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Abstract In this paper, we develop unifying scaling laws describing the response of elastic polycrystals at finite
mesoscales. These polycrystals are made up of individual grains belonging to any crystal class (from cubic to
triclinic) and are generated by Voronoi tessellations with varying grain sizes. Rigorous scale-dependent bounds
are then obtained by setting up and solving Dirichlet and Neumann boundary value problems consistent with
the Hill–Mandel homogenization condition. The results generated are benchmarked with existing numerical
results in special cases and the effect of grain shape on the scaling behavior is investigated. The convergence
to the effective elastic properties with increasing number of grains is established by analyzing 5180 boundary
value problems. This leads to the notion of an elastic scaling function which takes a power law form in
terms of the universal anisotropy index and the mesoscale. Based on the scaling function, a material scaling
diagram is constructed using which the convergence to the effective properties can be analyzed for any elastic
microstructure.

1 Introduction

Composite materials are widely used nowadays due to the dire need for novel materials with unique properties.
With the advent of additive manufacturing, composites can be designed with superior structural integrity
(enhanced fracture toughness [1]) and 3D printed with controlled variation of material properties [2,3]. Such
properties are dependent upon the structure of the composite (proportions of each component, shape of the
particles and arrangement of the particles) and the corresponding property of each individual component
in a composite (electrical, thermal and mechanical property). Thus, the structure–property relationship is
a fundamental aspect in the design of composite materials, which comprises of polycrystalline aggregates.
These polycrystals are a collection of single crystals (grains) that have arbitrary orientations. The properties
of polycrystalline aggregates depend upon the length scale and the single crystal orientation. By randomly
assigning each crystal orientation in a polycrystal, one can obtain the effective isotropic response. In the context
of elasticity, the effective property (shear and bulk moduli) can be estimated corresponding to a representative
volume element (RVE).

However, determining the appropriate size of the RVE in order to accurately obtain the aggregate response
is still a challenge in composite material theory. Therefore, various homogenization techniques have been
developed in order to estimate the effective property. One such approach is the Mori–Tanaka method, which
relates the average stress in an inclusion to the average stress in the matrix for obtaining the aggregate response
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in polycrystals (see Sevostianov and Kachanov [4]). However, the Mori–Tanakas scheme may violate the
Hashin–Shtrikman bounds for multiphase composites as well as yield a non-symmetric stiffness tensor and
thereby the effective response cannot be obtained. An alternative method based on Maxwell’s scheme for
estimating the effective property of anisotropic multiphase composites was proposed by Sevostianov [5].
In that study, the author modified Maxwell’s scheme by taking into account the shape of the inclusion and
illustrated that an ellipsoidal shape captured the effective response accurately. On the contrary, selecting an
inappropriate shape of the inclusionwill cause the stiffness and compliance tensors to lose positive definiteness,
and the effective property cannot be determined.

An alternate approach to quantify the size of the RVE, free of any positive definiteness violation, is to
implement the Hill–Mandel homogenization condition [6,7] and obtain rigorous bounds as solutions to scale-
dependent stochastic boundary value problems (Dirichlet and Neumann). This homogenization technique has
attracted a great deal of interest over the past few decades within the context of elasticity [8–12], thermal
conductivity [13–16], electrical conductivity [17], thermoelasticity [18–20], flow in porous media [21–23],
fracture and damage phenomena in random microstructures [24] and nonlinear elastic and inelastic materials
[25–28]. This framework has been employed by several other authors including Kanit et al. [29] and El
Houdaigui et al. [30] for estimating the size of the RVE. In particular, Kanit et al. [29] investigated three-
dimensional Voronoi mosaic-shaped linearly elastic materials in order to determine the effective properties
of two-phase heterogeneous microstructures at specific length scales. In their work, the authors showed the
minimum number of realizations required for a given RVE size by taking into account the following: (i)
physical property of the material; (ii) material contrast; (iii) volume fraction of individual phases; (iv) relative
precision for estimating the effective property. In addition, the authors observed that for a specific precision and
number of realizations, one can obtain the minimal size of the RVE in order to determine the effective response.
Along similar lines, El Houdaigui et al. [30] analyzed three-dimensional Voronoi mosaic as polycrystalline
morphology in order to determine the number of grains (NG) required in an RVE for estimating the effective
elastic properties of copper. The authors used a variety of boundary conditions (Dirichlet and Neumann) and
obtained the mean shear modulus as a function of NG. It was seen that the minimum number of grains required
is related to the evolution of the standard deviation of the effective property (shear modulus).

Several other authors have employed the framework of stochastic micromechanics in order to demonstrate
the concept of a scaling function through the convergence of Dirichlet and Neumann bounds. In particular,
Ranganathan and Ostoja-Starzewski [10] obtained the scale-dependent bounds on the aggregate response of
elastic random polycrystals at finite length scales. Subsequently, scaling laws were established that takes
into account the mesoscale along with the universal anisotropy measure of single crystals. By employing
the elastic scaling function, a material scaling diagram was constructed to quantify the size of the RVE for
multifarious random polycrystals. Along similar lines, Dalaq et al. [31] illustrated the scale dependence of
thermal conductivities in two-phase planar random checkerboards at all length scales. In their study, the authors
analyzed microstructures with 50% volume fractions with a variety of material combinations. It was observed
that the scaling function depends upon the material contrast and the mesoscale. Subsequently, a material
scaling diagram was generated which estimates the size of the RVE for any combination of individual phases.
Similarly, Raghavan et al. [17] examined the scale-dependent electrical conductivity of two-phase random
microstructures at arbitrary volume fractions and material contrasts. In particular, the authors demonstrated
the convergence of the mesoscale bounds to the effective electrical properties with increasing length scales.
Also, the authors derived the scaling function, which takes into account the volume fraction, phase contrast
and mesoscale. It was seen that the size of the RVE can be estimated using a material scaling diagram for a
range of composite microstructures. More recently, Zhang and Ostoja-Starzewski [32] analyzed the frequency-
dependent scaling function for linear viscoelastic materials. In their work, the authors numerically simulated
planar random checkerboard microstructures that had volume fractions of 50% at two phases (elastic and
viscoelastic), varying mesoscales (δ = 2, 4, 8, 16) and frequencies (0.05–50Hz). Next, the hierarchies of
mesoscale bounds on shear- and bulk-type responses were obtained, and a scaling function was developed
in order to capture the scaling trend to RVE. It was observed that the scaling function is dependent upon the
frequency and the mesoscale.

In summary, a significant amount of literature is present regarding the homogenization of random compos-
ites in order to determine the effective properties. However, to the best of our knowledge there is no framework
to unify the scaling behavior of elastic polycrystals belonging to any crystal class. In the present work, we will
establish unifying scaling laws at finite mesoscales describing the elastic response of random polycrystals.
These polycrystals are generated by Voronoi tessellations with varying grain sizes (25, 400, 1000 and 5000
grains), and the materials studied are Cu, Zn, SnF2, S, An96, Zr, α Ti and Fe2O3. Subsequently, rigorous
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bounds are obtained at finite length scales as solutions to stochastic boundary value problems (Dirichlet and
Neumann) based on the Hill–Mandel homogenization condition. The generated results are benchmarked with
existing numerical solutions for Cu. We also demonstrate the effect of grain shape (Voronoi tessellations and
cubic-shaped geometry) on the scaling behavior of cubic crystals (Lithium). By analyzing 5180 boundary value
problems, we illustrate that the scale-dependent bounds on the elastic response of polycrystals converge to the
effective properties (shear and bulk moduli) with increasing number of grains. In doing so, we generalize the
notion of a scaling function through the elastic scaling function, which depends upon the universal anisotropy
index and the number of grains in the domain. Finally, the scaling function will be employed to develop the
material scaling diagram that allows one to precisely estimate the size of the RVE.

2 Mathematical formulation

2.1 Hill–Mandel homogenization condition

In this section, we illustrate the Hill–Mandel homogenization condition that employs the energetic and mech-
anistic approaches for setting up constitutive equations (see Hill [6] and Mandel [7]). First, we discuss the
stress and strain fields (σ and ε) and decompose these terms into mean and fluctuating parts as follows (see
Ostoja-Starzewski [24]):

σ (x, ω) = σ̄ (ω) + σ ′(x, ω),

ε(x, ω) = ε̄(ω) + ε′(x, ω),
(2.1)

where x is the point-to-point dependence of fluctuating fields, ω(∈ �) refers to a particular realization in a
microstructure from the sample space, �, and over-bar is used to represent the volume average. Equation (2.1)
will be separated into the mean and zero-mean fluctuations as follows (see Ostoja-Starzewski [24]):

σ̄ δ(ω) = 1

V

∫
σ (x, ω)dV,

∫
σ ′(x, ω)dV = 0,

ε̄δ(ω) = 1

V

∫
ε(x, ω)dV,

∫
ε′(x, ω)dV = 0.

(2.2)

Here, V is the volume of the microstructure and δ is the mesoscale that can be defined as (see Ranganathan
and Ostoja-Starzewski [10])

δ = l

d
= (NG)

1
3 , (2.3)

where NG is the number of grains in themicrostructure, d is the characteristic length scale (for example the grain
size) and l is the length scale of observation (domain size). Using Eqs. (2.1) and (2.2), the volume-averaged
contracted scalar product of σ and ε will be defined as

σi jεi j = 1

V

∫

V

σi jεi jdV = σ̄i j ε̄i j + 1

V

∫

V

σ ′
i jε

′
i jdV . (2.4)

We will now illustrate the Hill–Mandel condition which follows from Eq. (2.4) as

σi jεi j = σ̄i j ε̄i j . (2.5)

The relation Eq. (2.5) holds, provided that the following condition is satisfied:

1

V

∫
V

σ ′ : ε′dV = 0. (2.6)

Now, Green–Gauss theorem will be used in Eq. (2.6) in order to obtain the following (see Ranganathan and
Ostoja-Starzewski [10]):

1

V

∫
V

σ ′
i jε

′
i jdV = 0 ⇔

∫
∂Bδ

(ti − σi j .n j )(ui − εi j .x j )dS = 0 ∀x ∈ ∂Bδ. (2.7)

At this stage, we show the three types of boundary conditions that are obtained using Eq. (2.7) as follows (see
Ranganathan and Ostoja-Starzewski [10], Suquet [33], Hill [34]):
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(i) Uniform displacement (Dirichlet)

ui = ε0i j x j (2.8a)

(ii) Uniform traction (Neumann)

ti = σ 0
i j n j (2.8b)

(iii) Mixed orthogonal

(ti − σ 0
i j n j )(ui − ε0i j x j ) = 0 (2.8c)

One cannowset up stochastic boundary value problemswith the aboveboundary conditions, andupon ensemble
averaging, the mesoscale effective response can be obtained. It has to be noted that the random field, �(x),
of material parameters involved must be spatially homogeneous and ergodic. The ensemble mean is constant,
and its finite-valued covariance depends only on the shift h from x to x + h (see Ostoja-Starzewski [20])

〈�(x)〉 = μ,

〈[�(x) − 〈�(x)〉][�(x + h) − 〈�(x + h)〉]〉 = K�(h) < ∞, (2.9)

where�(x) is awide-sense stationary (WSS) randomfield, K�(h) is the covariance function, and the ensemble
averages are represented by 〈·〉. We also observe that the random field, �(x), outlined above is mean-ergodic
if the spatial average (denoted by the over-bar) is equal to the ensemble average (see Ostoja-Starzewski [20])

1

V

∫

V

�(ω, x)dV = �(ω) = 〈�(x)〉 =
∫

�

�(ω, x)dP, (2.10)

where P is a probability measure related to the random field, �(x).
The methodology for homogenization is proposed in Fig. 1. The polycrystals are generated by Voronoi

tessellations using the software Neper (see Quey et al. [35]), and the grain sizes (NG = 25, 400, 1000 and
5000) that are taken into consideration are based on the work by El Houdaigui et al. [30]. Subsequently,
5180 Dirichlet and Neumann boundary value problems are solved using Eqs. (2.8a) and (2.8b), and the scale-
dependent bounds are obtained on the elastic response (shear and bulk moduli) of random polycrystals. In
the next section, we will postulate a specific form of the scaling function that unifies the treatment of a wide
spectrum of materials across all crystal classes (from cubic to triclinic).

5000 grains1000 grains

Single Crystal 

Polycrystals 

25 grains 400 grains 

Fig. 1 Homogenization methodology



Scaling laws in elastic polycrystals with individual grains 1529

2.2 Elastic scaling function

We now discuss the scaling function for an arbitrary realization Bδ(ω) of a random medium Bδ on a specific
mesoscale δ. By using Eq. (2.8a), a stiffness tensor Cd

δ can be defined as (see Ostoja-Starzewski [24])

σ̄ δ(ω) = Cd
δ (ω) : ε0. (2.11)

Along similar lines, Eq. (2.8b) will yield a compliance tensor Stδ as follows (see Ostoja-Starzewski [24]):

ε̄δ(ω) = Stδ(ω) : σ 0. (2.12)

It has to be noted that for a specific mesoscale, the response of the microstructure is isotropic after ensemble
averaging is carried out. Therefore, we can express the averaged stiffness and compliance tensors in terms of
the bulk modulus, K as well as the shear modulus, G as follows (see Ranganathan and Ostoja-Starzewski [9]):

〈
Cd

δ

〉
= 2

〈
Gd

δ

〉
K + 3

〈
Kd

δ

〉
J, (2.13a)

〈
Stδ

〉 = 1

2
〈
Gt

δ

〉K + 1

3
〈
K t

δ

〉J, (2.13b)

where K and J are the deviatoric and spherical components of the fourth-order identity tensor, I. We now
contract Eqs. (2.13a) and (2.13b) in order to obtain the following scalar equation (see Ranganathan and
Ostoja-Starzewski [9]):

〈
Cd

δ

〉
: 〈
Stδ

〉 = 5

〈
Gd

δ

〉
〈
Gt

δ

〉 +
〈
Kd

δ

〉
〈
K t

δ

〉 . (2.14)

By taking the limit (δ → ∞), the stiffness tensor is the exact inverse of the compliance tensor as follows (see
Ranganathan and Ostoja-Starzewski [9]):

lim
δ→∞

〈
Cd

δ

〉
: 〈
Stδ

〉 = 6. (2.15)

Rearranging Eqs. (2.14) and (2.15), we postulate the following relationship:
〈
Cd

δ

〉
: 〈
Stδ

〉 = lim
δ→∞

〈
Cd

δ

〉
: 〈
Stδ

〉 + f (Ci j , A
U , δ), (2.16)

where f (Ci j , AU , δ) is the non-dimensional function called the elastic scaling function and AU is the universal
anisotropy index that was first introduced by Ranganathan and Ostoja-Starzewski [36]. Unlike the scaling
function first proposed by Ranganathan and Ostoja-Starzewski [10] that was restricted to crystals with cubic
symmetry, the function in Eq. (2.16) is applicable to all crystal classes. The variable Ci j represents all the
single-crystal elastic constants depending on the crystal class as given below:

(i) Cubic

Ci j ≡ (C11,C12,C44) (2.17a)

(ii) Hexagonal

Ci j ≡ (C11,C12,C13,C33,C44) (2.17b)

(iii) Tetragonal

Ci j ≡ (C11,C12,C13,C33,C44,C66) (2.17c)

(iv) Trigonal

Ci j ≡ (C11,C12,C13,C14,C33,C44) (2.17d)

(v) Orthorhombic

Ci j ≡ (C11,C12,C13,C22,C23,C33,C44,C55,C66) (2.17e)
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(vi) Monoclinic

Ci j ≡ (C11,C12,C13,C15,C22,C23,C25,C33,C35,C44,C46,C55,C66) (2.17f)

(vii) Triclinic

Ci j ≡ (C11,C12,C13,C14,C15,C16,C22,C23,C24,C25,C26,

C33,C34,C35,C36,C44,C45,C46,C55,C56,C66)
(2.17g)

Substituting Eqs. (2.15) and (2.16) into Eq. (2.14) gives the functional form of the elastic scaling function as

f (Ci j , A
U , δ) = 5

〈
Gd

δ

〉
〈
Gt

δ

〉 +
〈
Kd

δ

〉
〈
K t

δ

〉 − 6. (2.18)

The boundary value problems listed under Eqs. (2.8a) and (2.8b) can be solved numerically in order to obtain
the right-hand side of Eq. (2.18). In the next section, we will discuss the upper and lower bounds on the elastic
property (bulk and shear moduli) of materials.

2.3 Bounds on the bulk and shear moduli

The hierarchy of scale-dependent bounds on the elastic response of random microstructures will be shown
by employing the spatial ergodicity, WSS properties and the variational principles of continuum elasticity as
follows (see Ostoja-Starzewski [24], Kanit et al. [29], Sab [37], Huet [38])

〈
St1

〉−1 ≤ · · · ≤ 〈
Stδ′

〉−1 ≤ 〈
Stδ

〉−1 ≤ · · · ≤ Ceff∞ · · · ≤
〈
Cd

δ

〉
≤

〈
Cd

δ′
〉
· · · ≤

〈
Cd
1

〉
∀δ′ ≤ δ. (2.19)

We now illustrate the hierarchy of bounds on the bulk and shear moduli for isotropic stiffness tensors using
Eq. (2.19) as follows (see Ranganathan and Ostoja-Starzewski [9] and Ostoja-Starzewski et al. [39]):

KR ≤ · · · ≤ 〈
K t

δ′
〉 ≤ 〈

K t
δ

〉 ≤ · · · ≤ K eff∞ · · · ≤
〈
Kd

δ

〉
≤

〈
Kd

δ′
〉
· · · ≤ KV ∀δ′ ≤ δ, (2.20a)

GR ≤ · · · ≤ 〈
Gt

δ′
〉 ≤ 〈

Gt
δ

〉 ≤ · · · ≤ Geff∞ · · · ≤
〈
Gd

δ

〉
≤

〈
Gd

δ′
〉
· · · ≤ GV ∀δ′ ≤ δ, (2.20b)

where KV and KR are the Voigt and Reuss estimates for the bulk modulus, respectively (see Hill [40]).
Similarly, GV and GR are the Voigt and Reuss bounds for the shear modulus. In the subsequent section, we
will illustrate the properties and bounds on the scaling function.

2.4 Properties and bounds on the elastic scaling function

The elastic scaling function f (Ci j , AU , δ) that is postulated in Eq. (2.16) has the following properties:

f (Ci j , A
U , δ = ∞) = 0, (2.21)

where the scaling function is equal to zero when the mesoscale is infinite. Also, when the single crystals are
locally isotropic (AU = 0), the scaling function is equal to zero:

f (Ci j , A
U = 0, δ) = 0. (2.22)

We now demonstrate the bounds of the elastic scaling function as follows:

f (Ci j , A
U , δ = ∞) ≤ f (Ci j , A

U , δ) ≤ f (Ci j , A
U , δ = 1) ∀1 ≤ δ ≤ ∞. (2.23)

Now, we use Eqs. (2.21) and (2.18) in (2.23) in order to get the following:

0 ≤ f (Ci j , A
U , δ) ≤ AU = 5

GV

GR
+ KV

KR
− 6 ∀1 ≤ δ ≤ ∞. (2.24)

It has to be noted that if Ci j is changed to α Ci j (α is a real number), the scaling function f remains the same:

f (α Ci j , A
U , δ) = f (Ci j , A

U , δ). (2.25)

It is therefore possible to postulate the various forms of the scaling function once the parameters of f are
identified.
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(a) (b)

(c) (d)

Fig. 2 Comparison of grain shapes for lithium: a Voronoi and cubic-shaped geometry. b Scale-dependent bounds for the shear
modulus. c Scaling function. d Rescaled function

3 Results and discussion

We now illustrate the rigorous bounds on the elastic properties of random polycrystals at finite length scales.
These polycrystals are generated numerically according to spatially ergodic and WSS properties. Also, the
polycrystals are white-noise random fields as these have no spatial correlations. In the subsequent sections,
we validate our numerical results for the shear modulus of Cu with the results published in the literature by
El Houdaigui et al. [30]. After validating the numerical model, we study the effect of grain shape (Voronoi
tessellations and cubic-shaped geometry) on the scaling function as well as the size of the RVE (see Fig. 2).
Then, we will study 8 materials (see Table 1) across all crystal classes (from cubic to triclinic) and perform
5180 numerical simulations in order to illustrate the scale-dependent bounds on the aggregate elastic response.
In doing so, we impose Dirichlet and Neumann boundary conditions on polycrystals with varying grain sizes
(25, 400, 1000 and 5000) as follows:

(1) Dirichlet problem:
(i) For extracting shear modulus: ε011 = ε022 = 0.05, ε033 = −0.1, ε012 = ε013 = ε023 = 0;
(ii) For extracting bulk modulus: ε011 = ε022 = ε033 = 0.05, ε012 = ε013 = ε023 = 0;

(2) Neumann problem:
(iii) For extracting shear modulus: σ 0

11 = σ 0
22 = 16 GPa, σ 0

33 = −32 GPa, σ 0
12 = σ 0

13 = σ 0
23 = 0;

(iv) For extracting bulk modulus: σ 0
11 = σ 0

22 = σ 0
33 = 16 GPa, σ 0

12 = σ 0
13 = σ 0

23 = 0.

Next, we will proceed to develop a suitable form of the scaling function and construct the material scaling
diagram for quantifying the size of the RVE.
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Table 1 Materials analyzed across all crystal classes

Crystal class Material GV (GPa) GR (GPa) KV (GPa) KR (GPa) AU

Cubic Cua 54.63 40.03 137.07 137.07 1.82
Hexagonal Znb 44.82 34.13 75.08 61.58 1.79
Monoclinic SnFc2 13.8 10.3 17.9 16.5 1.78
Orthorhombic Sd 7.22 6.17 20.6 17.56 1.03
Triclinic Ane96 42.45 35.70 88.74 84.1 0.99
Tetragonal Zrf 21.7 18.4 21 19 1.00
Hexagonal α Tig 44.2 42.59 105 105 0.19
Trigonal Fe2Oh

3 94.7 91.9 98.3 97.2 0.16
a El Houdaigui et al. [30]; b Berryman [42]; c Watt [43]; d Lide [44]; e Brown et al. [45]; f Watt and Peselnick [46]; g Ledbet-
ter and Kim [47]; h Berryman [42]

Table 2 Model validation for shear modulus of Cu (Dirichlet)

No. of grains No. of realizations Current work El Houdaigui et al. [30] % difference

25 100 51.77 52.54 1.48
400 50 50.03 50.09 0.12
1000 25 49.94 49.79 0.31
5000 10 49.48 49.34 0.29

Table 3 Model validation for shear modulus of Cu (Neumann)

No. of grains No. of realizations Current work El Houdaigui et al. [30] % difference

25 100 44.90 43.4 3.47
400 50 47.15 47.31 0.34
1000 25 47.49 47.57 0.15
5000 10 48.17 48.39 0.46

3.1 Benchmark results

We discuss the benchmarking studies that were performed in order to validate the results for Cu with the ones
published in the literature by El Houdaigui et al. [30]. For Dirichlet boundary value problems, computational
results showed that the scale-dependent bounds converged to the effective property (shear modulus) as the
percentage difference is less than 2% for all grain sizes (see Table 2). Similarly, for Neumann boundary value
problems, numerical results indicated that the bounds approached the effective property as the percentage
difference is less than 4% for all grains sizes (see Table 3). In the subsequent section, we will illustrate the
effect of grain shape on the scaling behavior of random microstructures.

3.2 Effect of grain shape on scaling function and size of RVE

We now consider the effect of the grain shape on the scaling behavior of lithium as its universal anisotropy
index is very high (AU= 8.4256). In addition, we have selected the grain sizes (8, 27, 64 and 512) based on the
work by Ranganathan and Ostoja-Starzewski [10] (see Fig. 2a). We now compare the scale-dependent bounds
on the shear modulus for grains generated by Voronoi tessellations and cubic-shaped grains (see Fig. 2b). It can
be seen that as NG → ∞ (δ → ∞), there is no significant difference in the results obtained using the geometry
generated by Voronoi tessellations and the cubic-shaped geometry. This is consistent with the observations of
Ranganathan and Ostoja-Starzewski [10] and Bhattacharya and Suquet [41]. In fact, we observe the scaling
and rescaled functions to be almost identical except for NG = 8 (see Fig. 2c, d). Therefore, we conclude that it
does not matter whether one uses Voronoi or cubic-shaped geometry in order to quantify the size of the RVE.
Also, if AU is significantly large, the shape of the grains is not important for homogenizing the aggregate
response. In addition, the RVE size is not affected by the grain shape when AU = 0. We now proceed to
demonstrate the scale-dependent bounds of all the materials analyzed across the various crystal classes.
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(a)

(a) (b)

(a) (b)

Fig. 3 Scale-dependent bounds for the elasticmoduli of Cu (top), Zn (center) and SnF2 (bottom): a shearmodulus. b bulkmodulus

3.3 Scale-dependent bounds on the effective response

We now illustrate the scale-dependent response of the microstructures, which are obtained by solving Dirichlet
and Neumann boundary value problems. The upper and lower bounds for all materials studied correspond to
the Voigt and Reuss estimates. The scale-dependent bounds of the shear modulus for Cu as well as the bounds
for the shear and bulk moduli for Zn and SnF2 are observed in Fig. 3. It is evident that the bounds converge
to the effective property with an increase in the number of grains from 25 to 5000 (see Fig. 3). Along similar
lines, the scale-dependent bounds of S, An96 and Zr get tighter as the number of grains increases (see Fig. 4).
Similarly, the elastic response of α Ti and Fe2O3 indicates that the bounds approach the effective property
(shear and bulk moduli) as the grain size increases (see Fig. 5).

Let us now consider the scaling behavior of all the materials studied. The universal anisotropy index, AU ,
for Cu, Zn and SnF2 is almost identical (see Table 1), and therefore, they will be analyzed together. Figure 6
shows that the scaling functions for these materials are quite close to one another, and it is reasonable to state
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(a) (b)

(a) (b)

(a) (b)

Fig. 4 Scale-dependent bounds for the elastic moduli of S (top), An96 (center) and Zr (bottom): a shear modulus. b bulk modulus

that the scaling function depends only on the AU and the mesoscale, δ. Therefore, we rewrite Eq. (2.18) as
follows:

f (Ci j , A
U , δ) ≡ f (AU , δ). (3.1)

We now discuss the scaling functions for S, An96 and Zr (see Fig. 6). Once again, the scaling functions for
these three materials are very close to each other. A similar phenomenon is observed for α Ti and Fe2O3 as
the scaling functions for these two materials are almost identical (see Fig. 6).

4 Constructing the scaling function

We now rewrite Eq. (2.24) in order to illustrate the functional form of the scaling function as follows:

0 ≤ 1

AU
f (AU , δ) ≤ 1. (4.1)
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(a)

(a) (b)

Fig. 5 Scale-dependent bounds for the elastic moduli of α Ti (top) and Fe2O3 (bottom): a shear modulus. b bulk modulus

Fig. 6 Scaling function for all materials

Let us now consider the rescaled scaling function defined in Eq. (4.1). It is very interesting to observe that
the rescaled function is identical for all the materials belonging to any crystal class as shown in Fig. 7. The
slight scatter in the results plotted in Fig. 7 can be attributed to the finite number of realizations used to obtain
the ensemble averages. Therefore, it is reasonable to state that the rescaled function, f ∗, is independent of the
universal anisotropy index, AU , and is only a function of the mesoscale, δ. We now proceed to redefine the
scaling function as follows:

f (AU , δ) = AU f ∗(δ), (4.2)

where f ∗(δ) is the material independent rescaled function.We now take the mean values of f ∗(δ) in Fig. (7) to
construct the effective averaged rescaled function and curve fit it (see Fig. 8). Based on the effective function
and its fit, f ∗(δ) takes the following form:

f ∗(δ) = (δ)−0.89. (4.3)
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Fig. 7 Rescaled scaling function for all materials
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Fig. 8 Effective rescaled scaling function and fit for all materials

At this stage, it is convenient to illustrate the scaling function using Eqs. (4.2) and (4.3) as follows:

f (AU , δ) = AU (δ)−0.89, δ = (NG)
1
3 . (4.4)

This form of the scaling function takes into account all the properties defined in Sect. 2.4. We now employ
Eq. (4.4) to reconstruct the scaling function for all the materials as shown in Fig. 9. It is clear from this plot
that this formulation captures the scaling function accurately and unifies the treatment of a wide spectrum of
materials across all crystal classes (from cubic to triclinic).

5 Material scaling diagram

We now discuss the contours of the scaling function in the (AU , NG) space based on Eq. (4.4) (see Fig. 10).
It can be seen that, as the scaling function decreases, the curves shift toward the higher number of grains
and vice versa. It has to be noted that the value of the scaling function determines the appropriate size of the
RVE. Theoretically, when the number of grains is infinite, the scaling function becomes zero or when AU = 0
(crystal is locally isotropic). For practical purposes, one can choose a finite value of the scaling function in
order to determine the number of grains required for homogenization. We illustrate this concept by choosing a
specific value of the scaling function ( f = 0.2) and construct Fig. 11 based on this value for a variety of elastic
random polycrystals across all crystal classes (from cubic to triclinic). For a material with low anisotropy
(Fe2O3), the RVE is approached at NG = 1 (δ = 1). Finally, for a material with high anisotropy (Cu), the
number of grains required for homogenization is NG = 1678 (δ ∼= 12).
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(a)

(b) (c)

Fig. 9 Scaling functions and fit using Eq. (4.4) for all materials a Cu, Zn, SnF2. b S, An96, Zr. c α Ti, Fe2O3

Fig. 10 Contours of the scaling function for 0.01 ≤ f ≤ 0.23

Fig. 11 Material scaling diagram at f = 0.2
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6 Conclusion

In this paper, we have demonstrated the methodology to obtain scale-dependent bounds on the elastic response
of polycrystals by solving stochastic boundary value problems (Dirichlet and Neumann) consistent with the
Hill–Mandel homogenization condition. In doing so, we established a framework to unify the treatment of a
variety of elastic random polycrystals across all crystal classes (from cubic to triclinic) in terms of the elastic
scaling function. This specific form of the scaling function takes into account the universal anisotropy index
(AU ) and the number of grains in the domain. In addition, we have shown some characteristics of the scaling
function such as that the scaling function is zero at infinite grain sizes or when the crystals are locally isotropic
(AU = 0). Subsequently, a material scaling diagram is constructed that allows one to estimate the number of
grains required to homogenize the aggregate response in order to accurately determine the effective property. In
the current work, we have employed only two of the three boundary conditions that stem from the Hill–Mandel
condition. In the future, one can analyze the effect of the third (mixed orthogonal) boundary condition on the
elastic scaling function. To the best of our knowledge, this is the first attempt to unify the scaling behavior for
elastic polycrystals belonging to any crystal class.
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