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Abstract In this paper, the nonlinear vibration behavior of an electrically actuated microbeam is investigated
at various levels of direct current (DC) and alternating current (AC) voltages. The governing equations are
developed using Euler–Bernoulli beam theory and used to derive the frequency response of the beam. The
mid-plane stretching is accounted for using von Kármán nonlinear strain, and the effects of fringing field,
damping, residual axial force, and boundary conditions are also included in the model formulations. The
governing equations are solved using the method of multiple scales. The results of our work reveal that the
applied DC and AC voltages determine the characteristic feature of the frequency response of the microbeam.
A design chart in terms of the dimensionless DC voltage and AC voltage amplitude is developed to show
the domains of different characteristic frequency responses. Our results also reveal the significant effect of
mid-plane stretching, damping, residual axial force, and boundary conditions on the frequency response of the
microbeam. Moreover, our results further identify the effect of mid-plane stretching, damping, and residual
axial force on the critical DC voltages separating the hardening and softening frequency response regions in
the newly developed design chart of the micro-resonator.

1 Introduction

Micro/nano-electro-mechanical systems (MEMS/NEMS) have drawn considerable attention from the research
community due to their unique advantages of small size, high precision, and low power consumption. One
benchmark of MEMS/NEMS are the micro/nanobeam systems driven by electrostatic force. Various applica-
tions have been found in these systems such as switches and nonvolatilememories [1–6]. Themicro/nanobeams
can also be driven to vibration by an alternating current (AC) voltage. The obtained micro/nano-resonators are
potential ultra-sensitive mass sensors, temperature sensors, transmitters and receivers [7–16].

The effects of the applied AC and direct current (DC) voltages on the resonance frequency of micro/nano-
resonators have been largely studied in the literature. Tilmans andLegtenberg [17] derived an analytical relation
between the resonance frequency and the amplitude of AC voltage, and a qualitative prediction was given.
Kuang and Chen [18] developed a dynamic model for shaped microbeams with mid-plane stretching, residual
axial force and fringing field effect considered. The dependence of resonance frequency on the DC voltage
derived from their model agreed well with the experiments of Tilmans and Legtenberg [17]. By theoretical
investigations, Jonsson et al. [19] also found that the resonance frequency of a three-terminal nano-relay can
be tuned by the biased DC voltage. In the dynamic model of Jia et al. [20], Casimir force, residual axial force,
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mid-plane stretching, and fringing field effect were taken into account. The resonance frequencies at different
levels of AC voltage amplitude were derived and quantitatively agreed with the experiments of Tilmans and
Legtenberg [17].

Experiments on the vibration behavior of micro/nano-resonators have also been reported in the literature,
and frequency response curves of linear, hardening, and softening characteristics have all been observed
[17,21–28]. The nonlinearity in the vibration behavior of the micro/nano-resonator is mainly due to: (i) the
electrostatic and intermolecular forceswhich are nonlinear functions of beamdeflection, and (ii) the geometrical
nonlinearity from mid-plane stretching. The former one has a softening effect on the micro/nanobeam, while
the latter one has a hardening effect [20]. In the remainder of this paper, the frequency response associated
with the hardening effect on the micro/nanobeam will be named “hardening frequency response,” while that
associated with the softening effect will be termed “softening frequency response.”

Theoretical studies on the vibration behavior of micro/nano-resonators can also be found in the literature.
With the hardening effect considered, Gui et al. [29] proposed a criterion on AC and DC voltages for the linear
vibration of a clamped–clamped microbeam. Based on the dynamic model, Rhoads et al. [30] revealed that
the nonlinear frequency response of a microbeam subjected to a symmetric electrostatic actuation depends on
AC and DC voltages. Kacem et al. [31] developed a quasi-analytical model for the nonlinear vibration of a
clamped–clamped microbeam and found hardening frequency response in the simulated cases. The vibration
behavior of a micro-cantilever near the half natural frequency has been studied in [32–34]. The dynamic pull-in
has been found, and the effects of damping, fringing field and AC voltage amplitude on the frequency response
have also been studied. Ouakad et al. [35] simulated the dynamic behavior of an initially curved microbeam
and found softening frequency response at the studied levels of AC and DC voltages. Kim et al. [36] developed
a dynamic model for a nano-cantilever with a tip mass at the free end and studied the effect of the inertial
nonlinearity of the tip mass on the frequency response. Ruzziconi et al. [28] considered the imperfect beam
shape (e.g., curled-up profile) in their dynamic model and predicted a softening frequency response when
increasing the AC voltage amplitude at a fixed level of DC voltage.

A careful literature review indicates that most studies are conducted at a certain level of AC and DC
voltages, and one characteristic feature (i.e., linear, hardening or softening) of the vibration behavior of the
micro/nano-resonator is observed. Studies concerned with characterizing the vibration behavior of a general
micro/nano-resonator at various levels of AC and DC voltages are seldom reported. Moreover, studies on
determining the parameters which govern the vibration characteristics are also limited.

In this paper, we extend the earlier work to study the vibration behavior of a general micro-resonator
at various levels of AC and DC voltages. A design chart in terms of dimensionless AC and DC voltages
is developed to show the regions of linear, hardening, and softening frequency responses. The effects of
the governing parameters on the frequency response and the design chart of the micro-resonator are further
investigated. The studied governing parameters include: mid-plane stretching, fringing field effect, damping
effect, residual axial force, and boundary conditions.

2 Model formulation

2.1 Governing equation

A rectangular microbeam of length L , width b, and thickness h is actuated by a distributed electrostatic force,
as depicted in Fig. 1. Applying the Euler–Bernoulli beam theory for a thin beam (h << L) and further using

Fig. 1 Microbeam actuated by a distributed electrostatic force along z-coordinate
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the von Kármán nonlinear strain to take into account the mid-plane stretching, we calculate the nonzero strain
component as [37]:

εxx = ∂u(x, t)

∂x
− z

∂2w(x, t)

∂x2
+ 1

2

(
∂w(x, t)

∂x

)2

(1)

where t is time, u and w are respectively the axial (along x-coordinate) and transverse (along z) displacements
of a point on the mid-plane of the beam. The variation δUelas of the elastic strain energy is derived from Eq.
(1) as:

δUelas =
∫ L

0

∫
S
(σxxδεxx )dsdx

= −
∫ L

0

∂N (x, t)

∂x
δudx −

∫ L

0

(
∂2M(x, t)

∂x2
+ ∂

∂x

(
N (x, t)

∂w

∂x

))
δwdx

+ N (x, t)δu|Lx=0 +
(

∂M(x, t)

∂x
+ N (x, t)

∂w

∂x

)
δw

∣∣∣∣
L

x=0
− M(x, t)

∂δw

∂x

∣∣∣∣
L

x=0
(2)

where
∫
S ds is the integral over the cross section, i.e., y − z plane in Fig. 1; the axial force N and the bending

moment M are given below:

N =
∫
S
σxxds, (3.1)

M =
∫
S
zσxxds. (3.2)

For a thin beam, the axial displacement u and the beam curvature ∂2w
∂x2

are negligible with respect to the
transverse displacement w. Therefore, we calculate the variation δEk of the kinetic energy as:

δEk =
∫ L

0
ρS

(
∂w

∂t

∂δw

∂t

)
dx (4)

where ρ is the mass density and S(=bh) is the cross-sectional area. The variation δWext of the work done by
the external forces is expressed as:

δWext =
∫ L

0
( fdamp + felec)δwdx (5)

where the viscous damping force fdamp can be estimated as:

fdamp = −cd
∂w

∂t
(6)

with cd being the damping coefficient per unit length, and the electrostatic force felec with fringing field
considered by Palmer’s formula [38] is calculated as [32,39]:

felec = 1

2

ε0b (VDC + VAC cos(ωt))2

(g0 − w)2

(
1 + 0.65

g0 − w

b

)
(7)

with ε0 being the vacuum permittivity (=8.8542 × 10−12 Fm−1), g0 being the initial gap between the beam
and the rigid electrode, as depicted in Fig. 1, VDC being the applied DC voltage, and VAC being the amplitude
of the applied AC voltage with the angular velocity, ω. By introducing Eqs. (2), (4), and (5) into the following
Hamilton’s principle: ∫ t1

0
(δEk + δWext − δUelas) dt = 0 (8)
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and further integrating the result by parts with respect to t and x , we have:

∫ t1

0

∫ L

0

∂N

∂x
δudxdt +

∫ t1

0

∫ L

0

(
∂2M

∂x2
+ ∂

∂x

(
N

∂w

∂x

)
+ fdamp + felec − ρS

∂2w

∂t2

)
δwdxdt

+
∫ t1

0

(
−Nδu −

(
∂M

∂x
+ N

∂w

∂x

)
δw + M

∂δw

∂x

)L

x=0
dt +

∫ L

0

(
ρS

∂w

∂t
δw

)t1

t=0
dx = 0. (9)

The following governing equations can be obtained from Eq. (9):

δu: ∂N

∂x
= 0, (10.1)

δw: ∂2M

∂x2
+ ∂

∂x

(
N

∂w

∂x

)
+ fdamp + felec − ρS

∂2w

∂t2
= 0. (10.2)

Suppose that the beam material is elastically isotropic with Young’s modulus E and Poisson’s ratio ν. Then
the 1D constitutive relation becomes:

σxx = E∗εxx (11)

where the effective Young’s modulus E∗ is E
1−ν2

for a wide beam (b > 5h) considered here. With Eqs. (1)
and (11), Eq. (3) can be rewritten as:

N = E∗S
(

∂u

∂x
+ 1

2

(
∂w

∂x

)2
)

, (12.1)

M = −E∗ I ∂2w

∂x2
. (12.2)

Equation (10.1) shows that N is constant along the x-coordinate. By estimating N as the average value of
Eq. (12.1), considering the boundary conditions of clamped–clamped beam, i.e., u(0) = u(L) = 0, and further
including a residual axial force P from fabrication or temperature variation, we obtain:

N = E∗S
2L

(∫ L

0

(
∂w

∂x

)2

dx

)
+ P. (13)

With Eqs. (6), (7), (10.1), (12.2) and (13), Eq. (10.2) can be rewritten as:

ρS
∂2w

∂t2
+ cd

∂w

∂t
+ E∗ I ∂4w

∂x4
−

(
P + E∗S

2L

(∫ L

0

(
∂w

∂x

)2

dx

))
∂2w

∂x2
,

= 1

2

ε0b (VDC + VAC cos(ωt))2

(g0 − w)2

(
1 + 0.65

g0 − w

b

)
. (14)

Introducing the dimensionless quantities in Table 1, we obtain the following dimensionless governing equation
from Eq. (14):

∂2w

∂t2
+ cd

∂w

∂t
+ ∂4w

∂x4
− P

∂2w

∂x2
− α

(∫ 1

0

(
∂w

∂x

)2

dx

)
∂2w

∂x2

= (
VDC + VAC cos(ωt)

)2 (
1

(1 − w)2
+ β

(1 − w)

)
. (15)

The dimensionless boundary conditions of clamped–clamped beam are:

δw : w(0, t) = 0, w(1, t) = 0, (16.1)
∂δw

∂x
: ∂w

∂x
(0, t) = 0,

∂w

∂x
(1, t) = 0. (16.2)
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Table 1 Dimensionless quantities

Quantity Expression Meaning

cd cdL2/
√
E∗ IρS Dimensionless damping coefficient

P PL2/ (E∗ I ) Dimensionless residual axial force
t t/

√
ρSL4/ (E∗ I ) Dimensionless time

VAC VAC/

√
E∗h3g30/

(
6ε0L4

)
Dimensionless AC voltage amplitude

VDC VDC/

√
E∗h3g30/

(
6ε0L4

)
Dimensionless DC voltage

w w/g0 Dimensionless deflection
x x/L Normalized coordinate
α 6 (g0/h)2 Stretching parameter
β 0.65 (g0/b) Fringing field parameter

ω ω/

√
E∗ I/

(
ρSL4

)
Dimensionless angular frequency

2.2 Analytical model of frequency response

The micro-resonator is usually actuated by low VDC and VAC to vibrate at small amplitude with weak damping
effect. In this case, the method of multiple scales can be adopted [32,35]. Considering small amplitude, weak
damping, and nonlinear effects, we expand the electrostatic force around w = 0 in Eq. (15) and set the
electrostatic force, damping and mid-plane stretching terms [2nd and 5th on the left-hand-side of Eq. (15)] to
a slow scale by multiplying them by a small bookkeeping parameter ξ :

∂2w

∂t2
+ ξcd

∂w

∂t
+ ∂4w

∂x4
− P

∂2w

∂x2
− ξα

(∫ 1

0

(
∂w

∂x

)2

dx

)
∂2w

∂x2

= ξ
(
VDC + VAC cos(ωt)

)2 (
1 + β + (2 + β) w + (3 + β)w2 + (4 + β)w3) . (17)

By introducing into Eqs. (16) and (17) the following first-order expansion of w:

w = w0(x, T0, T1) + ξw1(x, T0, T1) (18)

with T0(= t) being a fast timescale and T1(= ξ t) being a slow timescale, and further equating the like powers
of ξ , we obtain:
Order ξ0:

∂2w0

∂T 2
0

+ ∂4w0

∂x4
− P

∂2w0

∂x2
= 0, (19.1)

w0(0, T0, T1) = 0, w0(1, T0, T1) = 0,
∂w0

∂x
(0, T0, T1) = 0,

∂w0

∂x
(1, T0, T1) = 0; (19.2)

Order ξ1:

∂2w1

∂T 2
0

+ ∂4w1

∂x4
− P

∂2w1

∂x2
= −2

∂2w0

∂T0∂T1
− cd

∂w0

∂T0
+ α

(∫ 1

0

(
∂w0

∂x

)2

dx

)
∂2w0

∂x2

+ (
VDC + VAC cos(ωT0)

)2 (
1 + β + (2 + β) w0 + (3 + β)w2

0 + (4 + β) w3
0

)
, (20.1)

w1(0, T0, T1) = 0, w1(1, T0, T1) = 0,
∂w1

∂x
(0, T0, T1) = 0,

∂w1

∂x
(1, T0, T1) = 0. (20.2)

The solution to Eq. (19) is supposed to be:

w0 = φ j (x)
(
A(T1)e

iω j T0 + A∗(T1)e−iω j T0
)

(21)

with A being a coefficient depending on the slow timescale T1 and A∗ being its complex conjugate; φ j ( j =
1, 2, . . ., n) being the j th linear undamped vibration mode of the clamped–clamped beam:

φ j (x) = C j

(
cos h(λ j x) − cos(λ j x) − sin h(λ j ) + sin(λ j )

cos h(λ j ) − cos(λ j )

(
sin h(λ j x) − sin(λ j x)

))
. (22)
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In Eq. (22), C j is a constant satisfying maxx∈[0,1]
∣∣φ j (x)

∣∣ = 1, and λ j is a frequency parameter satisfying
cos h(λ j ) cos(λ j ) = 1. λ j is related to the resonance angular frequency ω j at the residual axial force P by:

ω j =
√

λ4j − Ps j j/m j j (23)

where m j j = ∫ 1
0 φ2

jdx , s j j = ∫ 1
0 φ jφ j

′′dx , and a superimposed apostrophe denotes a derivative with respect
to the normalized coordinate x . The micro-resonator usually works near the primary resonance regime, so the
first vibration mode is considered here, i.e., j = 1 in Eqs. (21)–(23). To indicate the nearness of the applied
frequency ω to the primary resonance frequency ω1, a detuning parameter δ is introduced:

ω = ω1 + ξδ. (24)

The square of the applied voltages can be expressed as:

(
VDC + VAC cos(ωT0)

)2 = VDC
2 + 1

2
VAC

2 + 2VDCVAC cos(ωT0) + 1

2
VAC

2
cos(2ωT0). (25)

Equation (25) shows that the microbeam can vibrate at the frequency of ω or 2ω, depending on the levels of
VDC and VAC. In this study, we only consider the most common case where VDC > VAC and the microbeam

vibrates at ω. Then by neglecting VAC
2
in Eq. (25) and introducing Eq. (24), we have:

(
VDC + VAC cos(ωT0)

)2 ≈ VDC
2 + VDCVAC

(
ei(ω1T0+T1δ) + e−i(ω1T0+T1δ)

)
. (26)

With Eqs. (21) and (26), Eq. (20.1) can be rewritten as:

∂2w1

∂T 2
0

+ ∂4w1

∂x4
− P

∂2w1

∂x2
= c0 +

(
c1e

iω1T0 + c∗
1e

−iω1T0
)

+
(
c2e

i(2ω1T0) + c∗
2e

−i(2ω1T0)
)

+
(
c3e

i(3ω1T0) + c∗
3e

−i(3ω1T0)
)

+
(
c4e

i(4ω1T0) + c∗
4e

−i(4ω1T0)
)

. (27)

c0−c4 are coefficients and c∗
1−c∗

4 are the complex conjugates of c1−c4. c1 is calculated as:

c1 = −2iω1φ1
dA

dT1
− icdω1φ1A + 3αφ1

′′
(∫ 1

0
(φ1′)2 dx

)
A2A∗ + (2 + β) VDC

2
φ1A

+ 3 (4 + β) VDC
2
φ3
1 A

2A∗ + (1 + β) VDCVACe
iT1δ + 2 (3 + β) VDCVACφ2

1 AA
∗eiT1δ

+ (3 + β) VDCVACφ2
1 A

2e−iT1δ. (28)

To satisfy the solvability condition where the right-hand-side of Eq. (27) must be orthogonal to any solution
of Eq. (19) [32], we derive:

c1φ1 = 0. (29)

By introducing Eq. (28) into Eq. (29) and integrating the result from x = 0 to 1, we have:

−2iω1m2
dA

dT1
− icdω1m2A + 3αs1A

2A∗ + (2 + β) VDC
2
m2A + 3 (4 + β) VDC

2
m4A

2A∗

+ (1 + β) VDCVACm1e
iT1δ + 2 (3 + β) VDCVACm3AA

∗eiT1δ + (3 + β) VDCVACm3A
2e−iT1δ = 0

(30)

with the parameters being:

m1 =
∫ 1

0
φ1dx,m2 =

∫ 1

0
φ2
1dx,m3 =

∫ 1

0
φ3
1dx,m4 =

∫ 1

0
φ4
1dx,

s1 =
(∫ 1

0

(
φ1

′)2 dx
)(∫ 1

0
φ1φ1

′′dx
)

. (31)
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Introducing into Eq. (30) the following polar form of A(T1):

A(T1) = 1

2
a(T1)e

iθ(T1) (32)

with a being the vibration amplitude, separating the real and imaginary parts, and further introducing the phase
lag γ = T1δ − θ , we obtain:

da

dT1
= −cd

2
a +

(
m1

m2ω1
(1 + β) + m3

4m2ω1
(3 + β) a2

)
VDCVAC sin γ, (33.1)

a
dγ

dT1
= aδ + 1

2ω1
(2 + β) VDC

2
a + 3αs1

8m2ω1
a3 + 3m4

8m2ω1
(4 + β) VDC

2
a3

+

(
m1

m2ω1
(1 + β) + 3m3

4m2ω1
(3 + β) a2

)
VDCVAC cos γ. (33.2)

For a steady response da
dT1

= 0 and dγ
dT1

= 0, we can reduce Eq. (33) to:
(

m1

m2ω1
(1 + β) + m3

4m2ω1
(3 + β) a2

)
VDCVAC sin γ = cd

2
a, (34.1)

(
m1

m2ω1
(1 + β) + 3m3

4m2ω1
(3 + β) a2

)
VDCVAC cos γ = −aδ − 1

2ω1
(2 + β) VDC

2
a

− 3αs1
8m2ω1

a3 − 3m4

8m2ω1
(4 + β) VDC

2
a3. (34.2)

Equation (34) leads to:

b21b
2
3a

10 + (
2b21b3b4 + 2b1b2b

2
3 − 9b41b

2
6

)
a8

+ (
b21b

2
4 + 4b1b2b3b4 + b22b

2
3 + 9b21b

2
5 − 24b31b2b

2
6

)
a6

+ (
2b1b2b

2
4 + 2b22b3b4 + 6b1b2b

2
5 − 22b21b

2
2b

2
6

)
a4

+ (
b22b

2
4 + b22b

2
5 − 8b1b

3
2b

2
6

)
a2 − b42b

2
6 = 0, (35.1)

γ = arc cos

(
−

(
b4a + b3a3

)
b6

(
b2 + 3b1a2

)
)

(35.2)

with the coefficients being:

b1 = m3

4m2ω1
(3 + β) , b2 = m1

m2ω1
(1 + β) , b3 = 3αs1

8m2ω1
+ 3m4

8m2ω1
(4 + β) VDC

2
,

b4 = δ + 1

2ω1
(2 + β) VDC

2
, b5 = cd

2
, b6 = VDCVAC. (36)

A quality factor Q is commonly used to study the damping effect. In this case, the dimensionless damping
coefficient cd in Eqs. (15) and (35) can be replaced with the following relation to Q [40]:

cd = ω1

Q
. (37)

Equation (35) is the analytical model for the frequency response of the microbeam. By solving Eq. (35.1) at
different levels of the detuning parameter δ, we can obtain the evolution of the maximum beam deflection
(normalized as the dimensionless vibration amplitude a) with the applied dimensionless angular frequency ω
(using Eq. (24) with ξ = 1). To analyze the stability of each point (δ0, a0) on the frequency response curve,
the following procedures are adopted. We introduce δ = δ0 and a = a0 into Eq. (35.2) and solve the resulting
equation to obtain the phase lag γ0. Further introducing γ0 and a0 into the following Jacobian matrix Ja of Eq.
(33):

Ja =
⎡
⎣ ∂(da/dT1)

∂a
∂(da/dT1)

∂γ

∂(dγ /dT1)
∂a

∂(dγ /dT1)
∂γ

⎤
⎦ =

[−b5 + 2b1b6a sin γ
(
b2 + b1a2

)
b6 cos γ

2b3a −
(
b2
a2

− 3b1
)
b6 cos γ −

(
b2
a + 3b1a

)
b6 sin γ

]
(38)
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will enable us to calculate the eigenvalues of Ja . If the real parts of all the eigenvalues are negative, the point
(δ0, a0) is stable; otherwise, it is unstable.

2.3 Numerical simulation

In order to validate the steady-state frequency response obtained from the analytical model of Eq. (35.1), we
solve the governing equation (15) with the boundary conditions in Eq. (16) to obtain the time evolution of the
beam deflection at each frequency. The Galerkin decomposition method is used [20,28,30,35,36]:

w =
n∑
j=1

q j (t)φ j (x) (39)

where φ j ( j = 1, 2, . . ., n) is the j th linear undamped vibration mode, which is given in Eq. (22), and q j is the
generalized coordinate. We multiply Eq. (15) by (1 − w)2, introduce Eq. (39), further multiply the resulting
equation by φi (i = 1, 2, . . ., n), and integrate from x = 0 to 1 to obtain the following n-degree-of-freedom
reduced-order model:

(∫ 1

0
φ2
i dx

)
••
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for i = 1, 2, . . . , n (40)

where an over dot denotes a derivative with respect to the normalized time t . Using the following variables:

qi0 = qi , (41.1)

qi1 = •
qi (41.2)

we have:
•
qi0 = qi1, (42.1)
•
qi1 = ••

qi . (42.2)

With Eqs. (41) and (42.2), Eq. (40) can be rewritten as:
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for i = 1, 2, . . . , n. (43)

We solve numerically the 2n first-order differential equations Eqs. (42.1) and (43) by the commercial software
MATLAB. The function ode45 based on an explicit Runge–Kutta method is used. The initial deflection and
velocity are taken to be zero (qi0 = qi1 = 0 at t = 0). Moreover, to obtain the steady-state solution, the
equations are solved over a long period of time, i.e., t = 0−2000, so-called long-time integration. It is found
in [34,35] that the reduced-order model using five modes can accurately describe the dynamic behavior of
microbeams. So the first five vibration modes are taken here, i.e., n = 5 in Eq. (39).

3 Results and discussions

3.1 Effects of applied voltages

Let us consider an electrically actuated microbeam of length L = 500µm, thickness h = 10µm, and an initial
gap between it and the rigid electrode g0 = 2 µm. The applied voltages are: VDC = 2−70 V, VAC = 0−2
V. With the expressions in Table 1, and the material properties E = 160 GPa, ν = 0.27 for silicon in [41],
we calculate the values of the dimensionless quantities VDC, VAC, and α, as shown in Table 2. Using Table 2,
we solve Eq. (35.1) at different levels of the detuning parameter δ and obtain the frequency responses of the
microbeam at various levels of VDC and VAC. The typical results are shown in Figs. 2 and 3.

Figure 2 is for a low VDC of 1. When VAC is small (e.g., 0.04 in Fig. 2a), the microbeam exhibits the linear
frequency response: The maximum deflection changes gradually with the increase and decrease of the applied
frequency.When VAC becomes larger (e.g., 0.1 in Fig. 2c), a typical hardening frequency response is observed.
With the increase of the applied frequency ω, the maximum deflection increases gradually until reaching the
first saddle-node bifurcation point SN1. A slight increase in ω will lead to a sudden decrease of the maximum
deflection, as depicted by SN1 → 1© in Fig. 2c. During the decrease of ω, the maximum deflection increases
gradually until reaching the second saddle-node bifurcation point SN2, where a slight decrease in ω will cause
a sudden increase in the maximum deflection, i.e., SN2 → 2© in Fig. 2c. Similar observations have also been
found from the experiments [17,23] and theoretical studies [20].

Figure 3 is for a relatively high VDC of 3.5. In this case, when VAC increases (e.g., 0.03 in Fig. 3c), a typical
softening frequency response is observed. By increasing the applied frequency ω, the maximum deflection
increases gradually until reaching SN1 where the maximum deflection suddenly increases, as indicated by
SN1 → 1© in Fig. 3c. When decreasing ω, the maximum deflection increases gradually until reaching SN2
where it suddenly decreases, see SN2 → 2© in Fig. 3c. The experimental and theoretical investigations in [26]
have similar observations.

Figures 2 and 3 show that VAC should be high enough for the microbeam to exhibit the nonlinear frequency
responses. When VAC is low, the beam deflection is small, and as a result, the mid-plane stretching and the
variation of the deflection-dependent electrostatic force are insignificant. In this case, the microbeam exhibits
the linear frequency response. When VAC becomes high, the beam deflection increases, and the mid-plane

Table 2 Values of the dimensionless quantities

Quantity Meaning Value

P Dimensionless residual axial force 0 (no residual axial force)
Q Quality factor 1000
VAC Dimensionless AC voltage amplitude 0–0.1
VDC Dimensionless DC voltage 0.1–3.5
α Stretching parameter 0.24
β Fringing field parameter 0 (no fringing field effect)
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Fig. 2 Frequency response at different levels of AC voltage amplitude: a for linear frequency response, b, c for hardening
frequency response. SN1 and SN2 are saddle-node bifurcation points. Solid and dashed lines are, respectively, the stable and
unstable responses

Fig. 3 Frequency response at different levels ofACvoltage amplitude: a for linear frequency response,b, c for softening frequency
response. Saddle nodes SN1 and SN2 are bifurcation points. Solid and dashed lines are, respectively, the stable and unstable
responses

stretching (leading to a hardening effect on the microbeam) and the variation of electrostatic force (leading to
a softening effect) become significant. Then the microbeam will exhibit the nonlinear frequency responses.

The numerical results from the long-time integration presented in Sect. 2.3 are also shown in Figs. 2 and
3, from which it is seen that the analytical model of Eq. (35.1) can capture the characteristic feature of the
vibration behavior of the microbeam at the studied levels of DC and AC voltages. At low DC voltages (e.g.,
VDC = 1 in Fig. 2), a quantitative agreement is found; while at high DC voltages (e.g., VDC = 3.5 in Fig. 3),
the increasing quantitative difference might be due to the fact that when VDC increases, the approximation of
the electrostatic force in the analytical analysis becomes less accurate.

It is also found from Figs. 2 and 3 that whether the microbeam will exhibit the hardening or softening
frequency response at high levels of AC voltage amplitude depends on the biased DC voltage. To study the
effect of DC voltage on the existence of hardening and softening frequency responses, we solve Eq. (35.1)
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Fig. 4 Design domains identifying the characteristic feature of the vibration behavior of an electrically actuated clamped–clamped
microbeam

with the parameters given in Table 2 and mark the characteristic feature of the obtained frequency response in
a diagram in terms of VDC and VAC, as shown in Fig. 4.

It is seen fromFig. 4 thatwhenVDC is small (e.g., 1), themicrobeamexhibits a hardening frequency response
at high levels of VAC, while at large VDC (e.g., 3), it exhibits a softening frequency response. As expected,
larger VDC leads to a larger electrostatic force. Accordingly, the softening effect due to the electrostatic force
becomes dominant at large values of VDC, and themicrobeamwould exhibit a softening frequency response. At
small values of VDC, the hardening effect due to the mid-plane stretching becomes dominant, and a hardening
frequency response can be observed. At VAC = 0.1 (the highest level considered in this study), we determine
the following critical values of VDC from Fig. 4: the maximum allowable VDC = 1.1 for the existence of
hardening frequency response and the minimum allowable VDC = 1.6 for the existence of softening frequency
response.

It is noted that the mixed domain in Fig. 4 is where the frequency response curve shows both the hardening
and softening characteristics. It is also observed that when VDC = 1.1−2.5, a discrepancy is found between the
frequency responses obtained from the analytical model of Eq. (35.1) and those obtained from the numerical
simulation in Sect. 2.3. The analytical model over-estimates the hardening effect and underestimates the
softening effect, possibly due to the approximation of the electrostatic force. Therefore, in the region where
VDC = 1.1−2.5, the numerical simulation results are used to determine the vibration characteristics of the
microbeam.

3.2 Effects of governing parameters

The dimensionless quantities in Table 2 are the parameters governing the vibration behavior of the microbeam.
In Sect. 3.1, the effects of the electrical loading VDC and VAC are studied. In this Subsection, we examine the
effects of other governing parameters, such as the stretching parameter α, the fringing field parameter β, the
quality factor Q, and the dimensionless residual axial force P . Moreover, the effects of boundary conditions
are also investigated.

3.2.1 Stretching parameter

Except the stretching parameter α, we take the values of the other parameters in Table 2 and solve Eq. (35.1) at
different levels of α. The obtained frequency response curves are depicted in Fig. 5. The hardening frequency
response is observed at large values of α in Fig. 5a, while the softening frequency response is observed at
small value of α in Fig. 5b. The stretching parameter α quantifies the effect of mid-plane stretching; i.e., by
increasing α, the mid-plane stretching becomes more significant, which makes it easier for the microbeam to
exhibit the hardening frequency response, while more difficult to exhibit the softening frequency response. As
a result, the minimum VAC required to induce the hardening frequency response decreases when increasing
α, and that is why the hardening frequency response is observed at large α in Fig. 5a. On the other hand, the
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Fig. 5 Frequency response at different levels of stretching parameter α: a for VDC = 1, VAC = 0.05; b for VDC = 3, VAC = 0.016.
Solid and dashed lines are, respectively, the stable and unstable responses

Fig. 6 Maximum allowable VDC for the existence of hardening frequency response and minimum allowable VDC for the existence
of softening frequency response: effect of stretching parameter α

minimum VAC required for the softening frequency response increases with the increase of α, so the softening
frequency response is only observed at small α in Fig. 5b. The expression in Table 1 indicates that we can
adjust the value of α by varying the beam thickness h and/or the initial gap g0 between the beam and the
electrode.

Using the numerical simulation presented in Sect. 2.3, we obtain the critical values of VDC at different levels
of α in Fig. 6. The critical values are: the maximum allowable VDC for the existence of hardening frequency
response and the minimum allowable VDC for the existence of softening frequency response. It is found from
Fig. 6 that with the increase of α both critical values of VDC increase. This indicates that the hardening domain
expands at the expense of the softening domain in the design diagram of Fig. 4. This is because increasing α
strengthens the hardening effect.

3.2.2 Fringing field parameter

The fringing field effect due to the finite size of the beam width b is described by a fringing field parameter
β, which is equal to 0.65g0/b from Table 1. In order to make use of Palmer’s formula to estimate the fringing
field in this study, the microbeam system must satisfy the inequality b > 10g0 [32]. For the narrow beams
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Fig. 7 Frequency response at different levels of fringing field parameter β: a for hardening frequency response and b for softening
frequency response. Solid and dashed lines are, respectively, the stable and unstable responses

Fig. 8 Frequency response at different levels of quality factor Q: a for VDC = 1, VAC = 0.07; b for VDC = 3.5, VAC = 0.015.
Solid and dashed lines are, respectively, the stable and unstable responses

of smaller width, more complicated formulae such as [42,43] should be used. Here we have: β = 0−0.065.
Using Eq. (35.1) and Table 2, the frequency responses at different levels of β are depicted in Fig. 7. It is seen
from the Figure that the effect of β at the studied level is insignificant.

3.2.3 Quality factor

Figure 8 shows the frequency response of the microbeam at different levels of the quality factor Q, which are
obtained using Eq. (35.1) and Table 2. The figure indicates that increasing Q strengthens both the hardening
and softening effects, so the minimum VAC required to induce the nonlinear frequency responses decreases
with the increase of Q, and as a result, the nonlinear frequency responses are observed at large values of
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Fig. 9 Maximum allowable VDC for the existence of hardening frequency response and minimum allowable VDC for the existence
of softening frequency response: effect of quality factor Q

Q in Fig. 8. The quality factor Q is inversely proportional to the dimensionless damping coefficient cd, as
shown in Eq. (37). Therefore, increasing Q reduces the damping effect, which leads to an increase in the beam
deflection. In this case, the nonlinear effects due to mid-plane stretching and electrostatic force become more
significant, and consequently, smaller VAC is needed to induce the nonlinear frequency responses.

Using the numerical simulation results, we determine the maximum allowable VDC for the existence
of hardening frequency response and the minimum allowable VDC for the existence of softening frequency
response and show these two critical values of VDC at different levels of the quality factor Q in Fig. 9. It is seen
that Q has a minor effect on these critical values of VDC. If the hardening effect is strengthened compared to
the softening effect, the critical values of VDC will increase, indicating that the hardening domain expands at
the expense of the softening domain in the design diagram of Fig. 4. Similarly, the critical values of VDC will
decrease if the softening effect is strengthened compared to the hardening effect. Since both hardening and
softening effects are equally strengthened by increasing Q, the critical values of VDC remain unchanged.

3.2.4 Residual axial force

The frequency response at different levels of dimensionless residual axial force P , using Eq. (35.1) and Table 2,
is obtained and shown in Fig. 10. It is seen from the Figure that the axial compressive force (P < 0 in Fig. 10)
strengthens the hardening and softening effects on the microbeam, while the axial tensile force (P > 0)
weakens them. The compressive force increases the beam deflection, and as a result, the nonlinear effects from
mid-plane stretching and electrostatic force become significant. The tensile force has the opposite influence.
So the compressive force reduces the minimum VAC required to induce the nonlinear frequency responses,
while the tensile force increases them. And that is why the nonlinear frequency responses are observed at the
compressive force in Fig. 10.

From the numerical simulation results, the maximum allowable VDC for the existence of hardening fre-
quency response and the minimum allowable VDC for the existence of softening frequency response are
obtained. It is seen from Fig. 11 that these two critical values of VDC are only slightly affected by the dimen-
sionless residual axial force P . The hardening and softening effects are equally strengthened or weakened by
P . Therefore, P has an insignificant effect on the critical values of VDC.

3.2.5 Boundary conditions

The previous studies are conducted on a clamped–clamped microbeam. However, the beam can be subjected
to other boundary conditions such as simply supported and cantilever. In this Subsection, we investigate the
effects of the boundary conditions on the frequency response of the microbeam.

Let us consider a simply supported microbeam depicted in Fig. 12a first. Its axial displacements at the
boundaries are the same as those of the clamped–clamped beam, i.e., u(0) = u(L) = 0. Accordingly, the axial
force can be calculated by (13), and the governing equation (15) can be used. We further take the first linear
undamped vibration mode φ1 of the simply supported beam:
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Fig. 10 Frequency response at different levels of dimensionless residual axial force P: a for hardening frequency response
(VDC = 1, VAC = 0.07) and b for softening frequency response (VDC = 3.5, VAC = 0.015). Solid and dashed lines are,
respectively, the stable and unstable responses

Fig. 11 Maximumallowable VDC for the existence of hardening frequency response andminimum allowable VDC for the existence
of softening frequency response: effect of dimensionless residual axial force P
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Fig. 12 Microbeam subjected to different boundary conditions: a simply supported, b cantilever

φ1(x) = sin(πx) (44)

with the frequency parameter λ1 = π and follow the similar procedures in Sect. 2.2 to obtain Eq. (35.1) for
studying the frequency response of the simply supported microbeam.

Let us now consider a cantilever-type microbeam that is anchored at one end, as depicted in Fig. 12b. The
axial force at the free end of the cantilever microbeam is zero. Then from Eq. (10.1) we obtain:

N (x, t) = 0. (45)

Introducing Eqs. (6), (7), (12.2), and (45) into Eq. (10.2), we have:

ρS
∂2w

∂t2
+ cd

∂w

∂t
+ E∗ I ∂4w

∂x4
= 1

2

ε0b (VDC + VAC cos(ωt))2

(g0 − w)2

(
1 + 0.65

g0 − w

b

)
. (46)

Then the following dimensionless governing equation can be obtained using Table 1 and Eq. (46):

∂2w

∂t2
+ cd

∂w

∂t
+ ∂4w

∂x4
= (

VDC + VAC cos(ωt)
)2 (

1

(1 − w)2
+ β

(1 − w)

)
. (47)

It is seen that Eq. (47) does not include the mid-plane stretching term with the stretching parameter α. So
the cantilever microbeam cannot exhibit the hardening frequency response. Using the first linear undamped
vibration mode φ1 of the cantilever beam:

φ1(x) = C1

(
cos h(λ1x) − cos(λ1x) − sin h(λ1) − sin(λ1)

cos h(λ1) + cos(λ1)
(sin h(λ1x) − sin(λ1x))

)
(48)

with C1 satisfying maxx∈[0,1] |φ1(x)| = 1 and λ1 satisfying cos h(λ1) cos(λ1) = −1, and following the
procedures in Sect. 2.2, we arrive at a similar expression to Eq. (35.1). The only difference is that the coefficient

b3 in Eq. (35.1) is modified to be 3m4
8m2ω1

(4 + β) VDC
2
.

Using Table 2 and Eq. (35.1), we obtain the frequency responses of themicrobeam under different boundary
conditions. The results of the cantilever-type microbeam are shown in Fig. 13. As expected, the cantilever
microbeam can only exhibit the nonlinear frequency response of softening characteristic. Figure 14 compares
the frequency responses of simply supported and clamped–clamped microbeams. It is seen from the Figure
that the hardening and softening effects in the simply supported microbeam are more significant than those in
the clamped–clamped beam. The reduced rotation at the two ends of the clamped–clamped microbeam makes
it more difficult to bend, and as a result, the clamped–clamped beam has a smaller deflection, which leads
to the weaker nonlinear effects from mid-plane stretching and electrostatic force. Therefore, higher VAC is
required to induce the nonlinear frequency responses of the clamped–clamped microbeam. That is why the
nonlinear frequency responses are only observed in the simply supported microbeam in Fig. 14.

It is noted that at VAC = 0.1 and VDC > 0.7 a transient dimensionless deflection reaching 1 is predicted
by the numerical simulation near the primary resonance regime of the simply supported microbeam. This
indicates that the simply supported microbeam will collapse onto the rigid electrode and cannot exhibit the
vibration behavior. In this case,we cannot determine themaximumallowableVDC for the existence of hardening
frequency response and the minimum allowable VDC for the existence of softening frequency response of the
simply supported microbeam at VAC = 0.1.
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Fig. 13 Frequency response of a cantilever-type microbeam: a for VDC = 0.5 and b forVDC = 1. Solid and dashed lines are the
respective stable and unstable responses

Fig. 14 Frequency responses of double-clamped and simply supported microbeams: a for low VDC ((VDC = 0.5, VAC = 0.02))
and b for high VDC ((VDC = 2.5, VAC = 0.005)). Solid and dashed lines are the respective stable and unstable responses

4 Conclusions

This paper investigates the vibration behavior of an electrically actuated microbeam under various levels of
DC and AC voltages. The governing equations are developed in the framework of Euler–Bernoulli beam
theory, accounting for the effects of mid-plane stretching, fringing field, damping and residual axial force.
The equations are solved by the method of multiple scales and used to derive the frequency response of the
microbeam under different boundary conditions.

Our results reveal that the characteristic feature of the frequency response of themicrobeam highly depends
on the applied AC and DC voltages. Large AC voltage amplitude is required to induce the nonlinear frequency
response, and the biased DC voltage determines whether the microbeam will exhibit hardening or softening
frequency response. A design chart in terms of the dimensionless DC voltage and AC voltage amplitude is
further developed to show the domains of characteristic frequency responses. Moreover, our results reveal
the significant effects of the mid-plane stretching, damping, residual axial force, and boundary conditions
on the minimum required AC voltage amplitudes for the nonlinear frequency responses, while only the mid-
plane stretching influences the critical DC voltages separating the hardening and softening frequency response
regions in the design chart of the micro-resonator.
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