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Abstract This paper presents an adaptive power harvester using a shunted piezoelectric control system with
segmented electrodes. This technique has spurred newcapability forwidening the three simultaneous resonance
frequency peaks using only a single piezoelectric laminated beamwhere normally previous works only provide
a single peak for the resonance at the first mode. The benefit of the proposed techniques is that it provides
effective and robust broadband power generation for application in self-powered wireless sensor devices. The
smart structure beamwith proofmass offset is considered to have simultaneous combination between vibration-
based power harvesting and shunt circuit control-based electrode segments. As a result, the system spurs new
development of the two mathematical methods using electromechanical closed-boundary value techniques
and Ritz method-based weak-form analytical approach. The two methods have been used for comparison
giving accurate results. For different electrode lengths using certain parametric tuning and harvesting circuit
systems, the technique enables the prediction of the power harvesting that can be further proved to identify
the performance of the system using the effect of varying circuit parameters so as to visualize the frequency
and time waveform responses.

1 Introduction

Emerging micro-power harvesters have become important due to increasing demands of portable power elec-
tronic devices that still traditionally rely on their electrical energy from battery and powerline systems. Such
micro-power harvesting devices can alleviate those essential technical issues by converting the vibration energy
into usable electrical energy so as to recharge battery and enable wireless sensor devices [1–3]. The most com-
mon micro-power harvester has been increasingly found in a wide range of applications using thermoelectric
[4], electrostatic [5], electromagnetic [6,7], and piezoelectric [8–10] transductions. In terms of advantages
over other competing transducers, the piezoelectric component has high sensitivity and power density, com-
pact design, and scalability. Some preliminary technical aspects of the piezoelectric structures with different
applications have been formulated using the mathematical studies for discussing the actuated system [11,12],
shape control system [13,14], thermoelastic effect [15,16], feedback gain control system [17–19], and electri-
cal shunt control systems [20–24]. Typical piezoelectric power harvesters havemainly used laminate cantilever
beams (unimorph or bimorph structures) because they provide high elemental strain from the transverse bend-
ing motion to create significant electrical energy due to an electric field generated by the piezoelectric element.
Nevertheless, the complete process for designing robust power harvesters is very challenging since it depends
on the application, geometrical parameters, physical properties, optimization, fabrication, and electronic power
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management circuits with sensor systems. However, the investigation of the systemmodels usingmathematical
studies has become an essential feature for power harvesting research. For that reason, broader power harvest-
ing systems have been investigated using different technical aspects where the fundamental resonance of the
system has become the main aspect of producing a single peak of power harvesting amplitude. Starting with
the equivalent electromechanical lumped parameter model-based closed circuit system, the standard methods
using resistive impedance [8] and AC–DC rectification [25] have been used for analyzing the power harvesting
techniques. Then, the systemmodel has been continuously developed using synchronized switching harvesting
on an inductor (SSHI) [26–28] in order to create the constant reversed peak voltage for certain time waveforms
giving more stable piecewise power harvesting output.

Other theoretical strategies for analyzing the power harvesting piezoelectric beam models connected with
resistive circuit can also be found with the mechanical tuning system. The attached tip mass of the smart
cantilever beam structure can be used to shift the single resonance frequency and increase the power output.
The solution techniques have mainly focused on various theoretical implementations such as Rayleigh–Ritz
method [29,30], distributed parameter system [31], electromechanical weak-form [32], closed-form methods
[10,33,34], assumed-modemethod [9], transfer matrix [35], electromechanical finite element analysis [10,36],
and analytical voltage- and charge-type formulation techniques [37]. Alternatively, the multifrequency tuning
system has been developed using the electrically connected multiple piezoelectric bimorph beams [38–41].
The use of multiple piezoelectric beams can generate multiple resonance peaks. The techniques can be used for
matching the particular frequency of the piezoelectric structure with the vibration environment that can change
over time. There is also the distinct application of using the piezoelectric components, e.g., the shunt control
system for the vibration suppression of the smart structures [21,24,42,43] in many different case studies.
Nevertheless, it gives direct relevancy and basis for developing new power harvesting techniques as proposed
in this paper. The techniques provide the adaptive response system usingmultiple tuning and harvesting circuits
onto separated piezoelectric layers in order to widen the frequency band and stimulate multi-resonance peaks
while using a single piezoelectric beam.

In this paper, the piezoelectric laminated structure with proof mass offset under input base excitation
was used to model the coupled system of a multiple electrical shunted control and electromechanical power
harvester. Novel analytical techniques of the system have been developed using the extended Hamiltonian
principle for deriving the dynamical closed-form boundary value equations and Ritz method-based weak-form
analytical approach. The two methods have been used for comparison giving accurate results. Recently, a new
adaptive power harvesting response [44] has been presented. However, this paper further extends and reveals
key technical equations for widening the frequency band of the three simultaneous resonance peaks while using
only a single piezoelectric bimorph beam. At this stage, there are no previous works developing the proposed
analytical techniques with the combinations of the multi-tuning and harvesting circuits, mechanical system
(elasticity with mechanical stress and dynamic motions), and electromechanical system (electrical displace-
ment, electrical stress, and electric-polarity field). As a result of these combined techniques, the normalized
closed-form electromechanical transverse dynamic equations were reduced to formulate two complete forms
of electromechanical multi-mode FRFs and time waveform responses using the Laplace transform. Moreover,
the reduced electromechanical transverse dynamic equations-based Ritz method using the weak-form tech-
nique was developed to formulate multi-mode FRFs. Certain parametric tuning and harvesting circuit system
case studies are developed for predictions of the power harvesting so as to identify the performance of the
system using the effect of varying circuit parameters.

2 Constitutive electromechanical equations

In Fig. 1, the robust smart structure system-based Euler–Bernoulli piezoelectric laminate beam model with
proof mass offset under base excitation consists of tuning piezoelectric, substructure, and harvesting piezo-
electric components. On the lower layer, two electrical shunt control systems using variable RLC circuits are
connected separately to the etched electrodes on the tuning piezoelectric component. For the upper layer, the
harvesting circuit is connected to the harvesting piezoelectric component for generating power. The middle
layer is the passive substructure made from brass. The mathematical expressions for the system can be found
in the forthcoming Section.

It is noted here that most common piezoelectric constitutive equations that have been used for the power
harvesting scheme are based on the electrical enthalpy of the continuum thermopiezoelectricity concept giv-
ing the stress-electric displacement relation. However, the electromechanical dynamic equations from the
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Fig. 1 Piezoelectric beam power harvesting with offset proof mass operating under base input excitation: a physical system,
b equivalent tuning circuit 1 for tuning the piezoelectric layer, c equivalent tuning circuit 2 for tuning the piezoelectric layer

combined techniques between piezoelectric laminates and shunt and harvesting circuit systems can be formu-
lated simultaneously according to the Helmholtz free energy [44]. The linear tuning piezoelectric constitutive
equation-based Helmholtz free energy can be formulated in terms of stress-electric field relations based on the
3-1 mode of piezoelectric constant operation and 3-3 effect of piezoelectric impermittivity [45,46] as
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T (1)
1 = c̄(1)

D S(1)
1 − g(1)

31 D(1)
3 , (1.1)

E (1)
3 = −g(1)

31 S
(1)
1 + εS

−1

33 D(1)
3 (1.2)

where the parameters T , S, E , and D represent stress, strain, electric field, and electric displacement, respec-
tively. Coefficients cD, g, and ε indicate modified elastic constant and modified piezoelectric constant, and
permittivity at constant strain, respectively. Details of each coefficient can be seen in “Appendix A.” Note
that for notations each layer of the laminated structure in Fig. 1a can be stated in the superscripts 1, 2, and 3
representing tuning piezoelectric, brass, and harvesting piezoelectric layer, respectively.

Themodified constitutive equations in terms of stress-electric field relations for the harvesting piezoelectric
material can be formulated as

T (3)
1 = c̄(3)

D S(3)
1 − g(3)

31 D(3)
3 , (2.1)

E (3)
3 = −g(3)

31 S
(3)
1 + εS

−1

33 D(3)
3 . (2.2)

The linear-elastic constitutive relation for the substructure can also be formulated as

T (2)
1 = c̄(2)

11 S
(2)
1 . (3)

Here, the strain field for each layer of the beam can be formulated as

S1(x, t) = −z
∂2w(x, t)

∂x2
(4)

where the variable z is the distance from the neutral axis to each layer.

3 Electromechanical closed-form boundary value method

The development of the analytical method is discussed in this Section by combining the tuning and harvesting
circuits, mechanical system (elasticity with mechanical stress and dynamic motions) and electromechanical
system (electrical displacement, electrical stress, and electric-polarity field).Key equations of the two analytical
coupled systems for shunt tuning circuit with standard resistive circuit power harvester (non-rectifier) and AC–
DC interface circuit are given in the next Section.

3.1 Coupled system of shunt tuning circuit and standard harvesting AC circuit

The system tuning response of power harvesting devices with tip mass offset can be formulated using the
extended charge-type-based Hamiltonian principle to give

t2∫

t1

δ(La + W f )dt = 0

⎫⎬
⎭

La ∈ {K E, PE,WE,WC,WL}
W f ∈ {WF,WR} , (5)

or

t2∫

t1

(δK E − δPE − δWE + δWF − δWC + δWL + δWR)dt = 0. (6)

Each term of (5) can be formulated in (7)–(13). Note that a detailed discussion for formulating the charge-
type-based Hamiltonian principle can be found in [37]. The kinetic energy of the smart structure with the proof
mass offset can be reformulated as
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K E = 1
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Details of the mathematical equations of the dynamical piezoelectric beam and proof mass offset as shown
in the kinetic energy can be found in [36]. Moreover, parameters of zeroth and second mass moment of inertias
of the tip mass offset I tip0 and I tip2 can also be found in [36]. The potential energy or strain energy of the smart
structure can be formulated using the first part of (1.1) and (2.1) associated with (3) and (4) as

PE = 1
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Note that the Heaviside functions for G1(x) = H(x)− H(x − L1) and G2(x) = H(x − L1)− H(x − L)
are introduced due to using two segmented electrodes on the tuning piezoelectric layer. The electrical energy
for the piezoelectric elements can be formulated using the second part of (1.1) and (2.1) to give
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Note that parameter D3 in (9) can be modified for the use in the forthcoming reduced dynamic equation.
For the lower layer, it can become D(1)

3 = q(1)
11 /(b(1)L1)∀G1(x) and D(1)

3 = q(1)
12 /(b(1)L2)∀G2(x). For the

upper layer, one can show D(3)
3 = q(3)/(b(3)L)∀(G1(x) + G2(x)). It is noted that unlike D(1)

3 it may not be

necessary to multiply D(3)
3 with Heaviside functions in (8) and (9) due to the distributed electrode that meets

the definite integral of the entire system itself over the interval [0, L]. The magnetic co-energy of the inductor
in terms of tuning and harvesting circuits can be formulated as

WL = 1

2
Ls1q̇

(1)
31 (t)2 + 1

2
Ls2q̇

(1)
32 (t)2 (10)

where the synthetic inductance values Ls1 and Ls2 from Fig. 1b, c can be reduced from the equivalent
impedance analysis, Zin,h = (Z1h Z3h Z5h)/(Z2h Z4h)∀h ∈ {1, 2} for two segments by allowing the rela-
tions Z1h = R1h, Z2h = R2h, Z3h = R3h, Z5h = R5h , and Z4h = 1/( jωCsh) to give Zin,h = jωLsh[47–49].
Therefore, the synthetic inductance value for tuning circuit one and two can be, respectively, formulated to
give Ls1 = (R11R31R51Cs1)/R21 and Ls2 = (R12R32R52Cs2)/R22. Note that since the large inductance value
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for the tuning circuit is not commercially available, implementing synthetic inductance is practical which is an
integrated circuit mainly consisting of op-amp systems (e.g., 741 op-amp circuit or OPA445 op-amp), resistors
Rsh and capacitor Csh circuits [24,48,49] as shown in Fig. 1b, c.

The electrical energy of the capacitor in terms of the tuning circuits can be formulated as

WC = 1

2C1
q(1)
21 (t)2 + 1

2C2
q(1)
22 (t)2. (11)

The non-conservative work on the system due to the input base excitation can be stated as

WF = −
L∫

0

∫

A(1)

ρ(1)w(x, t)dA(1)dxẅbase(t) −
L∫

0

∫

A(2)

ρ(2)w(x, t)dA(2)dxẅbase(t)

−
L∫

0

∫

A(3)

ρ(3)w(x, t)dA(3)dxẅbase(t) − I tip0 xcθ(L , t)ẅbase(t) − I tip0 w(L , t)ẅbase(t). (12)

Note that details of the mathematical expression given in (12) can be found in [36].
The electrical work dissipated by resistors can be stated as

δWR = −R1q̇
(1)
31 (t)δq(1)

31 (t) − R2q̇
(1)
32 (t)δq(1)

32 (t) − Rdq̇
(3)(t)δq(3)(t). (13)

The functional forms La andW f from Hamiltonian’s principle can be seen as the continuous differentiable
functions of virtual displacement, electric displacement, and charge for the whole systems which can be stated
as

La = La

(
ẇ(x, t),ẇ(L , t),

∂ẇ(L , t)

∂x
,
∂2w(x, t)

∂x2
,D(1)

3 (z, t),D(3)
3 (z, t), q(1)

21 (t), q(1)
22 (t), q̇(1)

31 (t), q̇(1)
32 (t)

)
,

(14)

W f = W f

(
w(x, t),

∂w(L , t)

∂x
, w(L , t), q(1)

31 (t),q(1)
32 (t), q(3)(t)

)
. (15)

Formulating (14) and (15) using total differential equations gives

δLa = ∂La

∂ẇ(x, t)
δẇ(x, t) + ∂La

∂ẇ(L , t)
δẇ(L , t) + ∂La

∂
(

∂ẇ
∂x (L , t)

)δ
(

∂ẇ

∂x
(L , t)

)
+ ∂La

∂
(

∂2w(x,t)
∂x2

)δ
(

∂2w(x, t)

∂x2

)

+ ∂La

∂D(1)
3 (z, t)

δD(1)
3 (z, t) + ∂La

∂D(3)
3 (z, t)

δD(3)
3 (z, t) + ∂La

∂q(1)
21 (t)

δq(1)
21 (t)

+ ∂La

∂q(1)
22 (t)

δq(1)
22 (t) + ∂La

∂ q̇(1)
31 (t)

δq̇(1)
31 (t) + ∂La

∂ q̇(1)
31 (t)

δq̇(1)
31 (t), (16)

δW f = ∂W f

∂w(x, t)
δw(x, t) + ∂W f

∂
(

∂w
∂x (L , t)

)δ
(

∂w

∂x
(L , t)

)
+ ∂W f

∂w(L)
δw(L , t)

+ ∂W f

∂q(1)
31 (t)

δq(1)
31 (t) + ∂W f

∂q(1)
32 (t)

δq(1)
32 (t) + ∂W f

∂q(3)(t)
δq(3)(t). (17)

Corresponding with (7)–(13) and (16)–(17), Eq. (6) can be further formulated using integro-differential
equations and variational principles. After simplification, the electromechanical dynamic closed-form bound-
ary value equation for the analytical coupled system of electrical shunt control and power harvester system
can be reduced to give
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⎞
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−
⎧⎨
⎩
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−
⎧⎨
⎩

L∫
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η(3) ∂
2w(x, t)

∂x2
dx + q(3)(t)

C (3)
v

⎫⎬
⎭ δq(3)(t) −

{
Ls1q̈

(1)
31 (t) + R1q̇

(1)
31 (t)

}
δq(1)

31 (t) − q(1)
21 (t)δq(1)

21 (t)

C1

−Rdq̇
(3)(t)δq(3)−

{
Ls2q̈

(1)
32 (t) + R2q̇

(1)
32 (t)

}
δq(1)

32 (t) − q(1)
22 (t)δq(1)

22 (t)

C2

]
dt = 0. (18)

Note that certain coefficients can be found in “Appendix B and C.” Also note that the other stiffness
coefficient Ct and the zeroth mass moment of inertia of all layers I0 can be found in [36]. Applying the KCL
method for the tuning circuits in Fig. 1b, c gives the electric charge equation as

q(1)
11 = q(1)

21 + q(1)
31 , q(1)

12 = q(1)
22 + q(1)

32 . (19)

As shown, variables q(1)
21 and q(1)

22 in (18) can be eliminated in the forthcoming reduced equations for
simplicity using the relation as

q(1)
21 (t)

C1
δq(1)

21 (t) = q(1)
11 (t)

C1
δq(1)

11 (t) − q(1)
31 (t)

C1
δq(1)

11 (t) − q(1)
11 (t)

C1
δq(1)

31 (t) + q(1)
31 (t)

C1
δq(1)

31 (t), (20.1)

q(1)
22 (t)

C2
δq(1)

22 (t) = q(1)
12 (t)

C2
δq(1)

12 (t) − q(1)
32 (t)

C2
δq(1)

12 (t) − q(1)
12 (t)

C2
δq(1)

32 (t) + q(1)
32 (t)

C2
δq(1)

32 (t). (20.2)

After applying the mathematical lemma of duBois-Reymond’s theorem for each virtual displacement field,
the first constitutive electromechanical dynamic equation can be formulated as

δw(x, t) : I0ẅ(x, t) + I0ẅbase(t) + Ct
∂2

∂x2

(
∂2w(x, t)

∂x2

)
+ η

(1)
1

∂2(H(x) − H(x − L1))q
(1)
11 (t)

∂x2

+ η
(1)
2

∂2(H(x − L1) − H(x − L))q(1)
12 (t)

∂x2
= 0. (21)
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The second, third, fourth, fifth, and sixth constitutive electromechanical dynamic equations related to the
tuning and harvesting circuits can be formulated, respectively, as,

δq(1)
11 (t):

L∫

0

η
(1)
1 (H(x) − H(x − L1))

∂2w(x, t)

∂x2
dx

+
(

(H(x) − H(x − L1))

C (1)
v1

+ 1

C1

)
q(1)
11 (t) − q(1)

31 (t)

C1
= 0, (22.1)

δq(1)
31 (t): Ls1q̈

(1)
31 (t) + R1q̇

(1)
31 (t) + q(1)

31 (t)

C1
− q(1)

11 (t)

C1
= 0, (22.2)

q(1)
12 (t):

L∫

0

η
(1)
2 (H(x − L1) − H(x − L))

∂2w(x, t)

∂x2
dx

+
(

(H(x − L1) − H(x − L))

C (1)
v2

+ 1

C2

)
q(1)
12 (t) − q(1)

32 (t)

C2
= 0, (22.3)

δq(1)
32 (t): Ls2q̈

(1)
32 (t) + R2q̇

(1)
32 (t) + q(1)

32 (t)

C2
− q(1)

12 (t)

C2
= 0, (22.4)

δq(3)(t):
L∫

0

η(3) ∂
2w(x, t)

∂x2
dx + q(3)(t)

C (3)
v

+ Rdq̇
(3)(t) = 0. (22.5)

The boundary conditions can be formulated as

w(0, t) = 0,
∂w(0, t)

∂x
= 0, (23.1)

δw(L , t): xc I tip0
∂ẅ(L , t)

∂x
+ I tip0 ẅ(L , t) + I tip0 ẅbase − Ct

∂

∂x

(
∂2w(L , t)

∂x2

)
= 0, (23.2)

δ
∂w(L , t)

∂x
: xc I tip0 ẅbase + xc I

tip
0 ẅ(L , t) + I tip2

∂ẅ(L , t)

∂x
+ Ct

∂2w(L , t)

∂x2
+ η(3)q(3)(t) = 0. (23.3)

The solution form of (21)–(23) can be formulated using mode superposition depending on the normalized
mode shapes and generalized time-dependent coordinates to give

w(x, t) =
∞∑
r=1

Ŵr (x)wr (t). (24)

Note that the normalized mode shape in (24) can be found in “Appendix D.”
After manipulation and simplification by using (24) in (21)–(23), the normalized closed-form electro-

mechanical transverse dynamic equations with damping effect can be reduced to

ẅr (t) + 2ζrωr ẇr (t) + ω2
rwr (t) −

∞∑
r=1

T̂ (1)
1r T (1)

1r μ1C1wr (t)

−
∞∑
r=1

T̂ (1)
2r T (1)

2r μ2C2wr (t) + T (1)
1r μ1q

(1)
31 (t) + T (1)

2r μ2q
(1)
32 (t)

+T (3)
r q(3)(t) = −Qr ẅbase(t). (25)

Combining (22.1) and (22.2) including (22.3) and (22.4), the results there of can be associated with (22.5)
using (24) as

Ls1q̈
(1)
31 (t) + R1q̇

(1)
31 (t) + PC1q

(1)
31 (t) +

∞∑
r=1

T̂ (1)
1r μ1wr (t) = 0, (26.1)
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Ls2q̈
(1)
32 (t) + R2q̇

(1)
32 (t) + PC2q

(1)
32 (t) +

∞∑
r=1

T̂ (1)
2r μ2wr (t) = 0, (26.2)

Rdq̇
(3)(t) + P(3)

V q(3)(t) +
∞∑
r=1

T̂ (3)
r wr (t) = 0. (26.3)

It is noted that Eqs. (25) and (26) consist of four coupled tuning electromechanical power harvesting
equations. At this case, since Eqs. (25) and (26) have been normalized, their parameters can be reduced to

T (1)
1r = η

(1)
1

dŴr

dx
(L1), T (1)

2r = η
(1)
2

dŴr (L − L1)

dx
, T (3)

r = η(3) dŴr

dx
(L), (27.1)

∞∑
r=1

T̂ (1)
1r =

∞∑
r=1

η
(1)
1

dŴr

dx
(L1),

∞∑
r=1

T̂ (1)
2r =

∞∑
r=1

η
(1)
2

dŴr (L − L1)

dx
, (27.2)

∞∑
r=1

T̂ (3)
r =

∞∑
r=1

L∫

0

η(3) d
2Ŵr (x)

dx2
dx, P(3)

V = 1

C (3)
v

, PC1 = 1

C1
(1 − μ1), (27.3)

PC2 = 1

C2
(1 − μ2), μ1 = C (1)

v1(
C (1)

v1 + C1

) , μ2 = C (1)
v2(

C (1)
v2 + C2

) , (27.4)

Qr =
L∫

0

I0Ŵr (x)dx + I tip0 Ŵr (L) + xc I
tip
0

dŴr (L)

dx
. (27.5)

Note that Eq. (26.1) can be expressed as the series equivalent circuit as shown in Fig. 1bwhere the parameter
Ve1 = ∑∞

r=1 T̂
(1)
1r wr (t) represents the equivalent voltage source one generated due to electromechanical

piezoelectric coupling one and mechanical motion, where parameter equivalent capacitor one C1/(1 − μ1) on
the circuit represents PC1 = (1 − μ1)/C1 in the equation, and μ1 is a constant term. The similar system using
(26.2) can also be applied for the tuning circuit two in Fig. 1c. After simplification, Eqs. (25) and (26) can
be further formulated using Laplace transformation giving the transfer functions which can be reduced to the
electric charge frequency response functions (FRFs) at harvesting circuit as

q(3)( jω)

−ω2wbasee jωt
= −

∑∞
r=1

Qr T̂
(3)
r

FrG

1 −∑∞
r=1

T̂ (1)
1r T (1)

1r μ2
1

Fr E1
−∑∞

r=1
T̂ (1)
2r T (1)

2r μ2
2

Fr E2
−∑∞

r=1
T̂ (3)
r T (3)

r
FrG

(28)

where

Fr = ω2
r − T̂ (1)

1r T (1)
1r μ1C1 − T̂ (1)

2r T (1)
2r μ2C2 − ω2 + j2ζrωrω, E1 = PC1 − Ls1ω

2 + jωR1, (29.1)

E2 = PC2 − Ls2ω
2 + jωR2, G = P(3)

V + jωRd . (29.2)

Another multimode FRFs relation can also be further formulated using (28). Here, voltage and power FRFs
across the resistor of the harvesting circuit can be formulated, respectively, as

v
(3)
R ( jω)

−ω2wbasee jωt
= jωRd

q(3)( jω)

−ω2wbasee jωt
, (30.1)

P(3)
R ( jω)(−ω2wbasee jωt

)2 = −ω2Rd
q(3)( jω)2(−ω2wbasee jωt

)2 . (30.2)
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Capacitor

IDC through
Load ResistanceIDC

t
Fig. 2 Time waveforms of the standard harvesting circuit

3.2 Coupled system of shunt tuning circuit and standard harvesting DC interface circuit

During each half-cycle period, the production of output current of the harvesting piezoelectric element by the
AC–DC interface circuit can be illustrated as two intervals as shown in Fig. 2.

a. Current flowing with interval ti < t < t f indicating the charging time every half-cycle of the waveform.

With the corresponding previous theoretical derivations, the following equations of the coupled system
response during the period of charging can be formulated using the previous equations in (25)–(26.1, 26.2).
Only Eq. (26.3) with slight modification of the first term gives

vd + P(3)
V q(3)(t) +

∞∑
r=1

T̂ (3)
r wr (t) = 0. (31)

Note that variable vd in (31) was introduced by replacing the first part from (26.3). This can be obtained
by removing the third term in (13) and introducing δWFr = vd(t)δq(3)(t) in (6). Differentiating (31) with
respect to time gives

v̇d + P(3)
V q̇(3)(t) +

∞∑
r=1

T̂ (3)
r ẇr (t) = 0. (32)

The equation for the harvesting circuit can be formulated as

q̇(3)(t) − Cd v̇d − vd

Rd
= 0. (33)

Substituting parameter q(3)(t) from (31) into (25) and parameter q̇(3)(t) from (32) into (33) and joining
the results with (26.1) and (26.2) gives the state-space representation of the multi-mode response system,
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d

dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1

w2

.

.

wr

ẇ1

ẇ2

.

.

ẇr

q(1)
31

q̇(1)
31

q(1)
32

q̇(1)
32

vd

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẇ1

ẇ2

.

.

ẇr

−2ζ1ω1ẇ1 − S1w1 − T (1)
11 μ1q

(1)
31 (t) − T (1)

21 μ2q
(1)
32 (t) +

∑∞
r=1 T̂

(3)
r T (3)

r wr

P(3)
V

+ T (3)
1 vd

P(3)
V

− Q1ẅbase(t)

−2ζ2ω2ẇ2 − S2w2 − T (1)
12 μ1q

(1)
31 (t) − T (1)

22 μ2q
(1)
32 (t) +

∑∞
r=1 T̂

(3)
r T (3)

r wr

P(3)
V

+ T (3)
2 vd

P(3)
V

− Q2ẅbase(t)

.

.

−2ζrωr ẇr − Srwr − T (1)
1r μ1q

(1)
31 (t) − T (1)

2r μ2q
(1)
32 (t) +

∑∞
r=1 T̂

(3)
r T (3)

r wr

P(3)
V

+ T (3)
r vd

P(3)
V

− Qr ẅbase(t)

q̇(1)
31

− R1q̇
(1)
31

Ls1
− PC1q

(1)
31

Ls1
−
∑∞

r=1 T̂
(1)
1r μ1wr

Ls1

q̇(1)
32

− R2q̇
(1)
32

Ls2
− PC2q

(1)
32

Ls2
−
∑∞

r=1 T̂
(1)
2r μ2wr

Ls2

−
∑∞

r=1 T̂
(3)
r ẇr(

P(3)
V Cd+1

) − vd(
RdCd+ Rd

P(3)
V

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

where

S1 = ω2
1 − T̂ (1)

11 T (1)
11 μ1C1 − T̂ (1)

21 T (1)
21 μ2C2, S2 = ω2

2 − T̂ (1)
12 T (1)

12 μ1C1 − T̂ (1)
22 T (1)

22 μ2C2, (35.1)

Sr = ω2
r − T̂ (1)

1r T (1)
1r μ1C1 − T̂ (1)

2r T (1)
2r μ2C2. (35.2)

b. Current flowing with interval t f < t < ti + T/2 indicating the discharging times every half-cycle of the
waveform.

The harvesting circuit can be formulated as

Cd v̇d + vd

Rd
= 0. (36)

The solution form of (36) can be stated as

vd(t) = vd(t f ) exp

(−(t − t f )

Cd Rd

)
. (37)

Note that the expressions of (34) and (37) can be utilized to estimate current and voltage waveform during
the process of charging and discharging periods.

4 Electromechanical weak-form analytical approach

The weak-form-based Ritz method [50,51] reduced from the variational principle is further extended into
the proposed system model giving an alternative and direct solution technique. This technique involves a test
function in the essence of the piecewise continuous function for the entire structural domain corresponding to
virtual relative transverse displacement field, harvesting electrical charge, and first and second tuning electrical
charges that should meet continuity requirements and boundary conditions. Further detail derivations can be
seen in “Appendix E.” After simplification, the four coupled equations based on the Ritz method-based weak
form are formulated as

ÿr (t) + 2ζrωr ẏr (t) + ω2
r yr (t) − P̂(1)

1r P(1)
1r μ1C1yr (t) − P̂(1)

2r P(1)
2r μ2C2yr (t)

+P(1)
1r μ1q

(1)
31 (t) + P(1)

2r μ2q
(1)
32 (t) + P(3)

r q(3)(t) = −Qr ẅbase(t), (38.1)

Ls1q̈
(1)
31 (t) + R1q̇

(1)
31 (t) + PC1q

(1)
31 (t) + P̂(1)

1r μ1yr (t) = 0, (38.2)
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Ls2q̈
(1)
32 (t) + R2q̇

(1)
32 (t) + PC2q

(1)
32 (t) + P̂(1)

2r μ2yr (t) = 0, (38.3)

Rdq̇
(3)(t) + P(3)

V q(3)(t) + P̂(3)
r yr (t) = 0. (38.4)

The equations can be further formulated into FRFs as shown in the stage. Moreover, the FRFs provide
accurate results as long as the test function-based Ritz eigenfunction is chosen correctly. At this case, since
Eq. (38) has been normalized, the parameters P̂1r , P̂2r and P̂r can be reduced as

P̂(1)
1r =

m∑
r=1

P(1)
1r , P̂(1)

2r =
m∑

r=1

P(1)
2r , P̂(3)

r =
m∑

r=1

P(3)
r . (39)

Note that other parameters can be seen in “Appendix E” (Eqs. E.11–E.14). Laplace transformation can be
used to formulate the multi-mode electromechanical FRFs equations giving the transfer functions. Here only
one example of the harvesting electrical power FRF is shown across the load resistance after simplification,

P(3)
R ( jω)(−ω2wbasee jωt

)2 =
−ω2Rd

[∑m
r=1

Qr P
(3)
r

NrG

]2
[
1 −∑m

r=1
P(1)2
1r μ2

1
Nr E1

−∑m
r=1

P(1)2
2r μ2

2
Nr E2

−∑m
r=1

P(3)2
r
NrG

]2 , (40)

where Nr = ω2
r − P(1)2

1r μ1C1 − P(1)2

2r μ2C2 − ω2 + j2ζrωrω, and other parameters of E1, E2, and G can be
seen in similar forms in (29.1), (29.2).

5 Results and discussion

In this Section, adaptive tuning piezoelectric harvesting responses were discussed using the two segmented
thin-electrode-based shunt circuit control systems. The power FRFs and time waveform DC output responses
presented here use the most effective and feasible parametric tuning circuit systems. The material properties of
the piezoelectric bimorph beam are given in Table 1. The piezoelectric material used here was made from PZT
PSI-5A4E. Note that the input base excitation onto the smart structure was set to be 1 m/s2. The geometrical
structures with tip mass offset as shown in Fig. 1 with beam length L and width b with the lower piezoelectric
thickness h(1), substructure (brass) thickness h(2), and upper piezoelectric thickness h(3) were set to 60, 6,
0.267, 0.5, and 0.508mm, respectively. The dimensions of the tip mass offset lt , ht , and b (width) were set to
15, 10, and 6mm, respectively.

Note that due to very low inherent piezoelectric capacitance and lower frequency large inductance values
are required for both tuning circuits. However, as mentioned previously, for practical case, this can be tackled
using synthetic inductance which is an integrated circuit mainly consisting of op-amp systems, resistors, and
capacitor circuits. It is noted that most of the typical power harvesting under load resistance at the first mode
shows only one peak of resonance that can shift from short to open circuit resonance. However, after carefully
exploring certain tuning circuit parameter values, for our proposed technique, three simultaneous resonances
appear to the system followed by widening of the resonant frequency range to more than 10Hz. Starting with
the given example in Fig. 3, [blue (L1 = 0.01 m and L2 = 0.05 m), red (L1 = 0.02 m and L2 = 0.04 m), green
(L1 = 0.03 m and L2 = 0.03 m), magenta (L1 = 0.04 m and L2 = 0.02 m), and brown (L1 = 0.05 m and
L2 = 0.01 m)] using two different electrode segment lengths, the power harvesting FRFs show different trends
because the contribution of partial electrodes covered onto the piezoelectric layer also indicates certain values
of inherent piezoelectric capacitance to the first and second tuning circuits as shown in Fig. 1 giving the options
to find the most feasible power harvesting response. As shown, the comparison between electromechanical
closed-form and Ritz method-based weak-form analytical approach gives good agreement. It is noted here
that the accurate results given from Ritz method are achieved due to using the same mode shape as given by
the closed-form method. Also note that the tuning circuit parameters and the total length of two electrodes of
60mm remain constant so as to visualize the effect of tuning electrode segments to the power harvesting circuit.
Since power harvesting with electrodes lengths L1 = 20mm and L2 = 40 mm provides better responses, the
widening frequency band and time waveform using variable system parameters will be further explored in the
next stage using similar electrode lengths associated with their tuning and harvesting circuit parameter values.
In Fig. 4, the three peaks of power harvesting resonances can be visualized using variable harvesting load
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Table 1 Material properties of the piezoelectric bimorph

Material properties Piezoelectric layers Brass

Young’s modulus, c̄11 (GPa) 66 105
Density, ρ (kg/m3) 7800 9000
Piezoelectric constant, d31(pm/V) −190 –
Permittivity, εT33 (F/m) 1800 εo –
Permittivity of free space, εo (pF/m) 8.854 –

Fig. 3 Power harvesting FRFs with different segmented electrode lengths with fixed harvesting load resistance Rd = 140 k
,
fixed first and second tuning capacitors C1 = 25 nF and C2 = 45 nF, fixed first and second synthetic inductances Ls1 = 330 H
and Ls2 = 250 H, and fixed first and second tuning load resistances R1 = 50
 and R2 = 50
 (solid line–closed form and
circle–Ritz method)

resistance. Two maximum peaks around 47.3–57.3Hz occur not only at the lower load resistances, but also at
the higher load resistances. One additional peak showing the lower value can be seen at the lower resonance
of 41.7Hz. Note that the power harvesting FRF with 140 k
 in Fig. 4 is also shown similarly in Fig. 3 (red
line) giving the most effective response. Slightly different parametric system behavior is shown in Fig. 5a,
where shifting resonances from the two maximum peaks to a single maximum peak appear at the lower and
higher tuning circuit load resistances, respectively. A minimum peak at the lower resonance can also be seen.
In Fig. 5b, the power harvesting FRF appears to give a different trend. It can be remarked in Fig. 5 that the
use of the first tuning load resistance connected at the first electrode segment gives a more responsive system
compared with the second tuning load located at the second electrode segment.

This situation occurs because the strain field to induce the polarity of the piezoelectric component pre-
dominantly reacts at the certain location quite close to the support of the cantilevered beam (strain node).
However, even though the second tuning element is a slightly less responsive system, it can tune the third peak
of resonance and also can be used to select the best tuning load resistance values. Moreover, a wider frequency
response band as shown in Fig. 6a can also be intensified using the most feasible particular inductance values.
At particular inductance values, the three peaks of resonances can be tuned to give even a wider frequency
range achieving more than 20Hz. Again, the first tuning inductance value in Fig. 6a provides a more respon-
sive parameter compared with the second tuning element in Fig. 6b. Nevertheless, the required second tuning
system is an essential feature and complementary to intensify the third peak of the frequency regime as shown
in both Figures. Like the tuning inductance parameter, another key aspect to optimize the power harvesting
FRFs is shown in Fig. 7a, where the first tuning circuit capacitance can also contribute to widen and intensify
the three peaks of the resonances. Moreover, Fig. 7b also shows the three peaks, but does not further boost the
amplitude response. However, it certainly provides important information for identifying the best value of the
second tuning capacitance so as to create the three most feasible peaks of the resonances when analyzing the
whole system. Again, the power harvesting FRF with 25 and 45nF for the first and second tuning capacitances
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Fig. 4 Power harvesting FRFs under varying harvesting load resistance with fixed first and second tuning capacitors C1 = 25 nF
and C2 = 45 nF, fixed first and second synthetic inductances Ls1 = 330 H and Ls2 = 250 H, and fixed first and second tuning
load resistances R1 = 50
 and R2 = 50


Fig. 5 Power harvesting FRFs with fixed first and second tuning capacitors C1 = 25 nF and C2 = 45 nF, fixed first and second
synthetic inductances Ls1 = 330 H and Ls2 = 250 H, and harvesting load resistance Rd = 140 k
: a variable first tuning load
resistance with fixed second tuning load resistance R2 = 50
, b variable second tuning load resistance with fixed first tuning
load resistance R1 = 50


in Fig. 7 can also be seen similarly to that in Fig. 3 (red line). As can be seen for the whole scenario so far, the
circuit parameters can dependently affect the system of the adaptive power harvesting responses.

The time waveform of the DC electrical output through the rectifier and capacitor at the harvesting circuit
can be visualized using tuning circuit parameters and the excited resonance frequency of 51.3Hz. Note that
the resonance of the smart structure appears due to careful selection of the tuning circuit parameters. It should
also be noted that if the smart structure has a similar resonance value with the tuning circuit system resulting
in the lowest power amplitude, it will not give benefit for power harvesting application, but rather for vibration
suppression. In Fig. 8a, the DC voltage signal amplitudes through the rectifier and capacitor can be seen to
have different trend. In the harvesting circuit, the AC/DC rectifier with smoothing RdCd circuit has been used
for DC ripple voltage signal behaviors. The process of maintaining the DC voltage level depends not only on
the smoothing capacitor Cd , but also on the value of resistance across the harvesting circuit. This situation
will occur using larger harvesting load resistance Rd where the time of the capacitor Cd to discharge will be
short. Note that the charging process through the capacitor only occurs for the ripple process each time the
diodes conduct to capture the process of AC–DC current (Eq. (32)). Once the capacitor discharges, no current
will flow (Eqs. (33) and (34)) as shown in Fig. 8b. It is also obvious to see that the capacitor connected to
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Fig. 6 Power harvesting FRFs with fixed first and second tuning capacitors C1 = 25 nF and C2 = 45 nF, fixed first and second
tuning load resistances R1 = 50
 and R2 = 50
, and harvesting load resistance Rd = 140 k
: a variable first synthetic
inductance with fixed second synthetic inductance Ls2 = 250 H, b variable second synthetic inductance with fixed first synthetic
inductance Ls1 = 330 H

Fig. 7 Power harvesting FRFs with fixed first and second synthetic inductances Ls1 = 330 H and Ls2 = 250H, fixed first and
second tuning load resistances R1 = 50
 and R2 = 50
, and harvesting load resistance Rd = 140k
: a variable first tuning
capacitor with fixed second tuning capacitor C2 = 45 nF, b variable second tuning capacitor with fixed first tuning capacitor
C1 = 25 nF

the full-wave rectifier can only be charged for each half-cycle of the DC signal and then again for the next
half-cycle. The prediction of the DC power harvesting time waveform as shown in Fig. 8c can be obtained
across load resistance. The fluctuated DC power amplitude provides a higher value due to using selective
circuit parameters for tuning the particular frequency of the system where the performance can also be seen
similarly in Fig. 3 (red line). Note that the three peaks of resonances can be the best option for exciting the
smart structure so as to maximize the time waveform DC power output. In this case, careful selection of
harvesting and tuning circuit parameters can potentially tune and widen the frequency band with increasing
power harvester amplitude.

6 Conclusions

This paper discussed shunt circuit networks connected to the two segmented electrodes covered onto the bot-
tom surface of the piezoelectric layer for controlling the upper layer of the piezoelectric power harvester. The
system provides the adaptive smart structure power harvester to be capable of not only tuning across a certain
frequency band but also creating three peaks of resonances. The electromechanical closed-form boundary value
method reduced from the extended Hamiltonian principle was developed to formulate new electromechanical
frequency response functions and time waveform systems of the standard AC–DC circuit power harvesting
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Fig. 8 Time waveform signal based on fixed harvesting load resistance Rd = 140 k
 and capacitance Cd = 0.3 nF, fixed first
and second tuning capacitors C1 = 25 nF and C2 = 45 nF, fixed first and second synthetic inductances Ls1 = 330 H and
Ls2 = 250 H, and fixed first and second tuning load resistances R1 = 50
 and R2 = 50
: a DC voltage, b DC capacitor
current, c DC power harvesting across harvesting load resistance

using Laplace transforms. The Ritz method-based weak-form analytical approach has also been formulated
to give electromechanical transverse dynamic equations for formulating multi-mode FRFs. These two analyt-
ical techniques developed coupled systems of the electromechanical power harvesting equations showing the
simultaneous combinations of the mechanical system (dynamical behavior of piezoelectric structure), electro-
mechanical system (electrical piezoelectric response), and electrical system (tuning and harvesting circuits).
The two methods have shown identical results in the frequency analysis. The accuracy of the Ritz method
was achieved due to using the same mode shape as given from the closed-form boundary value techniques.
Moreover, after carefully exploring certain tuning and harvesting circuit parameter values, the results show
that varying different electrode lengths connected to the two separated tuning circuits can provide the guideline
to identify not only levels of the wider frequency band, but also surveys of the peaks of resonances. For that
reason, using particular electrode lengths and tuning and harvesting circuit parameter values, further proofs
have been provided using the effect of varying circuit parameters of the system for exploring the widening and
increasing the resonance frequency band and timewaveform. As a result, adaptive power harvesting techniques
can give benefit for tuning frequency response and time waveform in applications of the self-powered wireless
sensor devices that are normally located at the surrounding vibration environment for capturing mechanical
energy and converting it into the usable electrical energy.
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Appendix A: Modified elastic constant and piezoelectric constant

Themodified elastic constant andmodified piezoelectric constant for tuning and harvesting piezoelectric layers
can be formulated, respectively, as

c̄(1)
D = c̄(1,E)

11 + e(1)2

31 ε
(1,S)−1

33 , g(1)
31 = ε

(1,S)−1

33 e(1)
31 , (A.1)

c̄(3)
D = c̄(3,E)

11 + e(3)2

31 ε
(3,S)−1

33 , g(3)
31 = ε

(3,S)−1

33 e(3)
31 . (A.2)

Note that the general parameter ε
(i,S)
33 for piezoelectric layers (superscript i ∈ {1, 3}) indicates the permittivity

at constant strain (superscript S) that can be further formulated as ε
(i,S)
33 = ε

(i,T )
33 − e(i)

31 d
(i)
31 or ε

(i,S)
33 =

ε
(i,T )
33 − d(i)2

31 c(i,E)
11 where ε

(i,T )
33 is the permittivity at constant stress (superscript T ). Parameter e31 is the

piezoelectric coefficient which is obtained using e31 = d31c̄E11.

Appendix B: Modified transverse piezoelectric coupling coefficient

The modified transverse piezoelectric coupling in the tuning and harvesting piezoelectric layers can be formu-
lated, respectively, as,

η
(1)
1 =

g(1)
31

(
h(1)2 + 2h(1)h(3) + 2h(2)h(1) − 2znh(1)2

)

2L1
, (B.1)

η
(1)
2 =

g(1)
31

(
h(1)2 + 2h(1)h(3) + 2h(2)h(1) − 2znh(1)2

)

2L2
, η(3) =

g(3)
31

(
2znh(3) − h(3)2

)

2L
. (B.2)

Appendix C: Modified internal capacitance of piezoelectric layers

The modified internal capacitances in the tuning and harvesting piezoelectric layers can be stated, respectively,
as,

C (1)
v1 = εS33b

(1)L1

h(1)
, C (1)

v2 = εS33b
(1)L2

h(1)
, C (3)

v = εS33b
(3)L

h(3)
. (C.1)

Appendix D: Mode shapes of the cantilevered bimorph beam with proof mass offset

The normalized eigenfunction series Ŵr (x) in (24) can be proved by manipulating (21) and (23) and taking
only consideration of the transverse mechanical equation by using w(x, t) =∑∞

r=1 Wr (x)wr (t). The reduced
characteristic mechanical equation can be formulated to give[

A11 A12
A21 A22

]{
a1
a4

}
= 0 (D.1)

where:

A11 = −(cos(αL) + cosh(αL)) + I tip2 α3

I0
(sin(αL) + sinh(αL)) − xc I

tip
0 α2

I0
(cos(αL) − cosh(αL)),

A12 = (sin(αL) + sinh(αL)) + I tip2 α3

I0
(cos(αL) − cosh(αL)) + xc I

tip
0 α2

I0
(sin(αL) − sinh(αL)),

A21 = (sin(αL) − sinh(αL)) + I tip0 α

I0
(cos(αL) − cosh(αL)) − xc I

tip
0 α2

I0
(sin(αL) + sinh(αL)),

A22 = (cos(αL) + cosh(αL)) − I tip0 α

I0
(sin(αL) − sinh(αL)) − xc I

tip
0 α2

I0
(cos(αL) − cosh(αL)). (D.2)
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The frequency equation and eigenvalues can be formulated from Eq. (D.1) leading to non-trivial solutions as,

A11A22 − A21A12 = 0. (D.3)

The mode shape or space-dependent eigenfunction of transverse bending can be formulated as

Wr (x) = a1r

(
cos(αx) − cosh(αx) + A21

A22
(sin(αx) − sinh(αx))

)
. (D.4)

Since Eq. (D.4) contains constant a1r as the transverse amplitude constant, the normalized mode shape can be
formulated as

Ŵr (x) = Wr (x)(
L∫
0
I0Wr (x)2dx + I tip0 Wr (L)2 + 2xc I

tip
0 Wr (L)dWr

dx (L) + I tip2

(
dWr
dx (L)

)2)1/2 , r = 1, 2, . . . ,m.

(D.5)

Appendix E: Derivations of Ritz method-based analytical weak form

Further derivations of the electromechanical weak form can be formulated by substituting (7)–(13) associated
with (16), (17), and (20) into (6), and the result can be reformulated by using the normalized eigenfunction
series forms, w(x, t) = ∑m

r=1 Ŷr (x)yr (t). Note that the chosen normalized mode shape-related Ritz method
can be discussed in the next stage.
After simplification, the first electromechanical dynamic equation represents the coupled tuning-harvesting

piezoelectric bimorph under transverse bending form as

m∑
q=1

⎧⎨
⎩

m∑
r=1

⎡
⎣
⎛
⎝

L∫

0

I0Ŷq(x)Ŷr (x)dx + I tip0 Ŷq(L)Ŷr (L) + xc I
tip
0

dŶr (L)

dx
Ŷq(L) + xc I

tip
0 Ŷr (L)

dŶq(L)

dx

+ I tip2
dŶq(L)

dx

dŶr (L)

dx

)
ẅr (t) +

L∫

0

Ct
d2Ŷq(x)

dx2
d2Ŷr (x)

dx2
wr (t)dx

⎤
⎦+

L∫

0

(
η(1) d

2(H(x) − H(x − L1))Ŷq
dx2

q(1)
11 (t)

+ η(1) d
2(H(x − L1) − H(x − L))Ŷq

dx2
q(1)
12 (t) + η(3) d

2Ŷq
dx2

q(3)(t)

)
dx

+
⎛
⎝

L∫

0

I0Ŷq(x)dx + xc I
tip
0

dŶq(L)

dx
+ I tip0 Ŷq(L)

⎞
⎠ ẅbase(t)

⎫⎬
⎭ δwq(t) = 0. (E.1)

The second, third, fourth, fifth, and sixth equations represent the electromechanical harvesting piezoelectric,
tuning piezoelectric, and tuning circuit forms, respectively, to give

⎧⎨
⎩

m∑
r=1

L∫

0

η
(1)
1

d2(H(x) − H(x − L1))Ŷr (x, t)

dx2
dx+
(

(H(x) − H(x − L1))

C (1)
v1

+ 1

C1

)
q(1)
11 (t) − q(1)

31 (t)

C1

⎫⎬
⎭ δq(1)

11 (t) = 0, (E.2)

{
Ls1q̈

(1)
31 (t) + R1q̇

(1)
31 (t) + q(1)

31 (t)

C1
− q(1)

11 (t)

C1

}
δq(1)

31 (t) = 0, (E.3)

⎧⎨
⎩

m∑
r=1

L∫

0

η
(1)
2

d2(H(x − L1) − H(x − L))Ŷr (x, t)

dx2
dx+
(

(H(x − L1) − H(x − L))

C (1)
v2

+ 1

C2

)
q(1)
12 (t) − q(1)

32 (t)

C2

⎫⎬
⎭ q(1)

12 (t) = 0,

(E.4){
Ls2q̈

(1)
32 (t) + R2q̇

(1)
32 (t) + q(1)

32 (t)

C2
− q(1)

12 (t)

C2

}
δq(1)

32 (t) = 0, (E.5)
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⎧⎨
⎩

m∑
r=1

L∫

0

η(3) d
2Ŷ (x, t)

dx2
dx + q(3)(t)

C (3)
v

+ Rdq̇
(3)(t)

⎫⎬
⎭ δq(3)(t) = 0. (E.6)

In terms of (E.1)–(E.6), the normalized electromechanical dynamic equation can be further simplified in the
matrix form as

⎡
⎢⎢⎢⎢⎢⎣

Mqr 0 0 0

0 Ls1 0 0

0 0 Ls2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ÿr

q̈(1)
31

q̈(1)
32

q̈(3)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎣

Cqr 0 0 0
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0 0 R2 0

0 0 0 Rd

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẏr
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⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎝ Kqr − P(1)

1q Plr (1)μ1C1

−P(1)
2q P2r (1)μ2C2

⎞
⎠ P(1)

1q μ1 P(1)
2q μ2 P(3)

q

P(1)
1r μ1 PC1 0 0
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V
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⎪⎪⎪⎪⎪⎪⎭
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⎪⎪⎪⎪⎪⎩
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0

0

0
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(E.7)

where:

Mqr =
L∫

0

I0Ŷq(x)Ŷr (x)dx + I tip0 Ŷq(L)Ŷr (L) + xc I
tip
0

dŶr (L)

dx
Ŷq(L)

+ xc I
tip
0 Ŷr (L)

dŶq(L)

dx
+ I tip2

dŶq(L)

dx

dŶr (L)

dx
, (E.8)

Kqr =
L∫

0

Ct
d2Ŷq(x)

dx2
d2Ŷr (x)

dx2
dx, P(1)

1q =
L∫

0

η
(1)
1

d2(H(x) − H(x − L1))Ŷq
dx2

dx = η
(1)
1

dŶq(L1)

dx
,

(E.9)

P(1)
2q =

L∫

0

η
(1)
2

d2(H(x − L1) − H(x − L))Ŷq
dx2

dx = η
(1)
2

dŶq(L − L1)

dx
, (E.10)

P(1)
1r =

L∫

0

η
(1)
1

d2(H(x) − H(x − L1))Ŷr (x, t)

dx2
dx = η

(1)
1

dŶr (L1)

dx
, (E.11)

P(1)
2r =

L∫

0

η
(1)
2

d2(H(x − L1) − H(x − L))Ŷr
dx2

dx = η
(1)
2

dŶr (L − L1)

dx
, (E.12)

P(3)
q =

L∫

0

η(3) d
2Ŷq(x)

dx2
dx, P(3)

r =
L∫

0

η(3) d
2Ŷr (x)

dx2
dx, P(3)

V = 1

C (3)
v

, PC1 = 1

C1
(1 − μ1), (E.13)

PC2 = 1

C2
(1 − μ2), μ1 = C (1)

v1(
C (1)

v1 + C1

) , μ2 = C (1)
v2(

C (1)
v2 + C2

) , (E.14)

Qq =
L∫

0

I0Ŷq(x)dx + I tip0 Ŷq(L) + xc I
tip
0

dŶq(L)

dx
. (E.15)
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Here, the parameter of the normalized eigenfunction Ŷr (.) can be assumed to have a similar form as (D.5)
by considering Ŷr (x) = Ŵr (x) and Yr (x) = Wr (x). However, parameter Yr (.) can be obtained from the
generalized space-dependent Ritz eigenfunctions as

Yr (x) =
m∑

k=1

ckrYk(x), r = 1, 2, . . . ,m. (E.16)

Note that the accuracy of the Ritz mode shape Yk(x) can be obtained using the same mode shape Wk(x)
as in the closed-form boundary value technique which can be found in (D.4) in “Appendix D” (considering
Yk(x) = Wk(x) and ignoring constanta1r because it is used for the closed-form techniquewhere the generalized
Ritz method is used in this Section). The generalized Ritz coefficient ckr is the eigenvector matrix where each
column corresponds to a specific independent eigenvalue. The coefficient can only be proved by replacing
w(x, t) = ∑m

r=1 Ŷr (x)yr (t) with w(x, t) = ∑m
r=1 crYr (x)e

iωt and rearranging (E.7) by considering the
characteristic mechanical equation

∑m
r=1 [Kqr − ω2Mqr ]cr = 0, q = 1, 2, . . . ,m. It should be noted that

cr is called the Ritz coefficient for the mechanical transverse bending form which sometimes refers to the
eigenvectors in the mechanical domain. Corresponding to (E.7), the orthonormalizations can now be further
proved using the orthogonality property of the mechanical dynamic equations for the Euler–Bernoulli bimorph
beam with proof mass offset as

L∫

0

I0Ŷq(x)Ŷr (x)dx + I tip0 Ŷq(L)Ŷr (L) + xc I
tip
0 Ŷq(L)

dŶr (L)

dx
+ xc I

tip
0

dŶq(L)

dx
Ŷr (L)

+ I tip2
dŶq(L)

dx

dŶr (L)

dx
= δqr , (E.17)

L∫

0

Ct
d2Ŷq(x)

dx2
d2Ŷr (x)

dx2
dx = δqrω

2
r (E.18)

where δqr is the Kronecker delta, defined as unity for q = r and zero for q �= r .
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