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Abstract Thermoelastic damping is an important issue for micro-/nanoscale mechanical resonators. In this
work, an Euler–Bernoulli beam with different types of mechanical boundary conditions at the two ends is
adopted. Once it bends, the half compressed (stretched) will be heated (cooled), then a transverse heat con-
duction appears, and energy dissipation occurs. First, size-dependent thermoelasticity based on generalized
thermodynamics is introduced by combining the nonlocal elasticity and hydrodynamic heat-conductive model
heat conduction, and the governing equations of the nonlocal thermal Euler–Bernoulli beam are sequently for-
mulated. Second, an analytical solution to the inverse quality factor is obtained by using the complex-frequency
approach, and it is observed that the solution is related to the nonlocal parameter of both elastic and thermal
fields, as well as material constants. Meanwhile, another numerical method to get the inverse quality factor is
proposed. Third, the effects of nonlocal parameters of both thermal and elastic fields, the height of the beam,
and the material constants on the quality factor are evaluated. Finally, conclusive remarks are summarized.
The predicted results are expected to be beneficial to micro-/nanomechanical resonators design.

1 Introduction

Progressive advances of nanotechnology have been leading to great development of nanoelectromechanical
systems (NEMS). An nanomechanical resonator, which is one of the important types of NEMS device, has
recently attained a lot of interest due to a variety of promising applications, such as ultrasensitive mass detec-
tion, mechanical signal processing, probe microscopes scanning [1], and the charge probing of a quantum dot
[2]. Beyond that, functionalization and hybrid structures make this emerging technology suitable for biological
applications as well, for example, nanomechanical resonators’ interaction with biomolecular [3] and label-free
detection of bio-/chemical molecules at single-molecule (or atomic) resolution [4]. However, the performance
of such devices is commonly limited by the deleterious effects of thermoelastic damping (TED) [5], and as a
consequence, nanomechanical resonatorswith high quality factors (Q-factor) are required, and accurate predic-
tion of the Q-factor is essential for designing high-performance mechanical resonators. Although fabrication
methods for metallic beams of nanoscale size have been developed, very little is known about loss mechanisms
in such beams. In this respect, it is significantly important to have an in-depth understanding on the energy
dissipation mechanisms of NEMS resonators [6]. In technological applications, low dissipation is generally
desirable, which makes a device more efficient, less susceptible to mechanical noise, and more sensitive. It is
found that the piezoresistive effect may be adopted to compensate TED [7]. On the other hand, the dissipation
is fundamentally necessary in some cases, for example, it may enable coupling to the environment and allow
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for the transduction of a signal from one system to another. If no dissipation process occurs, no actuation or
detection would be possible [8]. Dissipation effects are commonly denoted by the Q-factor [9]:

• The Q-factor is defined as the ratio of stored energy versus dissipation energy for various damping mech-
anisms during one cycle of vibration. It represents the decay of vibrational energy over time.

Apparently, a higher Q-factor indicates low energy dissipation and corresponds to a longer decay time and vice
versa. Generally speaking, the parameters affecting the Q-factor may be categorized as intrinsic and extrinsic.
For the former, it is due to inherent flaws or defects in the structure of a resonator such as dislocations,
grain boundaries, and crystalline impurities. The latter is owing to the interactions of a nanoresonator with
its surrounding environment. Four major loss mechanisms for nanoresonators essentially contribute to the
Q-factor, i.e., surface losses, clamping or support losses, gas damping losses, and TED losses. Surface and
TED losses are intrinsic damping parameters, while clamping and gas damping losses are extrinsic damping
factors. Among energy dissipation mechanisms, TED has been particularly identified as more crucial than
other damping factors for a large range of micro-/nanomechanical resonators [10,11]. The process of TED for
energy dissipation is a consequence of thermal currents generated by contraction/extension in elastic media:

• The bending of the media causes deformation of opposite signs on the upper and lower halves. One half is
compressed and heated, and the other is stretched and cooled. Thus, heat conducting fromhigh-temperature
regimes to low-temperature regimes along the transverse direction inevitably occurs due to the produced
temperature gradient, which further causes an increase in the entropy and it comes to energy dissipation.

The Q-factor of a resonator due to TED is directly related to its frequency response and also determines its per-
formance. Accurate prediction of the Q-factor is crucial for designing high-performance microelectromechan-
ical devices. Some approaches to predict the Q-factor caused by TED are introduced: The widely adopted one
is the complex-frequency method [12], where the Q-factor is obtained as Q−1 = 2 |Im(ω)/Re(ω)|, where ω
is the complex frequency, Im and Re denote imaginary and real part of a complex number. Others include:
thermal-energy method [13], finite element method-based method [14], and molecular dynamics simulation
[15,16].

With the aid of the above-mentioned approaches, numerous works have been conducted for predicting
the Q-factor induced by TED in the context of classical thermoelasticity: The seminal work on this topic is
completed by Zener [17]. Based on classical coupled thermoelasticity theory [18], Lifshitz and Roukes [12]
formulated an analytical solution to the Q-factor for micro-Euler–Bernoulli beam resonators, which arouses
great research interests on TED, and leads to the blooming trend of such topic. Heat conduction along axial
direction is neglected in this work [12,17], which is performd by conducting a systematical analysis with
two-dimensional heat conduction in micromechanical resonators [19]. By using the spectral element method,
the Q-factor of resonators based on Timoshenko beam theory is investigated [20]. A single-degree-of-freedom
model for TED is proposed [21], from which the accuracy of Zener’s results is proven. An analytical model for
TED based on entropy generation is formulated [22]. The Q-factor of a rotating disk is considered [23], and
it is observed that the maximum TED may be obtained by optimizing disk thickness, inner radius, and radial
width. The vibration and Q-factors of a nanomechanical circular tube are studied, and the influences of the
dimensions of the shell, the mode numbers, and initial stress are discussed [10]. The fact that TED depends
significantly on the resonance mode shape was pointed out [24] and later formalized by Norris [25]. The
effect of surface stress and geometrical shape of the cross section on thermoelastic dissipation of nanowires is
considered [26,27]. And the role of tensile stress on damping of nanomechanical resonators is also clarified
[28].

It seems that the effect of various factors on TED has been systematically investigated. However, the
above-mentioned works are all built upon classical thermoelasticity, and as a result, they are not applicable to
micro-/nanoscale issues, for which size effect is predominant. From heat conductive perspective, lots of non-
Fourier models have been proposed, i.e., thermal wave model [29], dual-phase-lag model [30], thermomass
model [31], inertial entropy theory [32], and nonlocal model [33]. For elasticity, the celebrated nonclassical
models combined with size effect are: nonlocal model [34], strain gradient model [35], and couple stress
model [36], etc. Combing elasticity with thermal wave model [29] comes to the generalized thermoelasticity
(also denoted as LS model) [37]. Similarly, other nonclassical thermoelasticity results may be obtained by
incorporating a non-Fourier law. Another widely adopted model is the one proposed by Green and Lindsay
[38]. In the 1990s, Green and Naghdi [39,40] established a quite different thermoelasticity, also known as GN
model.

It is found that nonclassical thermoelasticity has also been applied to predict TED of nanoresonators. For
example, LS model is adopted for thermoelastic damping of a beam resonator [41], TED and frequency shift
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in micro-/nanoscale anisotropic beams [42], and microscale circular plate resonators [43]. Thermoelasticity
based on the dual-phase-lag model is also adopted for TED analysis [44] and concludes that the result can
partly explain the fact that the experimental results of the Q-factor tend to decrease monotonously when the
size of the microresonators goes down to the nanometer scale. Beyond that, the size effect of elasticity is also
considered, i.e., analytical expressions for the Q-factor of TED applying couple stress theory are presented
[45,46]. Nonlocal elasticity is also applied in prediction of the Q-factor: TED in studies using LS thermoelastic
model with nonlocal elasticity [47]. In 2014, TED of a double-walled carbon nanotube was investigated using
the nonlocal shell theory [48]. Two works are reported in 2015, i.e., Rezazadeh et al. [49], Nazemizadeh and
Bakhtiari-Nejad [50]: The former is devoted to transient responses, while the latter is designed for a Q-factor
attributed to airflow damping and support losses.

An analysis for the Q-factor of mechanical resonators has been systematically reviewed, from which it is
observed that:

• The phenomena observed from experiments, for example, the measured inverse Q-factor, is significantly
larger than the thermoelastic limit [11], and the trend of the Q-factor tends to decrease monotonously with
size miniaturizing and may not be explained;

• No prior works have considered the size effect for TED analysis in both heat conduction and elastic sense.
At most, only the size effect of deformation is incorporated [45–50].

Sobolev [51] and Tzou [52] suggested that: Heat conduction atmicro-/nanoscale is essentially nonlocal, and the
classical heat conduction law should be further extended by introducing the material’s characteristic length.
The size effect of heat conduction is emphasized [53], where an abnormal result within the thermal wave
model is eliminated by introducing a spatial size effect. The hydrodynamic heat-conductive model proposed
by Guyer and Krumhansl [33] is essentially size dependent. The phonon scatterings are usually grouped into
two categories: normal (N) process and resistive (R) process. The hydrodynamicmodel is merely a special case
when the N process is the dominating phonon scattering, while Fourier’s law is another special case, which is
indeed a macroscopic heat transport equation when U-type R process is dominant.

In this work, the analysis of TED will be done with the aid complete nonlocal coupling of two fields, i.e.,
displacement and temperature by combining the hydrodynamic heat-conductive model and nonlocal elasticity.
Based on the theoretical basis, an analytical solution to the Q-factor will be formulated. And it will be observed
that the experimental phenomena [11] may be illustrated by the size effect of heat conduction. The present
work is expected to be a direct continuation and a further perfection of Lifshitz and Roukes [12] by extending
original results into nanodevices, essentially.

2 The concept of the Q-factor and two pioneering works

Although the Q-factor is directly related to the stored energy and dissipation energy, it is commonly calculated
using the concept of complex Young’s modulus or complex frequency with the aid of thermoelasticity theory.
The formulation is complicated, and will be neglected here for brevity, in this work the Q-factor of the well-
known one-degree-of-freedom mass–spring system will be presented, whose governing equation has the form
as:

ẍ + 2ςω0 ẋ + ω2
0x = 0 with ς = c

/
2
√
km, ω0 =

√
k
/
m (1)

where x is the displacement of themass, 1
2ς is the Q-factor of the system [54],ω0 denotes the frequency, c is the

damping coefficient, and k and m are spring coefficient and mass, respectively. By assuming x = f (x) eiωt ,
and substituting it into Eq. (1), one obtains:

ω2 − 2ςω0ωi − ω2
0x = 0 (2)

from which one gets: ω =
(√

1 − ς2 + ς i
)

ω0. As a result, the Q-factor may be related to the complex

frequency as:

Q = 1

2ς
∼=

√
1 − ς2

2ς
= Re (ω)

2 Im (ω)
. (3)

And correspondingly, the dissipation may be denoted as:

Q−1 = 2

∣
∣∣∣
Im (ω)

Re (ω)

∣
∣∣∣ (4)



1290 Y. J. Yu et al.

which will be adopted in this manuscript to investigate the TED of nanoscale devices. Before coming to
this task, we would like to introduce two pioneering works of TED, firstly. Around the 1930s, to consider
heating and finite thermalization time for real materials, Hooke’s law was extended to include relaxation times
of the strain and stress fields and comes to theory of anelasticity. Zener [17] adopted the theory to analyze
thermoelastic dissipation by calculating the time averages of the stress, strain, and temperature, and obtained:

Q−1
Zener = Eα2

θT0
ρcE

ωτth

1 + (ωτth)
2 with τth = h2 ρcE

π2k
(5)

where E is the elastic modulus, αθ the thermal expansion coefficient, T0 the reference temperature, ρ the mass
density, cE the specific heat, ω the resonant frequency, E the elastic coefficient, and h and k height of the beam
and thermal conductivity, respectively. It is concluded that at low frequency, i.e., ωτth << 1, the isothermal
regime holds, and the damping is low. On the other hand, for high frequency ωτth >> 1, the temperature
gradient change is so quick that less heat conduction occurs. And the maximum dissipation may occur under
the condition as ω = τ−1

th .
Later, Lifshitz and Roukes [12] systematically investigated TED of Euler–Bernoulli beam resonators in

the context of thermoelasticity and obtained an analytical solution as:

Q−1
R−L = Eα2

θT0
ρcE

(
6

ψ2 − 6

ψ3

sinhψ + sinψ

coshψ + cosψ

)
with ψ = h

√
ρcEω0

2k
(6)

which may be degenerated into

Q−1
R−L = Eh2 α2

θT0
10k

ω

1 + ω2h4 c2E
/
(96k2)

(7)

for thin rectangular beams [26]. It is noted that TED with surface stress was studied by Ru [26], who showed
that for rectangular cross sections without surface effect the solution may be degenerated into

Q−1
R−L = Eh2 α2

θT0
10k

ω

1 + ω2h4 c2E
/
(100k2)

. (8)

It is observed that the results (7) and (8) are very close to each other. The present work will be focused on the
size effect of heat conduction and elasticity at the micro-/nanoscales.

3 TED analysis of a nonlocal thermal Euler–Bernoulli beam

3.1 Theoretical basis: nonlocal thermoelasticity

Chan et al. [55] demonstrated that the nonlocal effects due to large temperature gradient, which exists over a
distance that is small compared to the electron mean free path, can describe the heat confinement near the inter-
face observed in their experiment. Apparently, the size effect may become significant when the characteristic
length scale of the process is comparable with the mean free path of heat carriers. Guyer and Krumhansl [33]
proposed a nonclassical heat-conductive law by solving the linearized phonon Boltzmann equation employing
eigenvectors of the normal-process collision operator (also known as hydrodynamic heat-conductive model),
as

qi + τ
∂qi
∂t

= −k∇ θ + ζ 2 [∇2 qi + 2∇ (∇ · qi )
]

(9)

where qi denotes the heat flux, θ the temperature change, τ the relaxation time, k the heat conductivity, ζ
denotes the nonlocal parameter of heat conduction, and the symbol ∇ represents the spatial gradient operator,
i.e., ∇ θ = {∂iθ}, and ∇2 denotes the Laplace operator. Recently, a similar expression as Eq. (9) is obtained
within thermomass theory [56], which may be viewed as its microscopic interpretation.

On a separate front, Eringen [34] suggested that classical elasticity may fail as the external characteristic
length (or time) approaches to the internal characteristic length (or time), and assumed that the stress field at
a point in an elastic continuum not only depends on the strain field at the point but also on strains at all other
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points of the body. The model proposed by Eringen is commonly denoted as nonlocal elasticity, which has the
differential form: [

1 − ξ2∇2] σi j = Ci jklεkl (10)

where σi j is the strain tensor, εi j denotes the strain tensor, ξ is the nonlocal parameter of elasticity,Ci jkl are the
elastic constants. Obviously, for macro-scale problems the characteristic length is relatively small, i.e., ξ = 0,
and Eq. (10) will be degenerated into the classical stress constitutive equation. And recently, the nonclassical
stress constitutive equation (10) was reformulated by Polizzotto [57] using the complementary principle of vir-
tual power (PVP). Here, to evaluate TED at the micro-/nanoscale, the above-mentioned nonclassical Fourier’s
law and stress constitutive equation will be combined to establish the size-dependent thermoelastic model. A
theoretical formulation of nonlocal thermoelasticity is given by the present authors using generalized thermo-
dynamics [58], and the coupled theory with size effect considered has been adopted for transient responses
[58] and thermoelastic buckling of a nanobeam [59]. As summarized in the work [58], the theory may consist
of the following equations:

• Equations of motion and energy conversation:

σ j i, j = ρüi , (11)

qi,i = −ρT0η̇; (12)

• Nonlocal constitutive equation of stress and entropy:
(
1 − ξ2∇2) σi j = 2μεi j + λεkkδi j − (3λ + 2μ)αθθδi j , (13)

ρη = (3λ + 2μ)αθεkk + ρcE
T0

θ; (14)

• Geometric relations and generalized Fourier’s law:

εi j = 1

2

(
ui, j + u j,i

)
, (15)

(
1 − ζ 2∇2) qi = −kθ,i (16)

where ui is the displacement andmay be also denoted as u, v, w, respectively. And η denotes entropy. λ and μ
are Lamé coefficients, αθ denotes the linear thermal expansion coefficient. T0 is the reference temperature. It
is well known that:

λ = Eυ

(1 + υ) (1 − 2υ)
, μ = E

2 (1 + υ)
(17)

in which υ denotes Poisson’s ratio. Combining (13) and (17), the constitutive equation in terms of E and υ
may be:

(
1 − ξ2∇2) σi j = E

1 + υ
εi j + Eυ

(1 + υ) (1 − 2υ)
εkkδi j − Eαθ

1 − 2υ
θδi j ,

ρη = Eαθ

1 − 2υ
εkk + ρcE

T0
θ. (18)

Thus far, the nonlocal thermoelastic framework is introduced. If nonlocal parameters of both heat conduction
and elasticity are omitted, classical thermoelasticity will be obtained. Meanwhile, if deformation is not consid-
ered, it will degenerate into nonlocal heat conduction. Accordingly, nonlocal elasticity may be obtained once
the thermal field is excluded.

3.2 Governing equations of a nonlocal thermal Euler–Bernoulli beam

As seen in Fig. 1, a micro-/nanoscale Euler–Bernoulli beam will be considered. Deformation of the mid-plane
along the x and y-axis will be denoted by u and v, and the transverse deformation is given by w:

u (x, z, t) = −z
∂w

∂x
, v = 0, w (x, z, t) = w (x, t) . (19)
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Fig. 1 (Color online) Configuration of the Euler–Bernoulli beam

Referring to (15), the strain may be:

εx = −z
∂2w

∂x2
; εy = 0; εz = 0. (20)

Substituting (20) into (18) and neglecting the Poisson effect yields:

(
1 − ξ2

∂2

∂x2

)
σx = Eεx − Eαθθ = −Ez

∂2w

∂x2
− Eαθθ, (21.1)

ρη = −Eαθ z
∂2w

∂x2
+ ρcE

T0
θ, (21.2)

which are the constitutive equations for an Euler–Bernoulli beam in thermal environment.

3.2.1 Governing equation of the elastic field

Firstly, the focus is placed on the formulation of the governing equation of deformation for an Euler–Bernoulli
beam at the micro-/nanoscale. Similar to classical beam theory, the bending moment may be defined as
M = ∫ h/2

−h/2 σxbzdz, and one may get by further combining with (21.1):

M = ξ2
∂2M

∂x2
− E I

∂2w

∂x2
− Eαθ Mθ . (22)

In Eq. (22), Mθ is defined as Mθ = ∫ h/2
−h/2 θbzdz, and I = 1

12bh
3. Then, the shear force S may be obtained

with the equation

S = ∂M

∂x
. (23)

As is well known, the equation of a transversely vibrating beam is:

∂2M

∂x2
= ρA

∂2w

∂t2
. (24)

Introducing (24) into (22), one has:

M = ξ2ρA
∂2w

∂t2
− E I

∂2w

∂x2
− Eαθ Mθ . (25)

Thus, the bending moment is obtained for a nonlocal thermal Euler–Bernoulli beam. From (24) and (25), the
governing equation of transverse deformation w is obtained as:

E I
∂4w

∂x4
+ Eαθ

∂2Mθ

∂x2
+

(
1 − ξ2

∂2

∂x2

)
ρA

∂2w

∂t2
= 0. (26)
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3.2.2 Governing equation of the thermal field

Similar to the work of Lifshitz and Roukes [12], heat conduction along the axial direction will be neglected.
As a consequence, Eqs. (11), (15) will be reduced into:

∂qz
∂z

= −ρT0η̇, (27)
(
1 − ζ 2 ∂2

∂z2

)
qz = −k

∂θ

∂z
(28)

from which one has:

k
∂2θ

∂z2
=

(
1 − ζ 2 ∂2

∂z2

)
ρT0.η̇. (29)

The governing equation of temperature may be obtained from Eqs. (29) and (21.2) as:

χ
∂2θ

∂z2
=

(
1 − ζ 2 ∂2

∂z2

)
θ̇ − �E

αθ

z
∂2ẇ

∂x2
(30)

in which χ is the thermal diffusivity, as: χ = k
/
ρcE , and �E = T0Eα2

θ

ρcE
.

3.3 TED analysis

To predict TED of micro-/nanoresonators, we aim to solve the coupled governing Eqs. (26) and (30) for
harmonic vibration. Firstly, let:

w (x, t) = w0 (x) eiωt ,

θ (x, z, t) = θ0 (x, z) eiωt ,

q (z, t) = q0 (z) eiωt . (31)

Introducing (31) into the governing equation of temperature (30) yields:

∂2θ0

∂z2
= iω

χ + iως2

[
θ0 − �E

αT
z
∂2w0

∂x2

]
(32)

whose solution may be assumed as
θ0 = A sinmz + B cosmz (33)

where m =
√

iω
χ+iωζ 2

. Introducing (33) into (28), it is obtained that q0 = −k
1+ζ 2m2

∂θ0
∂z . Because the top and

bottom surfaces are assumed to be adiabatic, as q0 (±h/2) = 0, the solution to temperature may be:

θ = �E

αT

∂2w0

∂x2

[

z − sin (mz)

m cos
(mh

2

)

]

eiωt . (34)

And then according to the definition Mθ = ∫ h/2
−h/2 θbzdz, one gets:

Mθ = E I�E

Eα

[
1 + 12

h2m2 − 24

h3m3 tan

(
hm

2

)]
∂2w0

∂x2
eiωt . (35)

Inserting (35) into the governing equation of deformation (26) yields:

E I

ρA
[1 + f (ω)�E]

∂4w0

∂x4
−

(
1 − ξ2

∂2

∂x2

)
ω2w0 = 0 (36)
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where f (ω) = 1 + 12
m2h2

− 24
m3h3

tan
( hm

2

)
. Equation (36) is further rewritten as:

∂4w0

∂x4
+ ξ2β4 ∂2w0

∂x2
− β4w0 = 0 with β4 = ω2

a20
(37)

in which a20 = E I
ρA [1 + f (ω)�E]. If the term f (ω)�E is omitted, then the flexural vibration of the nonlocal

beam will be obtained:

∂4w0

∂x4
+ ξ2β4 ∂2w0

∂x2
− β4w0 = 0 with β4 = ω2

NB

a2NB
or ωNB = β2 aNB (38)

where a2NB = E I
ρA , and the resonant frequency of the nonlocal beam will be denoted by ωNB to distinguish

it from the one of thermoelastic coupling. The solution of (38) is systematically discussed in the work [60];
however, the boundary condition C–S (Clamped–Simply supported) is not considered therein. In this work, the
solution to the boundary condition C–S will be formulated. The characteristic equation of (37) has the form:

n4 + ξ2β4n2 − β4 = 0 (39)

from which the roots are obtained as n = ±n1; n = ±in2 with

n1 = β

√√
β4ξ4 + 4 − β2ξ2

2
, n2 = β

√√
β4ξ4 + 4 + β2ξ2

2
. (40)

Thus, the solution may be assumed as:

w0 = A sinh (n1z) + B cosh (n1z) + C sin (n2z) + D cos (n2z) (41)

in which A, B,C, and D rely on the boundary conditions for two ends of the resonator. Generally, three kinds
of boundary conditions may be considered, i.e., clamped end, simply supported end, and free end:

w0 = 0; ∂w0

∂x
= 0 (Clamped),

w0 = 0; M = 0 (Simply supported),

M = 0; S = 0 (Free). (42)

In Sect. 3.2.1, the bending moment has been derived. Neglecting the thermal effect and considering Eqs. (31)
and (35), one has:

M = −
(

ξ2ρAω2w0 + E I
∂2w0

∂x2

)
eiωt , (43)

and then the shear force may be obtained as:

S = ∂M

∂x
= −

(
ξ2ρAω2 ∂w0

∂x
+ E I

∂3w0

∂x3

)
eiωt . (44)

Thus, the boundary conditions (42) may be written in form of transverse displacement, as:

w0 = 0; ∂w0

∂x
= 0 (Clamped),

w0 = 0; ξ2β4w0 + ∂2w0

∂x2
=0 (Simply supported),

ξ2β4w0 + ∂2w0

∂x2
= 0; ξ2β4 ∂w0

∂x
+ ∂3w0

∂x3
= 0 (Free). (45)

In the formulation, the C–S boundary condition will be adopted. Seeing (45), one has:

w0 (0) = ∂w0

∂x
(0) = 0, w0(L) = ξ2β4w0(L) + ∂2w0(L)

∂x2
= 0.
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With the aid of solution (41), it is obtained that:

n2 sinh (n1L) cos (n2L) − n1 cosh (n1L) sin (n2L) = 0. (46)

It is noted that when the nonlocal parameter of elasticity is neglected, the characteristic equation (46) will be
degenerated into its classical counterpart, sinh (βL) cos (βL) − cosh (βL) sin (βL) = 0. It is obtained from
(46) and (40) that the the eigenvalue is dependent on the nonlocal parameter ξ . The value of the eigenvalue
under given nonlocal parameter ξ may be also numerically solved from (46) and (40). And the results are
shown in Table 1, where the nonlocal parameter and eigenvalue are normalized as ξ/L and βL , respectively.
In addition, the results from Lu et al. [58] for the boundary conditions, i.e., S–S, C–C, and C–F, are also listed.
From these results, it can be concluded that:

• The nonlocal parameter of elasticity decreases the eigenvalue for all boundary conditions, except for the
first-order mode of C–F case. And the effect becomes larger for higher-order mode. As a result, the resonant
frequency of a nonlocal beam ωNB = β2aNB is smaller than the classical one.

Thus far, the eigenvalue βL of the nonlocal beam is obtained, and how the nonlocal parameter ξ/L affects
the eigenvalue is clear. The frequency of an Euler–Bernoulli beam using nonlocal elasticity may be obtained

from (38) as: ωNB = β2
√

E I
ρA = β2h

√
E
12ρ . Similarly, from Eq. (37), the frequency of a nonlocal thermal

Euler–Bernoulli beam is:

ω = β2

√
E I

ρA
[1 + f (ω)�E] = √

1 + f (ω)�EωNB (47)

where f (ω) = 1 + 12
m2h2

− 24
m3h3

tan
( hm

2

)
with m =

√
iω

χ+iως2 , and �E = T0Eα2
θ

ρcE
. The dissipation has

been presented in Sect. 2, as: Q−1 = 2
∣
∣∣ Im(ω)

Re(ω)

∣
∣∣. The algebraic equation of the complex frequency has been

formulated, as shown in Eq. (47). It is observed that the nonlocal parameters of both heat conduction and
elasticity, material constants, and the height of the beam have an effect on the dissipation. In principle, the
complex frequency can be solved directly from (47), and then the energy dissipation will be obtained. In Eq.
(47), the variable �E is relatively small, so (47) may be further expressed as:

ω =
[
1 + �E

2
f (ω)

]
ωNB. (48)

Later, two ways are applied to predict the dissipation of the micro-/nanoresonator.

Table 1 Eigenvalue βL versus nonlocal parameter ξ/L for four boundary conditions: S–S, C–C, C–F, and C–S

ξ/L 0 0.1 0.2 0.3 0.4

S–S (sin (n2L) = 0)
β1L 3.14160 3.0685 2.8908 2.6800 2.4790
β2L 6.28320 5.7817 4.9581 4.3013 3.8204

C–C (ξ2n1n2 sinh (n1L) sin (n2L) + 2 cosh (n1L) cos (n2L) − 2 = 0)
β1L 4.73000 4.59450 4.2766 3.9184 3.5923
β2L 7.85320 7.14020 6.0352 5.1963 4.5978

C–F (2 + ξ4n21n
2
2 + ξ2n1n2 sinh (n1L) sin (n2L) + 2 cosh (n1L) cos (n2L) = 0)

β1L 1.87510 1.8792 1.8919 1.9154 1.9543
β2L 4.69410 4.5475 4.1924 3.7665 3.3456

C–S (n2 sinh (n1L) cos (n2L) − n1 cosh (n1L) sin (n2L) = 0)
β1L 3.92660 3.82090 3.5701 3.2828 3.0176
β2L 7.06860 6.46490 5.5079 4.7688 4.2312
β3L 10.2102 8.65170 6.9204 5.8371 5.1213
β4L 13.3518 10.4688 8.0573 6.7143 5.8612
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3.3.1 First way: analytical solution to the Q-factor

Because TED is very weak (Im (ω) << 1), we can replace f (ω) in (48) with f (ωNB), and then the frequency
relation has the new form as:

ω =
[
1 + �E

2
f (ωNB)

]
ωNB. (49)

So, the dissipation may be obtained as:

Q−1 = 2

∣
∣∣∣
Im (ω)

Re (ω)

∣
∣∣∣ = �E |Im [ f (ωNB)]|

1 + �E
2 |Re [ f (ωNB)]| =̃ �E |Im [ f (ωNB)]| . (50)

Now, the aim is to solve the imaginary part of the function

f (ωNB) = 1 + 24

m3
NBh

3

(
hmNB

2
− tan

(
hmNB

2

))
(51)

in which mNBh =
√

iωNB
χ+iωNBζ 2

h with ωNB = β2h
√

E
12ρ . For convenience, it is written as:

mNBh =
√

i p

χ/L + i p (ζ/L)2
h

L
with p = (βL)2

h

L

√
E/(12ρ). (52)

Then, the real and imaginary part of mNBh may be obtained as:

R1 = Re (mNBh) = 1
√

φ2 + (ζ/L)4

φ

2

√
−(ζ/L)2+

√
(ζ/L)4+φ2

2

h

L
,

I1 = Im (mNBh) = 1
√

φ2 + (ζ/L)4

√√√
√− (ζ/L)2 +

√
(ζ/L)4 + φ2

2

h

L
(53)

where φ = ϕ 1
(βL)2h/L

with ϕ =
√
12k√

ρEcE L
. Accordingly, mNBh can be expressed as:

mNBh = R1 + i I1. (54)

Introducing (54) into (51), one has the imaginary part of f (ωNB):

Im [ f (ωNE )] = −24R1 I1
(
R2
1 − I 21

)2 + 4R2
1 I

2
1

+ 24I1
(
3R2

1 − I 21
)
sin (R1) − 24R1

(
R2
1 − 3I 21

)
sinh (I1)

[cos (R1) + cosh (I1)]
[
R2
1

(
R2
1 − 3I 21

)2 + I 21
(
3R2

1 − I 21
)2] . (55)

And then, according to (50), it yields:

Q−1 = 24�E

∣∣
∣∣
∣∣

I1
(
3R2

1 − I 21
)
sin (R1) − 24R1

(
R2
1 − 3I 21

)
sinh (I1)

[cos (R1) + cosh (I1)]
[
R2
1

(
R2
1 − 3I 21

)2 + I 21
(
3R2

1 − I 21
)2] − R1 I1

(
R2
1 − I 21

)2 + 4R2
1 I

2
1

∣∣
∣∣
∣∣
.

(56)
In Eq. (56), R1 and I1 are referred to the (53), which are related to the normalized height h/L , eigenvalue βL ,
nonlocal parameter of heat ζ/L , and material constants ρ, E, k, and cE . It is noted that all these material
constants are summarized as a variable, i.e., ϕ, and that the effect of the nonlocal parameter of elasticity is
represented by the eigenvalue βL . Thus far, the analytical solution to the dissipation is obtained. In the next
Section, the effect of all these factors on the energy dissipation of a micro-/nanoresonator will be evaluated.
And now, another way to solve the Q-factor will be introduced.
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3.3.2 Second way: numerical solution to the Q-factor

In this Subsection, we aim at directly solving the frequency relation (48). To this end, simplification will be
made to the function f (ω) = 1 + 12

m2h2
− 24

m3h3
tan

( hm
2

)
, where tan

( hm
2

)
will be expanded using a Taylor

series. As a consequence, it is obtained that:

f (ω) = 1 + 12

m2h2
+ 24

m3h3

[
hm

2
− 1

3

(
1

2

)3

(hm)3 − 2

15

(
1

2

)5

(hm)5 − 17

315

(
1

2

)7

(hm)7 − · · ·
]

. (57)

In this work, a micro-/nanoscale beam is considered. So, h is relatively small. By taking the first to third term
of the Taylor expansion, and substituting into (48), one has:

ω =
[
1 − �E

2

1

10
(hm)2

]
β2h

√
E

12ρ
. (58)

Table 2 Material constants of silicon

E (Gpa) αt (1/K) ρ (kg/m3) cE [J/(kgK)] T0 (K)

170 2.6e−6 2330 700 300

Table 3 The obtained Q−1 by two ways

βL First way Second way

3 1.2752e−007 1.2752e−007
6 5.1006e−007 5.1007e−007
9 1.1476e−006 1.1476e−006

Fig. 2 (Color online) The dissipation Q−1/24�E versus eigenvalue βL with a different height h/L , b nonlocal parameter of
heat conduction ζ/L
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Considering that m =
√

iω
χ+iωζ 2

, the frequency relation may be written in normalized form as:

ω =
[

1 − �E

2

1

10

iω

χ/L2 + iω (ζ/L)2

(
h

L

)2
]

(βL)2
h

L

1

L

√
E

12ρ
. (59)

From Eq. (59), the real and imaginary part of the complex frequency can be found. And then, the dissipation
may be calculated using the relation Q−1 = 2 |Im (ω)/Re (ω)|.

4 Results and discussions

In this Section, the effect of each factor, i.e., nonlocal parameter of heat conduction or elasticity, ormaterial con-
stants, on the dissipation of amicro-/nanobeamwill be systematically investigated. Thematerial of the resonator
is selected as silicon, whose material constants are listed in Table 2 [20]. The length of the beam is adopted as
L = 2×10−7 m. Firstly, the accuracy of the solving procedure shown in the last Section should be proven.Using
the first way and the second one, the dissipation (Q−1) for different eigenvalues under the conditions: h/L =
0.05, ζ/L = 0 is obtained and presented in Table 3. It is observed that the results agree well between the two
ways, so the accuracy of the numerical method is proven. In the rest of this part, the effect of normalized height
h/L , eigenvalue βL , nonlocal parameter of heat ζ/L , andmaterial constants on the dissipationwill be clarified.

Presented in Fig. 2 is the distribution of the inverse Q-factor versus eigenvalue βL . It is observed that: as
the eigenvalue decreases, the inverse Q-factor may increase (from point A to B in Fig. 2a), or decrease (from
point C to D of Fig. 2a). There exists a maximum for the inverse Q-factor as shown in Fig. 2a. From Table 1 it is
observed that: the nonlocal parameter of elasticity makes the eigenvalue smaller, and the effect is stronger for
higher-order mode. Seeing Fig. 2a, the effect of the elastically nonlocal parameter may be divided into three
classes: First, for lower eigenvalue, the higher nonlocal parameter makes the inverse Q-factor decrease (i.e.,

Fig. 3 (Color online) The dissipation Q−1/24�E versus the eigenvalue βL with a different ϕ, b ϕ and also nonlocal parameter
of heat conduction ζ/L
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Fig. 4 (Color online) The dissipation Q−1/24�E versus the normalized height h/L with a different eigenvalue βL , b ϕ and c
ϕ and also nonlocal parameter of heat conduction ζ/L

from point C to point D in Fig. 2a). Second, for moderate eigenvalue, the inverse Q-factor may first increase,
and then decrease (i.e., from point B to point C in Fig. 2a). And if the eigenvalue is comparatively large, Q−1

may increase when the nonlocal parameter of elasticity is considered (i.e., from point A to point B in Fig. 2a).
Shown in Fig. 2a, when the height of the beam becomes small, the distribution of the inverse Q-factor

moves to the right side with the maximum unchanged, as a consequence, Q−1 decreases (increases) for those
before (after) the maximum. From Fig. 2b, one may conclude that: when the size effect of heat conduction is
considered, the maximum of the inverse Q-factor may be improved, which agrees well with the observation
that the measured inverse Q-factor is significantly larger than the thermoelastic limit.

In the first way to calculate the inverse Q-factor, the effect of material constants has been summarized into

one variable, as ϕ =
√
12k√

ρEcE L
. It is obtained from Fig. 3a that when the summarized variable ϕ decreases,

the distribution of the inverse Q-factor moves to the left, as a result, Q−1 increases (decreases) for smaller
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Fig. 5 (Color online) The dissipation Q−1/24�E versus the normalized nonlocal parameter of heat conduction ζ/L with a
different eigenvalue βL , b ϕ

(larger) eigenvalues. Also, once the nonlocal parameter of heat conduction is incorporated, the maximum will
be increased (Fig. 3b).

Depicted in Fig. 4 is the inverse Q-factor versus height. It is observed that the inverse Q-factor decreases
as the beam becomes thinner. In Fig. 4a, Q−1 is improved when the eigenvalue increases, which agrees well
with the conclusion made from Fig. 2. From Fig. 4b it is obtained that the inverse Q-factor becomes larger as
the summarized variable of material constants ϕ decreases, which is also consistent with the observation of
Fig. 3. Beyond that, Fig. 4c indicates that when the summarized variable ϕ is smaller, the effect of the nonlocal
parameter of heat conduction is more remarkable, that is, the maximum of Q−1 under small ϕ is higher than
that for large ϕ with the same nonlocal parameter of temperature field.

Figure 5 is designed to show the inverse Q-factor versus the normalized nonlocal parameter of heat con-
duction, and it is observed that Q−1 firstly becomes larger as the nonlocal parameter ζ/L increases, and then
the maximum will be obtained, after that, the inverse Q-factor may decrease. One may conclude that the
thermoelastic limit of damping with size effect of the thermal field incorporated (red circles in Fig. 5) is larger
than that of classical thermoelasticity. From Fig. 5a, it is also observed that the effect of the thermally nonlocal
parameter is more efficient for larger eigenvalue. When the parameter ϕ is smaller, the effect of the nonlocal
parameter of heat conduction is stronger, which can be concluded from Fig. 5b. In addition, it should be noted
that: the thermally nonlocal parameter has a similar effect even for lower eigenvalue as shown in the inset of
Fig. 5a, i.e., βL = 15, which may not be observed from Fig. 2b.

5 Concluding remarks

In this work, TED of a nanobeam is investigated. Although the issue has been considered in literature, both
size effect of heat conduction and elasticity are not incorporated, similarly. From a theoretical aspect, the
nonlocal thermoelasticity established upon generalized thermodynamics is adopted in this work, and thus both
size effects are considered. In the present theoretical framework, it is noted that the spatial extensions of heat
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conduction and elasticity are similar. Specifically, the nonlocal thermal Euler–Bernoulli beam theory is estab-
lished. To solve the inverse Q-factor, two ways are introduced: The first one is an analytical approach using
the complex-frequency method, and the second one is a numerical way. Both ways are proven by comparison
with each other. The inverse Q-factor is obtained and graphically depicted, from which it may be concluded:

• The nonlocal parameter of elasticity makes the inverse Q-factor increase (decrease) at higher (lower) fre-
quency;

• Considering the size effect of heat conduction, the inverse Q-factor may be larger than that from classical
thermoelasticity;

• The effect of the nonlocal parameter of both heat conduction and elasticity will be more significant for
higher-order mode;

• The influence of the material constants on the inverse Q-factor can be summarized into one variable, as:
ϕ = ϕ(ρ−0.5, E−0.5, k, c−1

E ). The inverse Q-factor will be larger, and the effect of the nonlocal parameter
of heat conduction will be stronger for smaller variable ϕ.

The present work is a direct continuation and a further perfection of Lifshitz and Roukes [12], aiming at
essentially extending the origin work into nanoscale. It is expected to be helpful in the further investigation on
TED, numerically, theoretically, and also experimentally.
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