gradient theory.

The interaction of two receding straight cracks is discussed. the crack parametric expression is αR (q) =
xoR + aRq = [q + 1 + b] a, βR (q) = yoR = 0 in − 1 ≤ q ≤ 1 for the right crack and αL (q) =
[q − 1 − b] a, βL (q) = 0 for the left crack. An approximate stress intensity factor in linear elastic frac-
ture mechanics can be obtained from Tada [62]. In classical theory, the SIF for the tip of cracks increases with
a reduction in the value of b/a. However, in strain gradient kIII/k0 for a high value L̃ slightly decreases by
lowering the b/a ratio, but by decreasing size effect this trend is similar to what was observed in classic theory.
In other words, the stress intensity factors have remarkable amounts around two adjacent tips of cracks, and
generally for any b/a ratio, as the size effect increases, their values gradually decrease as it is demonstrated.
This difference is the result of the size effect which induces rigidity in the governing equation of the strain
gradient. On the other hand, a different trend is observed in the case of two parallel collinear cracks: Indeed,
(for low b/a) the presence of the size effect might increase or decrease the stress intensity factor. According
to this Figure, it is clear that the strain gradient theory generally is less predictable for the SIF as opposed
to the classic continuum theory. The classic continuum for small half crack length about material length size
(L̃ = 1) in low b/a (b/a = 0.05) values, predicts the SIF values about 4.7 times higher for A tips of crack and
about 2.6 times higher for B tips of crack as compared with strain gradient theory. A decrease in the L̃ value
(increase in the crack length) results in the strain gradient theory becoming similar to the results of classic
continuum theory. In other words, enhancing the crack length (2a) increases the stress intensity factor and
lowers the size-effect parameter L̃ .
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Fig. 6 Dimensionless mode III stress intensity factors for two parallel off-center cracks (L̃ ′ = 0.9L̃)

All curves in the above Figure show that while strain gradient theory is the dominant factor for high values
of L̃ , the continuum classic theory is prominent in low L̃ values. Indeed, this trend is similar to what is predicted
by classic theory [53–56].

As this Figure shows, when L̃ increases, the SIF decreases. The physical meaning of this phenomenon is
that generally the size effect decreases the stress intensity factor, and it provides a hardening behavior that
enhances the elastic resistance along with the consequent operation traction of the nano-structures. Another
important result that we find out from this Figure is that large distances between tip cracks (big value of b/a)
lead to a SIF which is regarded as a value product without interaction between the two cracks. For example,
in classic theory when the distance between the cracks increases, the value of the SIF ratio curve reaches the
value of 1, in case of a lonely crack, since the stress intensity factor for a crack in the classical continuum is 1.

4.3 Two parallel off-center cracks

Two off-center equal-length cracks which are parallel to the x axis are shown in Fig. 6. The left crack and
the vertical distance between the cracks remain fixed, whereas the location of the right crack is changing in
the direction of the x axis. The dimensionless stress intensity factors versus dimensionless location of the
right crack are depicted in Fig. 6. Due to the symmetry, the SIFs at B and A of the left crack are equal to
those at B and A of the right crack. In this case, the crack geometrical parametric expression is αR (q) =
[q + 1 + b] a, βR (q) = 0.2a in − 1 ≤ q ≤ 1 for the right crack, and αL (q) = aq, βL (q) = 0 for the left
crack. Moreover, a considerable change in kIII/k0 can be observed as b/a varies. The variation of the SIFs for
B, tip crack, is much smaller than that of A, tip crack, due to the weak interaction between these tip cracks.
Our results indicate that when L̃ tends to zero (increases the crack length), it means that the crack length is
much larger than the characteristic length, the stress intensity factor tends continuously to its value of classical
elasticity, and the impact of size effect vanishes. This trend is the same as that observed in Fig. 5, where the
size effect decreases the stress intensity factor of the nano-structure. It means that the size effect provides a
hardening behavior (decreases the stress intensity factor) in the elastic resistance of the nano-structure. The
enhanced elastic resistance allowed the plane to tolerate higher values of applied traction before the fracture
occurs, i.e., lower values of the stress intensity factor.

4.4 A fixed and a rotating crack

We consider two equal-length straight cracks situated on the plane, Fig. 7. Crack B1A1 is fixed while A2B2
with length 2a = 2 is rotating around its center. The crack configurations in parametric form are:

αL (q) = −1.05 + aq, βL (q) = 0,
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Fig. 7 Mode III stress intensity factors for a fixed and a rotating crack (L̃ ′ = 0.9L̃)

αR (q) = 1.05 + aq cos θ, βR (q) = 1.05 + aq sin θ, −1 ≤ q ≤ 1 (48)

where a = 1 is the half length of the cracks, and θ is the angle between crack A2B2 and the x-axis.
The variation of the dimensionless stress intensity factors versus the angle of rotation for classic theory,

i.e., L̃, L̃ ′ = 0 and gradient theory with L̃ = 0.5, 1 and L̃ ′ = 0.9L̃ is depicted in Fig. 7.
The variations of kB1III and kA1III are not significant and are due to the change in the interaction between the

cracks.
In classical theory, the value of kA2III at small values of angle θ , θ < π/180, is higher than kB2III , which is

attributed to a stronger interaction with the fixed crack i.e., the distance between A2 and A1 is much shorter
than that between B2 and A1. Interestingly, as seen in Fig. 7, this trend is different from what is observed in
the case of strain gradient theory, where at small values of angle θ the value of kA2III is smaller than kB2III .

Another interesting trend observed in this Figure is that at larger values of angle θ in classical theory the
interaction between the crack tip B2 and the fixed crack enhances, also for A2 and the fixed crack decreases,
while in strain gradient theory at larger values of angle θ ,

∣
∣kA2III

∣
∣ >

∣
∣kB2III

∣
∣. In other words, in strain gradient

theory for small distance between the tip cracks, the size effect is stronger than the interaction between tip
cracks, and it has more severe effects on the stress intensity factor.

On the other hands, a different trend is observed in the case of strain gradient: Indeed, the amount of size

effect might decrease (for high L̃ ′
, L̃) or increase (for low L̃ ′

, L̃) the SIF. This trend is similar to what is
observed in Fig. 5.

At θ = π/2, the applied traction on the crack surface A2B2 is zero. Therefore, the stress intensity factors
are zero, but the interaction between cracks produces unequal values of the stress intensity factor at the crack
tips. The foregoing inequality is valid everywhere, except in a narrow band around θ = π/2, which reverses.
The difference between the trends is the result of the presence of the size effect. The results of the present
study show that the existence of this size effect is a crucial issue to precisely determine the SIF parameters of
the nano-structures which should be included in theoretical models.

4.5 A curved and a straight crack

In this example, we consider a stationary curved crack and a growing straight crack with a fixed center, inset
in Fig. 8. The parametric representations of straight and curved cracks are identified as follows [63]:

αL (q) = −m + aq, βL (q) = n,

αR (q) = m × cos
(π

4
(1 − q)

)
, βR (q) = n × sin

(π

4
(1 − q)

)
(49)

where m = 2, n = 1.5. Figure 8 shows the variation of the dimensionless stress intensity factors versus the
length of the straight crack in the plane. As it may be from observed from kIII/k0, the two approaching crack
tips change rapidly. In contrast, the variations of kIII/k0 for crack tips B1 and B2, especially B2, are not that
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Fig. 8 Mode III stress intensity factors for a straight and a curved crack (L̃ ′ = 0.9L̃)

Fig. 9 Mode III stress intensity factors for two curved cracks (L̃ ′ = 0.9L̃)

pronounced. The same results were obtained when two neighboring tip cracks approach each other, so that the
trend in strain gradient and classic theory is different, which was discussed in the previous example.

4.6 Two curved cracks

In the last example two curved cracks, which are portions of the circumference of an ellipse with the following
parametric representations, are considered:

αi (q) = xc + (−1)i m cos

[
1

2

(
1 − (−1)i q

)
tan−1

(m
n
cot γ

)]
,

βi (q) = yc + n sin

[
1

2

(
1 − (−1)i q

)
tan−1

(m
n
cot γ

)]
− 1 ≤ q ≤ 1, i = 1, 2. (50)

The coordinates of the center of the ellipse are (xc, yc) = (0, 0). The lengths of the major and the minor
semi-axes of the ellipse are m = 3 and n = 1.5, respectively.

The problem is symmetric with respect to the y-axis. Thus, the stress intensity factors for crack tips are
identical. The variation of the dimensionless stress intensity factors for three size effects L̃ = 0.1, L̃ = 0.5
and L̃ = 1 as opposed to angle γ for the crack BA are shown in Fig. 9. The normalizing factor in this case is
taken as k0 = σ0

√
πm. Nonetheless, the variation of the stress intensity factor for both theories manifests the

same trend, except for the low distance between two adjacent tip cracks.
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Fig. 10 Geometry of the medium with a horizontal crack

Fig. 11 Crack displacement profile for homogeneous material under uniform crack surface shear loading (σ0 = σyz)

5 Case study of size effects on the crack opening displacement and stress and strain field

5.1 Crack opening displacement

Figure 10 shows a schematic representation of the medium with a horizontal crack. The normalized crack
opening displacements for a homogeneous medium with the same strain gradient effect, shown in Fig. 11, is
obtained by integrating the slope function (strain), according to Eq. (51). The crack profile in this Figure is
symmetric due to the homogeneity of the material,

w (r, 0) = a

r∫

−1

Bz (s)ds = a

r∫

−1

√
1 − s2

N∑

n=0

AnUn (s)ds. (51)

As shown in Fig. 11, the most well-known characteristic is the cusping phenomenon around the crack tips. In
this Figure the main difference between curves relevant to classic and strain gradient theory is the cusp at the
crack tips. As seen in this Figure, one may observe that the profile for classic theory has a tangent line with
infinite slope at the crack tips, which is a usual crack behavior demonstrated in the classical LEFM. However,
this is not the case in gradient theory as evidenced by the numerical results shown, and the profile at the crack
tip has a small slope [64].

Also it can be concluded that the strain gradient theory predicts the crack opening displacement smaller
than the classical theory [64].

It is emphasized that the cusping of the crack opening displacement at the crack tip by the gradient theory
and the distributed dislocation technique were first pointed out in [51] and later discussed in [65,66].

The problemwas addressedmore recently [35], and references were quoted therein as well as in [67], where
the distributed dislocation technique was employed by using the non-singular solutions for screw dislocations
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Fig. 12 Normalized stress distribution for a horizontal crack in a plane (L̃ ′ = 0.9L̃)

Fig. 13 Dislocation density for classical and strain gradient elasticity

derived, for example, in [37,38]. A most recent contribution along these lines [64] simply confirmed the
earlier results indicating that the conventional gradient elasticity theory suffices, and no additional physical
insight is gained by including extra higher order strain gradients.

5.2 Stress field

Figure 12 depicts the variation of shear stress (σyz) as a function of the length of the crack. As seen in Fig. 12,
the stress highly increases and diverges in the classic LEFM as x approaches the crack tips along the ligament.
Note that this trend is different from what is observed in strain gradient theory where the stress at the crack tip
does not exhibit any jump behavior and has a finite amount.

5.3 Strain field

Figure 13 represent the influence of dislocation density of a crack the on the dimensionless length of the
crack with considering size effects. Note that the dislocation density is in fact defined as the derivative of a

displacement or (Bz (s) = ∂w(s,0+)
∂s ). As seen, a decreasing size effect results in converging the strain profile

to the slope function (strain) of the classical LEFM case in the region away from the crack tips; but at large
size effect the strain is very different from its classical counterpart near the crack tips and has a singular trend.
Moreover, the sign of the strain changes, as the size effect decreases the inner part i.e. the region away from
of the two crack tips seems to converge to the solution of classical LEFM.
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6 Conclusions

Stress analysis and simulation of a nano-crack subjected to anti-plane stresses are carried out in an infinite
plane weakened by a screw dislocation. The solution is obtained in an integral form, which may be considered
as the hypersingular integral for the plane with multiple cracks under anti-plane deformation. The new elastic
constants, also referred to as characteristic lengths, become physically meaningful in the presence of structures
and defects of comparable size. Thus, the stress intensity factor decreases, particularly near small defects which
is a manifestation of the presence of a characteristic length. Comparing the numerical results shows that the
distribution dislocation method works accurately in the framework of strain gradient elasticity and can be
applied practically to the treatment of material discontinuities in ultra small scales. To study the interaction
between cracks and also the effects of crack orientation, stress intensity factors are obtained for some examples,
which are indicative of the capability of gradient elasticity theory to capture the size effect, which is quite
considerable in nano-sized specimens.Also the ability of the distribution dislocationmethodwill be considered.

Among other findings,

• We observed that the size effect becomes important for small sizes of nano-structures in a way that stress
intensity factors will enhance as the size effect of the material decreases. Moreover, the size effect causes
the plane with the assigned parameter to fail as a more rigid structure.

• As it was shown, the usual continuum theories are not capable of describing size effects because of
neglecting the internal length scale parameter. They not only fail to provide such accurate results, but also
their solutions often become deteriorated.

• Contribution of additional constants in the formulation of higher-order continuum theories or enhanced
elasticitymodels, such as gradient theory,makes them capable of capturing the size effects quite adequately.

• Strain gradient modeling in addition to providing the accurate results, which are in good agreement with
thoseobtained from the atomisticmethod, is such apowerful approach that is computationally less expensive
than other approaches.

• As the characteristic length of the deformation field becomes significantly larger than the material length
scale parameter, the strain gradients effect becomes negligible because the strain terms are much larger
than their scaled gradient terms. In this case, the results obtained via strain gradient theory are the same as
those of the classic theory.

• Since the geometrical characteristics of nano-structures are often of the order of several nanometers, the
presence of material constants can influence nano-structures’ treatment significantly.

• It can be concluded that in the nano-scale structures applying proper theories and analyzing them allows
manufacturers to design and make more accurate devices; since in the case of using classic continuum
theory, it will lead to an apparent error.

Appendix A: Physical meaning and implications of non-classical theory

All the following experiments imply that when the characteristic size (thickness, diameter, etc.) of a micro-
/nano-element is of the order of its intrinsic material length scales (typically sub-micron), the material elastic
constants highly depend on the element dimensions. The size-dependent behavior of materials and structures
at sub-micron distances cannot be modeled using classical continuum mechanics.

It has been shown that torsional hardening of a copper wire increases by a factor of 3 as the wire diameter
decreases from 170 to 12 μm [68]. Stolken and Evans [69] showed that a decrease in the thickness of thin
nickel beams from 50 to 12.5 μm can lead to great increase in the plastic work hardening of the constitutive
material. Also, the size-dependent behavior has been detected in some kinds of polymers [70]. For hardness
measurement of bulk gold, it is found that the plastic length scale parameter (for indentation test and hardness
behavior) of Au increases from 470 nm to 1.05 μm with increasing the Au film thickness from 500 nm to
2 μm [71]. Using micro-bend testing method, the plastic intrinsic material length scale of 4 μm for copper
and 5 μm for nickel were determined [72].

Appendix B

The coefficients of the hypersingular terms in Eq. (31) are:
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a1− j (q) = a2− j (q) = G

2πμ
1
2

⎛
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′

2L

)2

− 1

⎞

⎠
{
Λ cosψ j (q) +Ω sinψ j (q)

}
, (B.1)

a1−2 j (q) = −a2−2 j (q) = − GL
′

2πμ
3
2

{
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2
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}
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