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Abstract The propagation of shear horizontal waves in laminated piezomagnetic/piezoelectric plates was
investigated using the ordinary differential equation and stiffness matrix methods. Commonly used materials,
namely barium titanate as piezoelectric ‘B’ and cobalt ferrite as piezomagnetic ‘F’,were retained for illustration.
The dispersion curves of the first five modes were shown for different sequences F/F, B/B, and F/B. The effects
of thickness ratio on phase and group velocities as well as the influence on the magneto-electromechanical
coupling factor of the first mode were investigated. Large magneto-electromechanical coupling factors could
be achieved by an appropriate adjustment of the thickness ratio. The present investigation is of practical interest
for developing new layered composites made of smart piezoelectric and piezomagnetic devices for engineering
applications.

1 Introduction

In recent years, magnetic and electronic materials have received much attention with their increasing use in
engineering applications including sensors and actuators. However, combining ferromagnetism and ferroelec-
tricity in the same phase has proven to be surprisingly difficult at the atomic level. Indeed, studies, including the
manufacture of several kinds of multiferroic composite materials consisting of piezoelectric (PE) and piezo-
magnetic (PM) phases [1–3], have been undertaken to overcome these difficulties. These composites have a
magnetoelectric effect that is not present in single-phase PE or PM material. The laminated magnetoelectric
materials (ME) show a high coupling coefficient, indicating great potential for resonators, sensors, and energy
harvesters, etc. It is therefore useful to understand the mechanical behavior of ME materials in depth and
analyze the physical quantities involved in coupling. Wave problems on PE/PM structures have been widely
investigated [4]. In terms of methodology for solving problems in layered systems, the propagator matrix
and the state vector approaches are the most popular methods, among others (e.g., Thomson [5], Haskell
[6], Gilbert and Backus [7], Bahar [8]). Due to their conceptual simplicity, reduced programming effort and
computing time, these approaches have now been extended to various complicated layered structures, includ-
ing static, free vibration analysis, and magnetoelectric coupling behavior of magneto-electroelastic materials
[9–11]. Jiangong et al. [12] studied dispersion relations of waves in multilayered magneto-electroelastic plates.
Other studies have investigated horizontal shear waves (SH) at the interface of twomagneto-electroelastic half-
spaces [13]. Love waves in a PE/PM layered structure [14] or layered magneto-electroelastic structure with
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initial stress were also published [15]. In these reports thematerial in the layered structure should be considered
as homogeneous material in each layer. Chen and Chen investigated the Love wave behavior in a magneto-
electroelastic multilayered structure by the propagation matrix method [16]. Using the propagator matrix and
the state vector approaches, an analytical treatment was presented for the propagation of harmonic waves in
magneto-electroelastic plates by Chen et al. [17]. SH wave propagation in a layered system consisting of a
layer bonded to a different semi-infinite substrate is of intensive research interest in recent years. Wang et
al. [18] studied the love wave propagation in a PE lamina bonded into a semi-infinite metal medium. They
conclude that the phase velocities initiated at the shear wave velocity of the host medium tend toward the
Bleustein Gulyaev surface wave velocity for the PE layer at high wave numbers for the first mode. In their
studies, Fan and Yang [19] analyzed the propagation behavior of SH surface waves in a layered system con-
sisting of a PE half-space and a metal or elastic dielectric layer with an imperfect interface. They found that
the dispersion characteristics were sensitive to the interface properties. The objective of this work is to study
the SH waves propagation in layered PE/PM plate. For that purpose the stiffness matrix method (SMM) and
the ordinary differential equation (ODE) [20,21] have been extended to the study of the magneto-electroelastic
multilayered structure. The constitutive relations used are of general anisotropy, which possess simultaneously
the coupling effects between mechanical, electric and magnetic fields. Numerical examples are presented to
show the features of dispersion curves for different sequences F/F, B/B and F/B. Furthermore, the effect of the
thickness ratio of the PE layer to the PM layer on phase and group velocities are studied for the first mode.

2 Statement of the problem

Consider a PM layer perfectly bonded to a PE layer, their thicknesses denoted by hm, he respectively, as
illustrated in Fig. 1. Both materials are hexagonal (6mm crystals) and polarized along the x2 axis. The (x1, x3)
plane is an isotropic plane for both materials. We are interested in SH-guided waves propagating in the (x1, x3)
plane, the anti-plane acoustic mode and the in-plane electromagnetic mode are coupled. The constitutive
equations for the PM and PE layers can be expressed as follows [21,22].

For an anisotropic and linearlymagneto-electroelastic solid, the coupled constitutive relation can bewritten
as:

τi j = Ci jkl
∂uk
∂xl

− eki j Ek − qki j Hk, (1)

Di = eikl
∂uk
∂xl

+ εik Ek, (2)

Bi = qikl
∂uk
∂xl

+ μik Hk, (3)

Ei = −φ,i , H = −ψ,i , (4)

where τi j , Di and Bi , Ei , Hi and ui are the components of the stress tensor, the electric displacement, the
magnetic induction, the electric field, the magnetic field, and the particle displacement, respectively. Here, and
throughout the article, Einstein’s summation convention is used, and i, j, k and l = 1, 2, 3 or equivalently x, y, z.
Ci jkl , ei jk, qi jk, εi j and μik are material parameters, i.e., the elastic constants, the piezoelectric constants,
the piezomagnetic constants, the dielectric permittivity constants, and the magnetic permeability constants,
respectively. Here, the magneto-electric coupling constant is not considered.

X3

he

CoFe2O4 plate

X1

BaTiO3 plate
hm

Fig. 1 Geometry of multiferroic laminate
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Fig. 2 Dispersion curves of the PM/PE laminate. a Result from [25]. b Obtained result

For an orthotropic solid, with transverse isotropy being a special case, the material coefficients in Eq. (1)
can be written as:

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

Sym C55 0
C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, [e] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 e31
0 0 e32
0 0 e33
0 e24 0
e15 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, [q] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 q31
0 0 q32
0 0 q33
0 q24 0
q15 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[ε] =
⎡
⎢⎣

ε11 0 0
0 ε22 0
0 0 ε33

⎤
⎥⎦ , [μ] =

⎡
⎢⎣

μ11 0 0
0 μ22 0
0 0 μ33

⎤
⎥⎦ ,

where ui = (u1, u2, u3)T, φ and ψ are the elastic displacement, electric potential and magnetic potential,
respectively.
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For the wave propagation considered in this paper, the body forces, electric charge, and current density are
assumed to be zero. Thus, the dynamic equation for the magneto-electro-elastic media is governed by

τi j, j = ρ
∂2ui
∂t2

, (5)

Dj, j = 0, (6)

Bj, j = 0, (7)

where ρ is the density of the material.

3 Solutions of the problem

On the assumption of a harmonic wave propagating in x1 direction, the solutions to Eq. (8) can be expressed as
ξ(x3) = ξ(x3) exp(i (k1x1−ω t)). The wave equation is written under the Thomson-Haskell parameterization
of the Stroh formalism [5,6]:

d

dx3
ξ(x3) = −iω Q ξ(x3), (8)

where ξ(x3) = [−iωU, T ]T represents the state vector including ten components. Thus, the set of components
can be detailed: U = [ui , φ, ψ]T and T = [τi3, D3, B3]T with i = 1, 2, and 3.

The generalized stress vector T consists of the mechanical stress vector τi3, the normal electric displace-
ment component D3 and the normal magnetic induction component B3. In the same way, the generalized
displacement vectorU includes the mechanical displacement components ui , the electrical potential φ and the
magnetic potential ψ . For the transverse configuration, the displacement component u2, the electrical poten-
tial φ, and the magnetic potential ψ are uncoupled from the sagittal components (u1, u3). Q, known as the
fundamental acoustic tensor “fat” [23,24], is a (6 × 6) square matrix which depends mainly on the physical
properties and the guiding slowness component S1.This configuration is advantageous, since it excludes, for
Q, any dependency of the angular frequency ω, and it is given by:

Q = −iω

[
S1


−1
33 
31 
−1

33 .

S21 (
13

−1
33 
31 − 
11) + ρ I3 S1
13


−1
33

]
. (9)


ik are the (3× 3) matrices formed from the elastic constants Ci jkl , piezoelectric constant ei jk , piezomag-
netic constants qi jk , dielectric permittivity εi j and magnetic permeability constants μik :


ik =
⎡
⎢⎣
C2i2k ek2i qk2i
ei2k −εik 0
qi2k 0 −μik

⎤
⎥⎦ .

For the sake of brevity, this classical procedure which permits to obtain the guiding wave number and the
phase velocity is not given in details. However, it should be recalled that because of the anisotropy and the
complexity of the problem, the dispersion equations can only be solved numerically. In addition, the solution
associated with SH wave propagation must satisfy the boundary conditions on the inner interface and the free
surfaces. The continuity conditions at the interface between the PM/PE layers are written as:

ue2 = um2 , φe = φm, ψe = ψm, (10)

τ e23 = τm23, De
3 = Dm

3 , Be
3 = Bm

3 . (11)

The superscripts “e” and “m” denote quantities related to the PE and PM material, respectively. The upper
and lower surfaces of the bilayer system are mechanically free, electrically shorted or open, and magnetically
shorted or open. In this study, two cases for the boundary conditions are considered [25]:

Case 1: Mechanically free, electrically open and magnetically shorted surfaces (denoted by “os”), i.e.,

τ
e,m
23 = De,m

3 = Be,m
3 = 0. (12)

Case 2: Mechanically free, electrically shorted and magnetically open surfaces (denoted by “so”), i.e.,

τ
e,m
23 = φe,m = ψe,m = 0. (13)
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The first case is the electrically open and magnetically shorted (os), and the second is the electrically shorted
and magnetically open case (so) for which the state vector does not keep the same components. Concerning
the “os” case, ξ(z) includes the electric displacement D3 and the magnetic induction B3. As for the “so” case,
ξ(z) includes the electrical potential φ and magnetic potential Ψ . Accordingly, two types of (6× 6) matrices
Qos and Qso are then constructed for the magnetoelectrically open and shorted cases, respectively:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ue
2

φe

ψe

τ e
23

De
3

Be
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

=
⎛
⎝

Qos
11

Qos
12

Qos
21

Qos
22

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

um
2

φm

ψm

τm
23

Dm
3

Bm
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−h

, (14)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ue
2

De
3

Be
3

τ e
23

φe

ψe

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

=
⎛
⎝

Qso
11

Qso
12

Qso
21

Qso
22

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

um
2

Dm
3

Bm
3

τm
23

φm

ψm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−h

. (15)

In order to obtain the nontrivial solutions of the above equations (Eqs. (14–15)), the determinant of Qos,so
21 must

vanish. So, the dispersive behaviors for the magnetoelectrically open and shorted case can be investigated.

4 Numerical results and discussion

4.1 BaTiO3/CoFe2O4 layered plate

The investigation is limited to the propagation of the SH waves in the structure consisting of the PM and PE
layers. Both materials are hexagonal (6mm) crystals (transversely isotropic materials). The x1–x3-plane is an
isotropic plane for both materials. The SH wave propagating in the structure along the x1-axis possesses only
one component ofmechanical displacement u2 accompanied by both electric potentialφ andmagnetic potential
Ψ . The origin of the laminate is taken in the lower interface of the bottom layer. As an illustrative example,
a two-layered multiferroic laminate with the stacking sequence F/B (B and F denote BaTiO3 and CoFe2O4,
respectively) was investigated in this section. For the sake of comparison, the results of the homogeneous
plate made of piezoelectric BaTiO3 (i.e., with a B/B stacking) and piezomagnetic CoFe2O4 (i.e., with an F/F
stacking) are also presented. The material properties are listed in Table 1 [25]. Firstly, to ensure the proper
conduct of calculations, we will consider an example taken from literature [25]. In the following figures, the
horizontal axis represents the non-dimensional wave number kh, and the vertical axis represents the non-
dimensional phase velocity C/Csh where C is the phase velocity of the mode and Csh is the bulk shear wave
velocity of the CoFe2O4. Figure 2 shows the dispersion curves associated with Lamb waves propagating in a
bilayer made of PM/PE (CoFe2O4/BaTiO3). For validation, a comparison should be made in the case where
the plate is assumed to be free of residual stress (α = 0). In fact, comparing the result obtained by our method
with that obtained by Zhou et al. [26], we find that both dispersion diagrams agree perfectly. In addition,
ε0 = 8.8510−12 Fm−1, and μ0 = 4π × 10−7 Am−1 are the dielectric constant and permeability of vacuum,
respectively. The dispersion curves of the first five modes for BaTiO3/CoFe2O4 coupled plates are shown in
Fig. 2a, b with different sequences B/B, F/F, and F/B. Comparing Fig. 3a, b, it can be noticed that all these
dispersion curves are very similar to each other. However, differences among them do exist in the different
stacking sequences. It is clear from Fig. 3a, b that the phase velocity corresponding only to B (i.e., B/B stacking
sequence) is much larger than that corresponding to the other stacking sequences. The slight difference which
appears in the dispersion curves for the different stacking sequences is perhaps due to the deviation between
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Fig. 3 Dispersion curves of two laminates: a B/B and F/B. b F/F and F/B sequences

their elastic constants, BaTiO3 seems less stiff than CoFe2O4, while both of them have nearly the same mass
density. Furthermore, the phase velocity approaches the bulk shear wave velocity of the PM material with the
increase in the wave number for different modes. It means that the phase velocity approaches the smaller bulk
shear wave velocity of the material in the system.

5 Influence of thickness ratio on magneto-electromechanical coupling factor

For SAW devices, not only higher magneto-electromechanical coupling factor, but also less penetration depth
of the waves is expected in engineering applications. Either electrically and magnetically open or shorted
conditions on the top and bottom surfaces are considered. Using the guiding velocities Vos and Vso, it is
possible to estimate the coefficient of magneto-electromechanical coupling factor K 2

m for the F/B plate, where
Vos and Vso are the phase velocities for the electrically open and magnetically shorted (os) or electrically
shorted and magnetically open (so), respectively. Indeed, as it is thought that it is possible to use the well-
known formula used for piezoelectrics, the magneto-electromechanical coupling factor can be evaluated with
the following formula [26]:

K 2
m = 2

Vos − Vso
Vos

. (16)

Figure 4 represents the dispersion curves of the fundamental and high-order modes for both “os” and “so”
cases of the F/B laminate. As can be seen from this figure, the dispersion curves of the high-order modes of
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Fig. 5 Effect of thickness ratios on the magneto-electromechanical coupling factor on the first mode

the electrically open case resemble those of the electrically shorted case. But, for the fundamental mode, the
discrepancy between phase velocities for both electrically and magnetically open and short cases is significant
for low wave number, and then this discrepancy becomes negligible at high wave number range. Hence, in the
following discussion, only the electrically open andmagnetically shorted case is taken into account. In fact, the
detailed discussion will focus on the fundamental mode which is of practical interest. Figure 5 associated with
shear wave first mode represents the variation of coefficient of magneto-electromechanical coupling factor,
at different thickness ratios (R = he/hm). It can be seen that the thickness ratio have remarkable effect on
the magneto-electromechanical coupling factor. Actually, the magneto-electromechanical coupling increases
with the increase in the thickness ratio. The magneto-electromechanical coupling factor is significant at low
kh value and reaches a maximum close to 18% for thickness ratio R = 4. This can be explained from Fig. 3b
(since the phase velocity corresponding to the B/B stacking sequence is much larger than those corresponding
to the other stacking sequences, i.e., F/F or F/B). Actually, when the thickness ratio increases, then the volume
fraction of BaTiO3 rises and the dispersion curves approach the B/B stacking sequence. To further illustrate
the dispersion behavior, the group velocity Vg, which expresses the rate at which energy is transported, is



1078 H. Ezzin et al.

2 4 6 8 10 12 14 16 18 20

2940

2960

2980

3000

3020

3040

3060

3080

3100

Dimensionless wave number (kh)

P
ha

se
 a

nd
 g

ro
up

 v
el

oc
ity

 (
m

/s
)

R=4
R=2
R=1
R=0.5

F/B

Fig. 6 Effect of thickness ratios on the phase velocity (thick black line) and group velocity (thin blue line), for “os” case, on the
first mode (color figure online)

introduced. The group velocity can be calculated by the following formula [27]:

Vg = ∂ω

∂k
= Vϕ + k

∂Vϕ

∂k
. (17)

Figure 6 shows the effect of thickness ratio on the phase and group velocities of the first mode versus kh. It
can be seen that the phase velocity starts with CSH2 (the shear wave velocity in the PE layer), and as the wave
number increases, the phase velocity decreases. Moreover, the phase and group velocities also decrease as the
thickness ratio decreases, but when the wave number rises, all the curves converge to CSH1 (the shear wave
velocity in the PM layer) at high wave number range. This result is quite consistent with Eq. (17) because the
phase velocity derivative with respect to kh tends to zero at high wavenumber range, i.e., the group velocity
Vg tends to the phase velocity Vϕ which is CSH1 for high wave numbers. This effect is due to the fact that
the wavelength of the SH waves is comparable to the thickness of the layer for higher ratios. Accordingly, the
phase velocities seem sensitive to this parameter thickness ratio. Nevertheless, since the wavelength of the SH
waves is smaller than the thickness of the piezomagnetic layer at higher wavenumbers, the PM layer dominates
the characteristics of the SH wave propagation.

6 Wave structure analysis

In this section, themodal analysis is performed for awave propagating in the two-layeredmultiferroic laminate.
Therefore, some physical quantities distributions (normalized) through thicknesses are shown in Fig. 7. The
non-dimensional wave number is taken to be kh = 2 for SH0 mode. In this case, the out-of-plane displacement
u2 varies along the thickness direction in a nearly anti-symmetric manner, with respect to the geometric middle
surface.Additionally, the component τ23 vanishes on the free surfaces, which is compatiblewith themechanical
boundary conditions. It is noted that the elastic displacement and stress profiles are smooth, but the slope of
the electric and magnetic potentials, electric displacement and magnetic induction have a discontinuity across
the material interface (say from F to B). Besides, the electric displacement and the electric potential vanish
in the upper piezomagnetic layer. Then, the magnetic induction and magnetic potential are insignificant in the
lower piezoelectric layer, but not zero. This is due to the fact that we use the general magneto-electric theory;
see Eqs. (1, 2, 3), as well as the properties of the materials of Table 1. In such a condition, the electric or
magnetic field does not disappear in the phases piezomagnetic or piezoelectric, but they must be small based
on the properties of the two materials.
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Table 1 Material parameter of piezoelectric and piezomagnetic layer

CoFe2O4 BaTiO3

C44(×109 Nm−2) 45.3 44
ρ (×103 kg/m3) 5.3 5.7
εi j (×10−9 Fm−1)0.08 0.08 9.86
μ11(×10−6 Ns2/C2) 157 5
e15 (C/m2) – 11.4
h15 (N/Am) 550 –
Csh (m/s) 2940 3143

7 Conclusion

This paper investigates the propagation behavior of SH waves in a PM/ PE bilayer. The numerical results have
shown that the phase velocity approaches the smaller bulk shear wave velocity of the material in the system
with the increase in the wave number for different modes. The thickness ratio has a large effect on the phase and
group velocities when the wave number is low, and as the wave number increases, the phase velocity decreases.
Moreover, the phase and group velocities decrease as the thickness ratio decreases, but when the wave number
rises, all these curves converge to the shear wave velocity in the PM layer at high wave number range. Similarl,
the magneto-electromechanical coupling factor depends on the thickness ratio; it increases with an increase in
the thickness ratio. The magneto-electromechanical coupling factor is significant at low kh value, reaching a
maximum of around 18% for thickness ratio R = 4. The numerical method as well as the results given in this
paper could be useful for the design of the acoustic waves devices based on magnetoelectric materials.
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