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Abstract It is known that the distribution of stresses in a rectangular plate is the same as the applied stresses
on the boundaries when the loading is uniform or linearly varying. For other types of compressive loads, for
instance parabolic compressive loading, the distribution of stresses in the plate is different from the applied
loads at the boundaries of the plate. For such conditions, to obtain the buckling loads of the plate, an accurate
prebuckling analysis should be performed. The present research aims to obtain the buckling loads and buckling
pattern of composite plates reinforced with carbon nanotubes with uniform or functionally graded distribution
across the plate thickness. The properties of the composite media are obtained based on a modified rule of
mixtures approach with the introduction of efficiency parameters. First-order shear deformation plate theory
is used to approximate the plate kinematics. The plate is subjected to uniaxial compressive loads which vary
as parabolic functions across the width of the plate. At first, using the Ritz method and Airy stress function
formulation, the distribution of stress resultants in the plate domain is obtained as a two-dimensional elasticity
formulation. Afterwards, by means of the Chebyshev polynomials as the basic functions of the Ritz solution
method, an eigenvalue problem is established to obtain the buckling load and buckling shape of the plate.
Comparison studies are provided to assure the accuracy of the presented formulation for isotropic homogeneous
and cross-ply laminated plates. Afterwards, parametric studies are performed for composite plates reinforced
with carbon nanotubes.

1 Introduction

Rectangular plates are a part of more complex structures, and due to the loading condition of the structure, the
applied load on the rectangular platemay not be uniform. Nonuniform distribution of in-plane loads is observed
in the case of an I beam or wide-flanged beam subjected to a bending moment at the ends or lateral loads on
the flange, aircraft wings, stiffened plates in the ship structures, and multi-storey buildings by the adjoining
structures. For nonuniform distribution of compressive in-plane loads acting on the plate edges, understanding
the buckling behaviour becomes important and should be studied to grasp the general information on the
response of the structure which leads to a reliable design.

A literature survey reveals that the linear buckling problem of rectangular plates subjected to uniform
compression is well documented in the open literature. In this type of loading, the differential equations
associated with the onset of buckling are linear with constant coefficients. Furthermore, the distribution of in-
plane stresses within the plate is similar to the applied edge loads. In comparison with uniform edge loading,
less researches are available on the buckling behaviour of rectangular plates subjected to nonuniform edge
loadings. The reason is that the governing equations for such problems have nonconstant coefficients. Among
the buckling problems with nonuniform edge loading, linearly varying loads are more observed since in this
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case the prebuckling loads are the same as the applied in-plane loads. For other types of nonuniform loading,
the distribution of in-plane stresses in the plate is different from the applied in-plane loads, and to obtain the
critical buckling loads of the plate, prebuckling loads should be obtained accurately. This is the reason of the
limited number of investigations dealing with the buckling of rectangular plates with nonuniform compression.

Based on a mesh-free formulation, Chen and Liew [1] obtained the critical buckling loads of homoge-
neous and functionally graded material plates subjected to point force, partial compression, and parabolic
loading. This research is based on the first-order plate theory and a mesh-free method based on the radial
basis functions. Based on a two-dimensional generalised differential quadrature, Wang et al. [2] obtained
the buckling loads of thin rectangular plates based on the classical plate theory. In this research, the plate is
subjected to uniaxial parabolic in-plane loads. Prior to the eigenvalue analysis to obtain the buckling loads
of the plate, a two-dimensional elasticity problem is solved to extract the distribution of in-plane stresses
induced by the nonuniform compression. Tang and Wang [3] reported the buckling loads of symmetrically
laminated rectangular plates subjected to parabolic loading. A Ritz formulation with the aid of Airy stress
function formulation is developed to obtain the distribution of normal and shear stresses within the plate.
Afterwards, the buckling problem of the plate is formulated using the two-dimensional generalised differential
quadrature method suitable for arbitrary combinations of clamped and simply supported boundary conditions.
Panda and Ramachandra [4] developed, respectively, a Ritz and a Galerkin procedure to obtain the prebuck-
ling and buckling stresses of the isotropic homogeneous and cross-ply laminated plates. In the prebuckling
state, a three-parameter stress function comprising polynomial functions satisfying all of the force boundary
conditions on the edges of the plate is constructed. The unknown parameters are obtained via the minimum
potential energy criterion. The obtained prebuckling forces are inserted into the stability equations of a thick
plate whose solution is estimated by means of the beam function. The developed solution, also, may be used
for arbitrary combinations of clamped and simply supported boundary conditions. Ramachandra and Panda
[5] developed their previous investigation [4] to analyse the dynamic stability of rectangular plates loaded by a
parabolically varying load. Similar to the previous investigation of the authors [4], Ritz and Galerkin methods
are used, to obtain the distribution of in-plane forces and instability regions, respectively. Ovesy and Fazilati
[6] developed a finite strip method to distinguish the instability regions of a cylindrical shell panel subjected
to compressive loads which vary as a parabolic function of the panel width. Dey et al. [7] obtained the linear
buckling loads and also the postbuckling equilibrium path of rectangular sandwich plates subjected to either
partial or parabolic loading. In this research, each of the layers has its own kinematics, and the continuity of the
displacements between the layers is satisfied. In this analysis, Dey et al. [7] extended the previous formulation
of [4,5] suitable for not only the parabolic but also the partial loading. Panda and Ramachandra [8] obtained
the prebuckling, buckling and postbuckling responses of rectangular cross-ply laminated plates subjected to
uniaxial compression. Panda and Ramachandra [9] presented a solution based on the Galerkin method suitable
for a postbuckling analysis of cylindrical panels with all edges simply supported and subjected to uniaxial or
biaxial parabolic loading. To trace the equilibrium path, the Newton–Raphson method in conjunction with the
Riks procedure is implemented.

Carbon nanotubes (CNTs) have exceptional thermomechanical properties which makes them a candidate
for the reinforcement of composites [10]. It is reported that nonuniform distribution of CNTs may be achieved
by a powder metallurgy process [11]. Therefore, the concept of FGMs and CNTs may be achieved together
via a nonuniform distribution of CNTs through a specific direction [12]. This class of materials is known as
functionally graded carbon nanotube-reinforced composites (FG-CNTRC).

With the introduction of FG-CNTRC materials, many researches are devoted to the stability analysis of
FG-CNTRC structures. Among the reported works on stability of FG-CNTRC plates, one may refer to the
stability analysis of skew plates made of FG-CNTRC based on a first-order plate theory and an element-free
formulation carried out by Zhang et al. [13] an investigation of Lei et al. [14] for a stability analysis of FG-
CNTRC rectangular plates based on the element-free kp-Ritz method, a buckling analysis of Malekzadeh
and Shojaee [15] for laminated plates in a arbitrary quadrilateral shape made from FG-CNTRC layers using
a generalised differential quadrature, the development of an element-free method for a buckling analysis of
skew-shaped FG-CNTRC plates resting on a two-parameter elastic foundation performed by Lei et al. [16],
and the buckling and postbuckling of FG-CNTRC plates [17] and sandwich plates with FG-CNTRC face
sheets [18] with simply supported edges based on a two-step perturbation technique. However, in all of these
mentioned works, the in-plane applied loads are of uniform type.

The aim beyond the present research is to extend the available works on the stability analysis of FG-
CNTRC plates. Buckling load factors are obtained for a rectangular shape composite plate reinforced with
single-walled carbon nanotubes. At first, a prebuckling analysis is performed to obtain the accurate distribution
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of in-plane loads due to the applied parabolic compression. Afterwards, stability equations are discretized with
the aid of the Ritz method where the shape functions are constructed in terms of the Chebyshev polynomials.
The resulting eigenvalue problem is established and solved for various combinations of boundary conditions,
aspect ratio, side-to-thickness ratio, CNT volume fraction, and CNT dispersion profile. It is shown that the
buckling loads of the plate are affected by the CNT characteristics significantly.

2 Basic formulation

An FG-CNTRC rectangular plate is considered is this research. Thickness, width and length of the plate are
denoted by, h, b, and a, respectively. The conventional Cartesian coordinate system with its origin located
at the centre of the plate where −0.5a ≤ x ≤ +0.5a, −0.5b ≤ y ≤ +0.5b, and −0.5h ≤ z ≤ +0.5h is
considered. The geometric characteristics of the plate, applied coordinate system, and applied compressive
loads are depicted in Fig. 1.

The plate is made from a polymeric matrix reinforced with single-walled carbon nanotubes (SWCNT). The
distribution of SWCNT across the plate thickness may be uniform (referred to as UD) or functionally graded
(referred to as FG). In this research, two types of mid-plane symmetric FG distribution of CNTs and the UD
case are considered. FG-O and FG-X CNTRC are the functionally graded distribution of carbon nanotubes
across the thickness direction of the rectangular composite plate.

Generally, the effective mechanical properties of the FG-CNTRC rectangular plate are obtained using the
well-known homogenisation schemes, such as Mori-Tanaka scheme [19] or the rule of mixtures [20]. For the
sake of simplicity, in the present research, the rule of mixtures is used to obtain the properties of the composite
plate. However, to account for the scale-dependent properties of nanocomposite media, efficiency parameters
are introduced. The refined rule of mixture approach which contains the efficiency parameters has been used
extensively in analysis of FG-CNTRC beams [21–24], plates [25–27], panels [28–30], and shells [31–33].
According to the rule, the effective material properties may be written as [12,34]

E11 = η1VCN E
CN
11 + VmE

m,

η2

E22
= VCN

ECN
22

+ Vm
Em

,

η3

G12
= VCN

GCN
12

+ Vm
Gm

. (1)

In the above equations, η1, η2, and η3 are the so-called efficiency parameters which as mentioned earlier
are introduced to account for the size-dependent material properties of the plate. These constants are chosen to
equal the obtained values of Young’s modulus and shear modulus from the present modified rule of mixtures
with the results obtained according to themolecular dynamics simulations [34]. Besides, ECN

11 , ECN
22 , andGCN

12
are the elasticity modulus and shear modulus of SWCNTs, respectively. Furthermore, Em and Gm indicate the
corresponding properties of the isotropic matrix.

In Eq. (1), the volume fraction of CNTs and matrix is denoted by VCN and Vm , respectively, which satisfy
the condition

VCN + Vm = 1. (2)

As mentioned earlier, two types of functionally graded CNTRC plates are considered. These types along
with the UD type are the considered patterns of CNT dispersion through the thickness of the plate. In Table 1,
the distribution function of CNTs across the plate thickness is provided.

Fig. 1 Coordinate system, dimensions, and the schematic of the applied compressive loads
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Table 1 Volume fraction of CNTs as a function of the thickness coordinate for various cases of CNTs distribution.

CNTs distribution VCN

UD CNTRC V ∗
CN

FG-O CNTRC 2V ∗
CN

(
1 − 2

|z|
h

)

FG-X CNTRC 4V ∗
CN

|z|
h

It is easy to check from Table 1 that all of these types have the same value of volume fraction. The total
volume fraction across the plate thickness in all of these cases is equal to V ∗

CN . In FG-X type, the distribution
of CNTs is maximum near the top and bottom surfaces, whereas the mid-plane is free of CNTs. For FG-O,
however, top and bottom surfaces are free of CNTs, and the mid-surface of the plate is enriched with CNTs.
In UD type, each surface of the plate though the thickness has the same volume fraction of CNTs.

The effective Poisson’s ratio depends weakly on position [31,34] and is expressed as

ν12 = V ∗
CNνCN

12 + Vmνm . (3)

First-order shear deformation theory (FSDT) of plates suitable for moderately thick and even thick plates
is used in this study to estimate the kinematics of the plate [35]. According to the FSDT, the displacement
components of the plate may be written in terms of the characteristics of the mid-surface of the plate and
cross-sectional rotations as

u (x, y, z) = u0 (x, y) + zϕx (x, y) ,

v (x, y, z) = v0 (x, y) + zϕy (x, y) ,

w (x, y, z) = w0 (x, y) . (4)

In the above equation, u, v, andw are the through-the-length, through-the-width and through-the-thickness
displacements, respectively. Mid-plane characteristics of the plate are designated with a subscript 0. Besides,
transverse normal rotations about the x and y axes are denoted by ϕy and ϕx , respectively.

Following the FSDT, in-plane strain components are written in terms of mid-plane strains and change in
curvatures. Besides, through-the-thickness shear strain components are assumed to be constant. Therefore, one
may write

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx
εyy
γxy
γxz
γyz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx0
εyy0
γxy0
γxz0
γyz0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ z

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κxx
κyy
κxy
κxz
κyz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (5)

In this study, a rectangular plate under the action of nonuniform compression is under investigation. It is
known that a stability analysis should be performed under geometrically nonlinear conditions. However, when
only the buckling state is under consideration and the prebuckling state of the structure is deflectionless, a linear
analysis suffices. In such conditions, the problem may be formulated under geometrically linear conditions,
and the effect of the prebuckling loads may be invoked into the total potential energy of the system as a work
done by the external loads.

Considering the above discussions, the linear strain–displacement relations may be written as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx0
εyy0
γxy0
γxz0
γyz0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u0,x

v0,y
u0,y + v0,x
ϕx + w0,x
ϕy + w0,y

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (6)
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and the components of change in curvature compatible with the FSDT are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κxx
κyy
κxy
κxz
κyz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕx,x

ϕy,y

ϕx,y + ϕy,x
0
0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7)

where in the above equations (),x and (),y denote the derivatives with respect to the x and y directions,
respectively.

For linear elastic materials, the stress field may be expressed as a linear function of the strain field as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σxx
σyy
τyz
τxz
τxy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣
Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx
εyy
γyz
γxz
γxy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (8)

In this equation, Qi j ’s (i, j = 1, 2, 4, 5, 6) are the reduced material stiffness coefficients compatible with
the plane stress conditions and are obtained as follows [25]:

Q11 = E11

1 − ν12ν21
, Q22 = E22

1 − ν12ν21
, Q12 = ν21E11

1 − ν12ν21
,

Q44 = G23, Q55 = G13, Q66 = G12. (9)

Stress resultants of the FSDT may be obtained upon integration of the stress field through the thickness.
Stress resultant components in this case become [35]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nxx
Nyy
Nxy
Mxx
Myy
Mxy
Qxz
Qyz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
∫ +0.5h

−0.5h

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx
σyy
τxy
zσxx
zσyy
zτxy
κτxz
κτyz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dz. (10)

In the above equation, κ is the shear correction factor of the FSDT. For FG-CNTRC beams, plates and shells,

the value of κ is used as κ = 5

6 − ν12
.

Substitution of Eq. (8) into Eq. (10) with the simultaneous aid of Eqs. (4)–(7) and (9) generates the stress
resultants in terms of the mid-surface characteristics of the plate as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nxx
Nyy
Nxy
Mxx
Myy
Mxy
Qyz
Qxz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 0 B11 B12 0 0 0
A12 A22 0 B12 B22 0 0 0
0 0 A66 0 0 B66 0 0
B11 B12 0 D11 D12 0 0 0
B12 B22 0 D12 D22 0 0 0
0 0 B66 0 0 D66 0 0
0 0 0 0 0 0 κA44 0
0 0 0 0 0 0 0 κA55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx0
εyy0
γxy0
κxx
κyy
κxy
γyz0
γxz0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (11)

In the above equation, the stiffness components Ai j , Bi j , and Di j indicate the stretching, bending–stretching,
and bending stiffnesses, respectively, which are calculated by

(Ai j , Bi j , Di j ) =
∫ +0.5h

−0.5h
(Qi j , zQi j , z

2Qi j )dz. (12)
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3 Prebuckling analysis

As mentioned earlier, for the case of parabolic compression, the distribution of in-plane loads is different
from the applied loads at the edges. Therefore, to obtain the accurate buckling loads of the rectangular plate
subjected to parabolic load compression, a prebuckling analysis should be studied first. In the prebuckling
analysis, rotations and deflections are equal to zero. Consequently, only the in-plane displacement components
are present, and transverse shear strains are equal to zero before buckling. Displacement components may be
obtained by applying the virtual displacement principle. In the prebuckling state, one may write

δU 0 =
∫ +0.5a

−0.5a

∫ +0.5b

−0.5b

∫ +0.5h

−0.5h

(
σ 0
xxδε

0
xx0 + σ 0

yyδε
0
yy0 + τ 0xyδγ

0
xy0

)
dzdydx = 0 (13)

where upon integration on thickness it is reduced to

δU0 =
∫ +0.5a

−0.5a

∫ +0.5b

−0.5b

(
N 0
xxδε

0
xx0 + N 0

yyδε
0
yy0 + N 0δγ 0

xy0

)
dydx = 0 (14)

where a superscript zero indicates the prebuckling state of the plate. In the above equation, the influence of
the applied compressive load is included into the first term in the integrand. Recalling the applied loads on the
boundary, the boundary conditions of the plate are

x = ±a/2 : N 0
xx = −N0

(
1 − 4y2

b2

)
, N 0

xy = 0,

y = ±b/2 : N 0
xy = 0, N 0

yy = 0. (15)

Recalling Eq. (11), the components of strain in the prebuckling state may be obtained in terms of stresses in
the prebuckling state as

ε0xx0 = a11N
0
xx + a12N

0
yy,

ε0yy0 = a12N
0
xx + a22N

0
yy,

γ 0
xy0 = a66N

0
xy (16)

where the following definitions apply:

a11 = A22

A11A22 − A2
12

,

a22 = A11

A11A22 − A2
12

,

a12 = −A12

A11A22 − A2
12

,

a66 = 1

A66
. (17)

The virtual energy of the plate mentioned previously in Eq. (16) may be written in terms of the Airy stress
function. The components of stress resultants in terms of the Airy stress function are

N 0
xx = F,yy, N 0

yy = F,xx , N 0
xy = −F,xy . (18)

Finally, substitution of Eqs. (16) and (18) into Eq. (14) results in the expression of virtual strain energy in
terms of the stress function as

δU0 =
∫ +0.5a

−0.5a

∫ +0.5b

−0.5b

(
a11F,yyδF,yy + a22F,xxδF,xx + a12F,xxδF,yy + a12F,yyδF,xx + a66F,xyδF,xy

)
dydx = 0 (19)
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where the boundary conditions (15) in terms of the Airy stress function may be written as

x = ±a/2 : F,yy = −N0

(
1 − 4y2

b2

)
, F,xy = 0,

y = ±b/2 : F,xy = 0, F,xx = 0. (20)

Here the Ritz method is used to solve Eq. (19) with regard to boundary conditions (20). The approximate
stress function is considered in the following form:

F = −1

2
N0y

2
(
1 − 2y2

3b2

)
+

(
1 − 4x2

a2

)2 (
1 − 4y2

b2

)2 (
C0 + C1x

2 + C2y
2 + C3x

4 + C5y
4 + C6x

2y2
)
.

(21)
It is easy to check that the above stress function exactly satisfies all of the requiredboundary conditions ofEq.

(20). The above estimation of the stress function contains six unknown coefficients which should be determined
upon substitution of Eq. (21) into (19) and minimising the expression with respect to these unknowns. It should
be noted that only even powers in the second part of the stress function are considered since the applied edge
load is symmetricwith respect to the coordinate system.Obtaining the constant coefficientsCi , i = 1, 2, . . . , 6,
the stress function is constructed with the aid of Eq. (21). Afterwards, the distribution of in-plane stresses is
obtained by means of the definition of the Airy stress function in Eq. (18).

4 Buckling analysis

The stability equations of the plate may be obtained with the aid of the static version of the Hamilton principle
[35]. For the buckling analysis, one may write

δ(U + V ) = 0 (22)

where δU is the virtual strain energy of the plate which may be calculated as

δU =
∫ +0.5a

−0.5a

∫ +0.5b

−0.5b

∫ +0.5h

−0.5h

(
σxxδεxx + σyyδεyy + τxyδγxy + κτxzδγxz + κτyzδγyz

)
dzdydx, (23)

and δV is the potential energy due to the prebuckling loads which may be written as

δV = −
∫ +0.5a

−0.5a

∫ +0.5b

−0.5b

(
N 0
xxw0,xδw0,x + N 0

yyw0,yδw0,y + N 0
xyw0,yδw0,x + N 0

xyw0,xδw0,y

)
dydx . (24)

While the complete set of stability equations and the associated boundary conditions may be obtained by
the application of the Green–Gauss theorem to the expression (22), energy-based methods also may be used to
solve the stability equations associated with the functional (22). In the present research, the conventional Ritz
method with Chebyshev basis polynomials is used to extract the equilibrium equations in a matrix representa-
tion. Accordingly, each of the essential variables may be expanded via Chebyshev polynomials and auxiliary
functions such that

u0(x, y) = Ru(x, y)
Nx∑
i=1

Ny∑
j=1

Ui j Pi (x)Pj (y),

v0(x, y) = Rv(x, y)
Nx∑
i=1

Ny∑
j=1

Vi j Pi (x)Pj (y),

w0(x, y) = Rw(x, y)
Nx∑
i=1

Ny∑
j=1

Wi j Pi (x)Pj (y),

ϕx (x, y) = Rx (x, y)
Nx∑
i=1

Ny∑
j=1

Xi j Pi (x)Pj (y),
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ϕy(x, y) = Ry(x, y)
Nx∑
i=1

Ny∑
j=1

Yi j Pi (x)Pj (y) (25)

where in the above equation Pi (x) and Pj (y) are the i-th and j−th Chebyshev polynomials of the first kind
which are defined by

Pi (x) = cos((i − 1) arccos(2x/a)),

Pj (y) = cos(( j − 1) arccos(2y/b)). (26)

Besides, functions Rα(x, y), α = u, v, w, x, y are the boundary functions corresponding to the essential
boundary conditions. It is known that in Ritz family methods, the adoption of a shape function depends only
on the essential boundary conditions. Three types of boundary conditions are used in this study, i.e. clamped
(C), simply supported (S), and free (F). For a clamped edge, all of the out-of-plane essential variables are
restrained, while for a simply supported edge lateral displacement and tangential slope are restrained. For a
free edge, none of the out-of-plane essential variables are restrained at a edge. Therefore, the essential variables
at a edge may be written as

For a clamped edge:

x = ±a/2 : w0 = ϕx = ϕy = 0,

y = ±b/2 : w0 = ϕx = ϕy = 0;
For a simply supported edge:

x = ±a/2 : w0 = ϕy = 0,

y = ±b/2 : w0 = ϕx = 0;
For a free edge:

x = ±a/2 : −,

y = ±b/2 : −. (27)

The shape functions of the Ritz method should be chosen according to the above essential variables. All
of the Chebyshev functions are nonzero at both ends of the interval. Therefore, auxiliary functions Rα, α =
u, v, w, x, y should satisfy the essential boundary conditions on each edge of the plate. Each of the functions
Rα, α = u, v, w, x, y may be written as

Rα(x, y) =
(
1 + 2x

a

)p (
1 − 2x

a

)q (
1 + 2y

b

)r (
1 − 2y

b

)s

. (28)

Each of the variables p, q, r , and s depends on the essential boundary conditions and is equal to zero or one. For
instance, in a plate with clamped boundaries on x = −0.5a and x = +0.5a, simply supported at y = −0.5b
and free at y = +0.5b, auxiliary functions are

Ru(x, y) = 1,

Rv(x, y) = 1,

Rw(x, y) =
(
1 + 2x

a

)(
1 − 2x

a

)(
1 + 2y

b

)
,

Rx (x, y) =
(
1 + 2x

a

)(
1 − 2x

a

)(
1 + 2y

b

)
,

Ry(x, y) =
(
1 + 2x

a

)(
1 − 2x

a

)
. (29)

Finally, substitution of Eq. (25) into Eqs. (23) and (24) and inserting the results into the statement of the
Hamilton principle result in an eigenvalue problem

KeX = KgX (30)

where Ke is the elastic stiffness matrix and Kg is the geometric stiffness matrix and is originating from the
applied compressive loads. The above system is a linear eigenvalue problem which should be solved using a
standard procedure to reach the critical buckling load and the buckled configuration of the plate.



Buckling of FG-CNT-reinforced composite plates 1311

Table 2 Mechanical properties of (10,10) armchair SWCNT at reference temperature [36] (tube length = 9.26 nm, tube mean
radius = 0.68 nm, tube thickness = 0.067 nm)

T (K) ECN
11 (TPa) ECN

22 (TPa) GCN
12 (TPa) νCN

12

300 5.6466 7.0800 1.9445 0.175

5 Numerical results and discussion

The aim beyond the present study and the developed procedure in the previous steps is to study the buckling
characteristics of carbon nanotube-reinforced composite plates subjected to nonuniform compression at the
boundaries. In the rest of this manuscript, the following convention is established for boundary conditions.
For instance, in a CSCF plate, the first letter is associated with x = −0.5a, the second letter is the boundary
condition at y = −0.5b, the third letter denotes the boundary conditions at x = +0.5a, and finally the last
letter is associated with the boundary at y = +0.5b. Unless otherwise stated, poly(methyl methacrylate),
referred to as PMMA, is selected for the matrix with material properties Em = 2.5GPa and νm = 0.34. A
(10,10) armchair SWCNT is chosen as the reinforcement. Elasticity modulus, shear modulus, and Poisson’s
ratio of SWCNT are dependent on temperature. However, in this study the temperature dependency of the
constituents is ignored, and material properties are considered at reference temperature T = 300K. Shen and
Xiang [36] reported these properties at reference temperature T = 300K. The magnitudes of E11, E22,G12,
and ν12 for CNTs at reference temperature are given in Table 2.

Han and Elliott [37] performed a molecular dynamics simulation to obtain the mechanical properties
of nanocomposites reinforced with SWCNT. However, in their analysis, the effective thickness of CNTs is
assumed to be at least 0.34 nm. The thickness of CNTs as reported should be at most 0.142 nm [38]. Therefore,
the molecular dynamics simulation of Han and Elliott [37] is re-examined [34]. The so-called efficiency
parameters, as stated earlier, are chosen to match the data obtained by the modified rule of mixtures of the
present study and the molecular dynamics simulation results [34]. For three different volume fractions of
CNTs, these parameters are: η1 = 0.137 and η2 = 1.022 for V ∗

CN = 0.12, η1 = 0.142 and η2 = 1.626 for
V ∗
CN = 0.17, and η1 = 0.141 and η2 = 1.585 for V ∗

CN = 0.28. For each case, the efficiency parameter η3 is
equal to 0.7η2. The shear modulus G13 is taken equal to G12, whereas G23 is taken equal to 1.2G12 [34].

5.1 Comparison studies

In the present Section, comparison studies are provided to assure the validity and accuracy of the present
formulation. It should be mentioned that the number of shape functions in the series expansion (25) is chosen
as Nx = Ny = 14 after examination of convergence up to four digits.

For the first comparison study, thin isotropic plates with various types of boundary conditions are consid-
ered. In Table 3 results of our study are compared with those of Panda [4] which are obtained according to
the Galerkin method whose shape function is constructed by means of the beam vibration functions and those
of Wang et al. [2] which are obtained according to the generalised differential quadrature formulation. Nine
different sets of boundary conditions are considered. The plate is assumed to be homogeneous and isotropic
with Poisson’s ratio ν = 0.25. Results are confined to the case of a thin plate with a/h = 100. It is seen that the
results of our study are in good agreement with those of Wang et al. [2] and Panda and Ramachanda [4]. How-
ever, small divergences are observed in the case of plates with moderate and high aspect ratios. This divergence
is due the presence of the stress diffusion phenomenon which becomes more important in long plates.

In FG-CNTRC plates, the stiffness components Ai6, Bi6 and Di6 are absent. Therefore, the present for-
mulation also may be used for laminated composites with cross-ply lamination schemes. Tang and Wang [3]
employed the first-order shear deformation plate theory to analyse the buckling behaviour of composite lam-
inated rectangular plates. A comparison is performed between the results of this study and those reported by
Tang and Wang [3]. A three-layer composite plate with lamination scheme [0/90/0] is considered. Properties
of the layers are E11 = 127.3GPa, E22 = 11GPa, G12 = G23 = G13 = 5.5GPa, and ν12 = 0.34. The plate
is simply supported all around. The length-to-thickness ratio is chosen as a/h = 100. The buckling load factor
is evaluated as a function of aspect ratio, and results are provided in Fig. 2. It is observed that the results of
our study are in excellent agreement with those given by Tang and Wang [3] which guarantees the correctness
of the proposed formulation and solution method.
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Table 3 Critical buckling load parameter, λcr = N0,cr b2/(Dπ2) for isotropic homogeneous plates with ν = 0.25, a/h = 100
and various boundary conditions

B.Cs. Source a/b

0.4 0.5 0.6 0.8 1.0 1.5 2.0 3.0

SSSS Present 9.6623 7.2727 6.0792 5.2102 5.2404 5.7254 5.5180 5.6100
Panda [4] 9.654 7.271 6.078 5.211 5.242 5.704 5.478 5.547
Wang et al. [2] 9.663 7.274 6.080 5.211 5.262 5.734 5.628 5.630

SSCS Present 17.0086 12.0225 9.3945 7.0415 6.2726 6.0499 5.8116 5.7320
Panda [4] 17.02 12.03 9.401 7.035 6.254 6.023 5.768 5.671
Wang et al. [2] 17.02 12.03 9.399 7.045 6.277 6.058 5.825 5.756

SCSS Present 10.0630 7.8873 6.9390 6.6957 7.5689 7.1201 7.4496 7.3886
Panda [4] 10.06 7.877 6.938 6.692 7.551 7.104 7.412 7.373
Wang et al. [2] 10.06 7.888 6.940 6.698 7.573 7.135 7.482 7.456

CSCS Present 30.6570 20.9983 15.8183 10.9450 9.0436 8.1411 7.1031 6.5484
Panda [4] 30.65 21.01 15.82 10.95 9.032 8.127 7.063 6.495
Wang et al. [2] 30.69 21.02 15.83 10.96 9.054 8.153 7.123 6.571

SCSC Present 10.5357 8.6636 8.0916 8.8850 9.1818 9.1164 9.0701 9.2234
Panda [4] 10.52 8.652 8.087 8.877 9.172 9.114 9.053 9.117
Wang et al. [2] 10.54 8.663 8.092 8.887 9.194 9.141 9.120 9.345

SSCC Present 17.2817 12.4921 10.0817 8.2286 7.9644 7.6625 7.5694 7.4773
Panda [4] 17.28 12.49 10.07 8.231 7.957 7.645 7.390 7.451
Wang et al. [2] 17.29 12.50 10.09 8.233 7.971 7.679 7.598 7.544

CCSC Present 17.5853 13.0519 10.9508 9.8155 9.8563 9.3636 9.3129 9.2285
Panda [4] 17.58 13.04 10.94 9.814 9.847 9.340 8.309 9.205
Wang et al. [2] 17.59 13.06 10.95 9.821 9.868 9.393 9.367 9.352

CCCS Present 30.8237 21.3628 16.4192 12.1103 10.8978 9.7383 9.2096 8.6092
Panda [4] 30.54 21.35 16.42 12.12 10.88 9.735 9.185 8.571
Wang et al. [2] 30.58 21.38 16.44 12.12 10.91 9.767 9.246 8.693

CCCC Present 31.0010 21.7776 17.1520 13.6988 13.5561 11.5851 11.1910 10.7853
Panda [4] 31.01 21.74 17.15 13.66 13.55 11.58 11.17 10.77
Wang et al. [2] 31.03 21.80 17.17 13.71 13.58 11.63 11.26 10.92

Fig. 2 Comparison of critical buckling load parameter kcr = N0b2/
√
D11D22 for a [0/90/0] cross-ply laminate with a/h = 100

and SSSS boundary conditions. Properties of the layers are E11 = 127.3GPa, E22 = 11GPa, G12 = G23 = G13 = 5.5GPa,
and ν12 = 0.34. For the sake of comparison, results from Fig. 2 of Tang and Wang [3] are read from the graph

5.2 Parametric studies

In the whole of this Section, the critical buckling load parameter is defined as λcr = N0,cr b2/(π2Dm) where
Dm is the flexural rigidity of a plate with the same thickness made of the pure polymeric matrix.
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Table 4 Critical buckling load parameter, λcr for FG-CNTRC plates with b/h = 50 and V ∗
CN = 0.17

B.Cs. Pattern a/b

0.4 0.5 0.6 0.8 1.0 1.5 2.0 3.0

SSSS UD 263.2487 186.7302 138.9991 85.8715 59.1758 32.8725 26.0732 29.6035
FG-X 353.8015 257.4665 194.6795 122.1227 84.3354 45.5584 34.2909 35.5179
FG-O 153.5916 105.7362 77.4503 47.4787 33.2042 20.3205 18.3286 20.9085

CCFF UD 82.1086 56.3175 41.9304 27.3578 20.1206 11.9494 9.2753 8.4813
FG-X 117.1918 80.6285 59.8639 38.7409 28.4249 16.5968 12.3487 10.7451
FG-O 44.9350 31.0450 23.4075 15.5325 11.5154 7.3203 6.2787 6.0320

CFFF UD 81.7245 55.3839 40.3372 24.5427 16.5956 7.8515 4.5064 2.0273
FG-X 116.8346 79.6928 58.1866 35.5386 24.1831 11.5853 6.6811 3.0154
FG-O 44.4249 29.9926 21.8045 13.1404 8.7645 4.0620 2.3145 1.0357

CCCF UD 619.8760 493.2057 396.2550 267.1413 191.2850 104.0320 70.3500 39.5900
FG-X 741.9548 615.1019 510.3278 359.2183 263.4763 145.7887 98.6666 56.3504
FG-O 429.1780 319.2504 244.6712 156.0677 109.1598 59.4595 40.1736 22.3404

FCFC UD 3.6154 4.3592 5.2463 7.4560 10.2276 19.0801 23.1186 23.1133
FG-X 4.0485 4.8839 5.8801 8.3643 11.4900 21.6625 30.7175 28.5792
FG-O 3.3235 4.0107 4.8295 6.8607 9.3788 16.8356 15.7990 17.5136

CFSF UD 402.0449 298.1997 227.0166 141.8816 96.3571 46.7927 28.2518 14.4232
FG-X 509.0304 392.4508 307.0391 198.3447 137.0507 67.6319 40.9221 20.8719
FG-O 253.1082 177.5351 130.4007 78.3688 52.2836 25.1201 15.2488 7.7776

CCCC UD 619.8654 493.2214 396.3208 267.5472 192.5509 110.1589 86.6188 72.3625
FG-X 741.9354 615.1135 510.3886 359.5975 264.7015 151.9828 115.2727 97.9234
FG-O 429.1789 319.2788 244.7754 156.6488 110.7794 66.6287 58.1058 46.9493

FSFS UD 2.2908 2.4506 2.6381 3.1021 3.6870 5.6601 8.2499 11.8252
FG-X 2.5670 2.7472 2.9584 3.4806 4.1392 6.3699 9.3403 15.5469
FG-O 2.0962 2.2431 2.4157 2.8425 3.3789 5.1624 7.3791 8.2677

Fig. 3 Distribution of in-plane stresses prior to buckling for a square isotropic homogeneous plate with a/h = 100

Table 4 presents the critical buckling load parameter of FG-CNTRC plates for three different distribution
patterns, eight aspect ratios, and eight different sets of boundary conditions. The side-to-thickness ratio is set
equal to b/h = 30, and the volume fraction of CNT is chosen as V ∗

CN = 0.17. Results of this Table indicate
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Fig. 4 Buckling load parameter as a function of aspect ratio for FG-XCNTRCplateswith a/h = 30, various boundary conditions,
and different volume fractions of CNTs
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Fig. 5 Buckling load parameter as a function of aspect ratio for UD CNTRC plates with a/h = 30, various boundary conditions,
and different volume fractions of CNTs
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Fig. 6 Fundamental bucklingmode shape ofw0(x, y) in FG-CNTRC plates with FG-X pattern, V ∗
CN = 0.17, a/b = 1, b/h = 50,

and various boundary conditions
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Fig. 7 Fundamental bucklingmode shape ofw0(x, y) in FG-CNTRC plates with FG-X pattern, V ∗
CN = 0.17, a/b = 3, b/h = 50,

and various boundary conditions
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that buckling loads of FG-X plates are higher than, in order, UD and FG-O plates. As expected, plates with all
edges clamped have the highest buckling loads.

Figure 3 provides the in-plane stress distributions for an isotropic homogeneous plate subjected to par-
abolic in-plane load. It is observed that the distribution of Nxx is different from the applied in-plane load at
the edge. Furthermore, Nyy and Nxy are both present, and are not equal to zero. This observation is unlike the
observations for plates subjected to uniform loading or the linearly varying loading. This feature is due to the
stress diffusion phenomenon.

Figures 4 and 5 provide the critical buckling load parameter of FG-X and UD plates, respectively. In each
Figure, six types of boundary conditions and three different volume fractions of CNTs are considered. It is
verified that the buckling loads of the plate enhance as the volume fraction of CNTs increases. This effect
is due to the higher elasticity modulus of CNTs in comparison with the elasticity modulus of the polymeric
matrix. Comparison of the results for Figs. 4 and 5 verifies that the critical buckling load of an FG-X plate is
higher than of a plate with UD pattern.

Buckling mode shapes for some selected geometrical characteristics and CNT properties are provided in
Figs. 6 and 7. The presentations of these Figures are associated with the results of Table 4 with FG-X pattern.
As seen from the fundamental buckling mode shape, the essential boundary conditions are satisfied at the
supports. Furthermore, a comparison between the results of Figs. 6 and 7 accepts that the buckled shape of the
plate is highly sensitive to the aspect ratio of the plate.

6 Conclusions

Most of the available works on the subject of linear stability examination of FG-CNTRC plates are based on
uniform edge compression. In this research, buckling loads and mode shapes of rectangular FG-CNTRC plates
subjected to parabolic edge compression are obtained using a Ritz formulation. At first, the distribution of
in-plane loads within the plate domain is obtained by means of a two-dimensional formulation. Afterwards,
an eigenvalue problem is formulated using the Chebyshev–Ritz method. Accuracy and correctness of the
presented formulation are demonstrated by comparison with the available data for isotropic homogeneous
and cross-ply laminated composite plates. Afterwards, numerical results are given for a stability analysis of
FG-CNTRC plates subjected to parabolic loading. As shown, the distribution of in-plane loads within the plate
is different from the applied parabolic loads at the boundary. Therefore, to reach a reliable design and to obtain
the critical buckling loads, prebuckling loads should be determined accurately. It is verified that, by usage
of a proper distribution of CNTs in a matrix, the buckling loads of the plate may be enhanced significantly.
Furthermore, enhancement of the matrix with more CNTs results in higher buckling loads for the plate.
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