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Abstract A thermo-elastic analysis of a multi-directional functionally graded thick rectangular plate with dif-
ferent boundary conditions is carried out in this study. Some material properties are assumed to be temperature
dependent and graded in all three spatial directions following a power law function. The differential quadrature
method (DQM) is employed to obtain the temperature distribution throughout the 3D-FGM plate. The gov-
erning partial differential equations based on the three-dimensional thermo-elasticity theory are obtained, and
the DQM is employed to discretize the resulting equations. Comparisons are made with the available results
of 1D-FGM and 2D-FGM plates in the literature and an Abaqus model. Numerical results are obtained for
different gradient indices, plate dimensions, and various thermal and mechanical boundary conditions.

1 Introduction

Functionally graded materials (FGMs) are a new type of materials introduced in 1984 [1]. These materials
are combined from two or more phases of other materials in such a way that the material properties vary
continuously in one or more directions. One of their basic applications is in heat-resistant tiles or plates with
low thermal conductivity materials (e.g., ceramics) used for temperature resistance and fracture resistance
materials (e.g., metals) used to provide strength [2].

Many research works [3–10] have used 2D theories of plates such as the FSDT or the classical plate theory
to analyze FGMs. Although finding a solution using these theories is easier, employing several simplifying
assumptions is also necessary. Moreover, analytical or semi-analytical three-dimensional solutions have some
limitations including the type of boundary conditions, load and material distribution. On the other hand,
numerical methods such as the FEM need several elements in material grading direction to obtain converged
results. A discontinuous stress field in the direction perpendicular to the material property gradation is another
limitation of the FEM formulation [11].

Nemat-Alla [12] remarked that “Modern aerospace shuttles and craft are subjected to super high tempera-
tures that have variation in two or three directions, which need to introduce new materials that can stand with
such applications.” Moreover, Lü et al. [13] mentioned that a practical demand undoubtedly exists for novel
FGMs in which material macro-properties are graded in two directions (2D-FGM) or three directions (3D-
FGM). Birman et al. [14] outlined an approach for thermo-mechanical analysis of composite plates serving as
STATs (spatially tailored advanced thermal structures) where the material properties vary in three directions.
Qian and Batra’s [15] work seems to be the first study on 2D-FGMs. Nemat-Alla [12] used a rule of mixture for
2D-FGM and calculated thermal stresses in 2D-FGM plates by the FEM. He concluded that the 2D-FGM was
more suitable than the 1D-FGM to reduce thermal stresses. Lü et al. [13] presented semi-analytical solutions
based on 3-D elasticity theory for orthotropic multi-directional FG plates. In their work, material properties
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were assumed to vary throughout the thickness and throughout one in-plane direction (2D-FGM) according
to an exponential law. They used the state-space-based DQM to solve the equations. Xu et al. [16] presented a
steady state heat conduction analysis of a plate with varying material properties in two in-plane directions. The
finite element method was used to investigate the temperature distribution fields under different porosity and
different constituents. Upon comparing with 1D-FGM plates, they concluded that using a 2D-FGM plate with
suitable compositions could reduce the average temperature gradient. Nemat-Alla et al. [17] investigated the
elastic–plastic analysis of 2D-FGMs. They proposed a 3D FEmodel of a 2D-FGMplate made of three different
materials. The material properties are assumed to be temperature dependent and vary throughout the thickness
and the width of the plate. They introduced a specific boundary condition and thermal loading to prevent
any stress and strain gradients in the length direction. By comparing thermal stresses due to thermal cyclic
loading in 1D-FGMs and 2D-FGMs, they concluded that 2D-FGMs could reduce thermal stresses more than
a 1D-FGMs could by suitable material distribution. Tahouneh and Naei [18] used a semi-analytical solution
with the 2-D differential quadrature method to carry out a three-dimensional analysis of 2D-FGM rectangular
plates resting on a two-parameter elastic foundation based on three-dimensional theory of elasticity. They
showed that a graded ceramic volume fraction in two directions could reduce the natural frequency more
than a 1D-FGM could. Yang [19] used the theory of symplectic method to investigate the bending of a two-
directional functionally graded piezoelectric (2D-FGPM) beam. Wang and Kuna [20] studied time-harmonic
dynamic Green’s functions for two-dimensional functionally graded magneto-electro-elastic materials. Asemi
et al. [21] used graded FE to perform a three-dimensional static analysis of a 2D-FGM rectangular plate with
clamped edges. Several other works on studying other structures made of multi-directional functionally graded
materials have also been reported in the literature [22–31].

Material properties are assumed to vary in one or two specific directions in all of the above-mentioned
papers, and almost none of them deals with functionally graded materials in which material properties can
vary in all three spatial directions. Except for Refs. [3,9,10], other works have not studied three-dimensional
thermo-mechanical deformations of FGM plates with the capability of considering material non-homogeneity
in all three directions. Hence, it is necessary to develop appropriate methods to investigate the mechanical
response of these structures. Plates on elastic foundations are usually used as a model for industrial structures.
Hence, some research works have been carried out on FGM plates on elastic foundations using different plate
theories and boundary conditions.

Based on three-dimensional elasticity theory,Malekzadeh presented a free vibration analysis of functionally
graded plates on an elastic foundation. Equations have been solved by a semi-analytical approach in such a
way that the two opposite edges of the rectangular plate are simply supported and the other two edges can
have arbitrary boundary conditions [32]. Zenkour employed a refined sinusoidal theory to derive the exact
solutions for the thermo-elastic analysis of an FGM plate on an elastic foundation [33]. Amini et al. [34]
used Chebyshev and Ritz polynomials for a three-dimensional free vibration analysis of plates on an elastic
(Winkler) foundation.

Benyoucef et al. [35] proposed an exact solution of a thick functionally graded plate on two-parameter
elastic foundations. The equations were derived based on the theory of hyperbolic shear deformations. Based
on sinusoidal shear deformation theory, Zenkour [36] proposed an exact solution for hygrothermal bending
of a functionally graded plate on an elastic foundation. Thai and Choi [37] developed a refined plate theory
for functionally graded plates on two-parameter elastic foundations and presented a closed-form solution for
rectangular plates. Thai and Choi [38] studied the bending and vibration of functionally graded plates on an
elastic foundation. They used a zero-order shear deformation theory and presented a closed-form solution for
simply supported plates. Zenkour and Sobhy [39] studied the dynamic thermo-elastic bending of functionally
graded plates on an elastic foundation based on the theory of plates. Tahouneh and Naei employed a semi-
analytical method to investigate the free vibration of a two-directional functionally graded rectangular plate
with two simply supported edges at the opposite sides of the plate where the other edges could have arbitrary
boundary conditions. In their method, material properties could vary in one of the two in-plane directions [18].

Nowork has been carried out so far dealingwith a bending analysis of multi-directional functionally graded
plates on an elastic foundation to the best of our knowledge. Moreover, a survey of the literature shows that
three-dimensional thermo-elastic analysis of (even one directional) FGM plates on an elastic foundation has
not been reported yet.

The main aim of the present study is to present a solution to the thermo-elastic analysis of a rectangular
plate on an elastic foundation with arbitrary material distribution in all directions and with arbitrary boundary
conditions. The material properties are assumed to be temperature dependent and graded in all three directions.
A set of volume fractions is introduced according to a power law function for general material inhomogeneity
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Fig. 1 3D-FGM rectangular plate

based on the concept of 3D-FGM. A one- or two- or three-directional functionally graded material can be
analyzed by selecting appropriate parameters. The formulations are based on the three-dimensional theory
of elasticity. The three-dimensional differential quadrature method is employed to solve the equations. The
effects of the gradient indices, thickness-to-length ratio, and different boundary conditions on the bending
behavior of plates are investigated.

2 Material distributions

A rectangular 3D-FGM plate of length a, width b and thickness h is considered. A schematic view of the plate
and the coordinate axes x, y, and z is illustrated in Fig. 1. The plate is specified with constant temperature
at the outer surfaces. The temperature distribution which results from the temperature difference between
these surfaces leads to thermal stress in the plate. All material properties are assumed to be graded in x, y,
and z directions. 1D-FGM plates are made of two different materials, whereas 2D-FGM plates are usually
constructed from three or four different materials. Here, a 3D-FGM plate with eight different materials is
introduced. These pure eight materials are at the eight corners of the plate, and the material attributes at a point
are calculated with volume fractions and basic material properties based on the following equation:

P =
8∑

i=1

PiVi (1)

where P1 to P8 are material parameters such as an elasticity modulus and P is the property of 3D-FGM.
Moreover, V1 to V8 are volume fractions given by the following equations:
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Another material distribution that is used for a 3D-FGM plate is introduced in Eq. (3). This plate is made of
only two constituent materials, and we have:

P = [P1 − P2]Vxyz + P2 (3)
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Fig. 2 Volume fraction V1 distribution in three layers: z = 0, z = h/2 and z = h

Table 1 Temperature-dependent material properties of Si3N4 and SUS304 [40]

Material Property Q−1 Q0 Q1 Q2 Q3

Si3N4 E (Pa) 0 348.43 × 109 −3.07 × 10−4 2.16 × 10−7 −8.946 × 10−11

ν 0 0.24 0 0 0
α (1/K) 0 5.87 × 10−6 9.095 × 10−4 0 0

ρ
(
kg/m3

)
0 2370 0 0 0

K (W/mK) 0 9.19 0 0 0
c (J/kgK) 0 0.17 0 0 0

SUS304 E (Pa) 0 201.04 × 109 3.079 × 10−4 −6.534 × 10−7 0
ν 0 0.3262 −2.002 × 10−4 3.797 × 10−7 0
α (1/K) 0 12.33 × 10−6 8.086 × 10−4 0 0

ρ
(
kg/m3

)
0 8166 0 0 0

K (W/mK) 0 12.04 0 0 0
c (J/kgK) 0 0.08 0 0 0
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where nx , ny and nz are, respectively, volume fraction exponents in x, y and z directions with nonnegative
values. When nz = 0, the volume fraction reduces to that for a 2D-FGM plate, and variations are only along
the x and y directions. Moreover, if nx and ny are equal to zero, the volume fraction converts to that for a
1D-FGM plate, and the materials only vary along the thickness direction. For a 3D-FGM, Fig. 2 shows the
distribution of volume fraction V1 in three layers. Young’s modulus, Poisson’s ratio and the coefficient of
thermal expansion are considered to be temperature dependent (see Table 1). Material dependency (e.g., Q)
on temperature is given by the following equation [40]:

Q(T ) = Q0
(
Q−1T

−1 + 1 + Q1T + Q2T
2 + Q3T

3) (5)

where Qi (i = −1, 0, 1, 2, 3) are specified based on the material.

3 The governing equations

The solution process is divided into two Sections, namely “thermal analysis” and “mechanical analysis.”
First, the temperature distribution due to the temperature difference between the outer surfaces of a plate is
determined with the steady state heat transfer analysis.
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3.1 Thermal analysis

If there are no sources of heat generation in the plate, then the temperature distribution from the temperature
difference between the surfaces can be found from steady state heat transfer equations as follows:

∂

∂x

[
Kx (x, y, z)

∂T

∂x

]
+ ∂

∂y

[
Ky(x, y, z)

∂T

∂y

]
+ ∂

∂z

[
Kz(x, y, z)

∂T

∂z

]
= 0 (6)

where K is the thermal conductivity. Boundary conditions are related to temperature values of the external
surfaces of the plate as:

T (x, y, 0) = T (0, y, z) = T (a, y, z) = T (x, 0, z) = T (x, b, z) = Tb

and

T (x, y, h) = 300 + (Tc − 300) × sin
(π

a
x
)
sin

(π

b
y
)

where Tb and Tc are constant values.

3.2 Mechanical analysis

The thermo-elastic constitutive equations are:
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where T and T0 are, respectively, the current temperature and the initial temperature. The linear strain–
displacement relations can be written as follows:

εx = ∂u

∂x
, εy = ∂v

∂y
, εz = ∂w

∂z
,

εxy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
, εxz = 1

2

(
∂u

∂z
+ ∂w

∂x

)
, εyz = 1

2

(
∂v

∂z
+ ∂w

∂y

)
(8)

where u, v, and w are displacement components in x, y, and z directions, respectively. In the absence of body
forces, the equilibrium equations in Cartesian coordinates are:

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
= 0, (9.1)
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= 0, (9.2)

∂τxz
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∂y
+ ∂σz

∂z
= 0. (9.3)
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Combining Eq. (8) with Eq. (7) and inserting the results into Eq. (9), the equilibrium equations for a 3D-FGM
plate are obtained in terms of displacement components. The boundary conditions used here are as follows:

S:
{
x = 0, a → v = w = σx = 0
y = 0, b → u = w = σy = 0, (10.1)

C :
{
x = 0, a
y = 0, b → u = 0, v = 0, w = 0, (10.2)

F :
{
x = 0, a → σx = τxy = τxz = 0
y = 0, b → σy = τxy = τyz = 0, (10.3)

and the other boundary conditions at the top and bottom surfaces of the plate are given as:

σz = q, τxz = τyz = 0 at z = h, (11.1)

σz = τxz = τyz = 0 at z = 0. (11.2)

4 Differential quadrature method (DQM)

The differential quadrature method is a powerful method to discretize and solve partial differential equations.
This method approximates derivatives of a function by a combination of function values at the nodes. If the
problem domain is discretized by N points, the mth derivative of a function can be approximated by the
following equation:

dm f (x)

dxm

∣∣∣∣
x=xi

=
N∑

j=1

C (m)
i j f (x j ), i = 1, 2, . . . , N . (12)

In the present study, the Lagrange test function is used and the weight coefficients in Eq. (12) are determined
by the following equations:

C (1)
i j =

∏N
j=1, j �=i (xi − x j )

(xi − xk)
∏N

j=1, j �=k (xk − x j )
, i, j, k = 1, 2, . . . , N , (13.1)

C (1)
i i = −

N∑
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C (1)
i j , i = 1, 2, . . . , N , (13.2)

and for the higher-order derivatives until N − 1 we have the following:

C (m)
i j = m

[
C (m−1)
i i C (1)

i j − C (m−1)
i j

xi − xk

]
, i, k = 1, 2, . . . , N , (14.1)

C (m)
i i = −

N∑

j=1, j �=i

C (m)
i j , i = 1, 2, . . . , N . (14.2)

In these equations, xi refers to a node point. The Chebyshev polynomials are used to determine the distribution
of nodes based on the following equation (where l is the length of the domain):

xi = 0.5l

(
1 − cos (i − 1) × π

N − 1

)
. (15)

To solve the governing equations by theGDQmethod, these equations are written in discretized form according
to the GDQ method.

5 Validations

To verify the results obtained, three comparisons with published data and one comparison with Abaqus finite
element software solution are performed here.
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Fig. 3 Non-dimensional transverse displacement through the thickness at x = y = a/2

5.1 Case study1

Consider a 1D-FGMrectangular platewhere thematerial properties vary along the thickness direction following
a power law function. This plate is under a uniform transverse load (q), and the non-dimensional transverse
displacement throughout the thickness is considered. The parameters have the following values:

E1 = E2 = E3 = E4 = Eceramic = 70GPa, E5 = E6 = E7 = E8 = Emetal = 200GPa,

nx = ny = 0, nz = 1, a = b,
h

a
= 0.2, q = −1 Pa, vi = 0.3 for i = 1 to 8.

The results obtained under different boundary conditions are compared with the published data of [21] as
illustrated in Fig. 3, which shows very good agreement.

5.2 Case study 2

In this Section, a 2D-FGM rectangular plate is investigated. This plate is also under a uniform transverse load.
The parameters have the following values:

nx = nz = 1, ny = 0, a = b = 1,
h

a
= 0.4, q = −40MPa, vi = 0.3 for i = 1 to 8,

E1 = E2 = 440GPa, E3 = E4 = 300GPa, E7 = E8 = 69GPa and E5 = E6 = 115GPa.

Figure 4 shows a good agreement of comparison between the present results and those presented in Ref. [21].

5.3 Case study 3

A thermo-elastic analysis of a 1D-FGM rectangular plate (nx = ny = 0, nz = 1) is performed here. The
square plate (a = b = 1m) has a thickness of 0.1m (h = 0.1) and consists of SUS304 and Si3N4. The
material properties are listed in Table 1. The transverse load is zero (q = 0). The mechanical and thermal
boundary conditions are SSSS and

⎧
⎨

⎩

z = 0 → T = 300K
z = h → T = 1000K
T0 = 0 for all nodes.

DQ results with 17 × 17 × 17 nodes are compared with the results of a 3D model in Abaqus. In this model,
100×100×10 elements are used in which 10 represents the number of elements along the thickness direction.
The functionally gradedmaterial simulation is performed by dividing the plate into 10 parts along the thickness
direction with different material properties in each part. The variations of deflection along the x direction and
the variations of σx through the thickness are compared with the results obtained from Abaqus in Fig. 5.
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Fig. 4 Transverse displacement for a clamped plate at y = a/2, z = h/2

Fig. 5 a Variations of deflection at y = a/2 and z = h along the x direction, b variation of σx (a/2, b/2, z) for the 1D-FGM plate
through the thickness

Fig. 6 Effects of temperature-dependent material properties on a σx , b deflection

5.4 Case study 4

Two different methods are used to consider effects of the temperature-dependent materials on the results shown
in Fig. 6. In the first one, the integration term of thermal strain (

∫ T
T0

αdT ) is totally calculated. In the second one,
however, an incremental method is employed. In this method, the temperature of the upper surface of the plate
increases incrementally and the thermal strain is calculated as α (T )
T in each increment. All mechanical
and thermal boundary conditions are the same as those for case study 3 except for T0 = 300K for all nodes.
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Table 2 Non-dimensional deflection and stresses in a uniformly loaded FGM rectangular plate with simply supported edges on
an elastic foundation (b = 3a = 30h)

nz K0 J0 w∗ σ ∗
x σ ∗

y σ ∗
xy

0 0 0 7×7×7 1.2416 0.7052 0.231 0.267
9×9×9 1.2554 0.7155 0.2461 0.283
11×11×11 1.2547 −0.7155 −0.2444 0.2855
13×13×13 1.2546 0.715 0.2443 0.286
15×15×15 1.2545 0.7153 0.2445 0.286
Ref. [37] 1.2583 0.716 0.2447 0.289

100 0 7×7×7 1.2097 0.6863 0.2238 0.262
9×9×9 1.2234 0.6965 0.2389 0.2781
11×11×11 1.2227 0.6965 0.2372 0.2806
13×13×13 1.2226 0.6961 0.2371 0.2811
15×15×15 1.2226 0.6963 0.2372 0.2811
Ref. [37] 1.226 0.6969 0.2375 0.284

0 100 7×7×7 1.1508 0.6516 0.2107 0.2526
9×9×9 1.1643 0.6618 0.2258 0.2687
11×11×11 1.1637 0.6617 0.2241 0.2712
13×13×13 1.1635 0.6613 0.224 0.2717
15×15×15 1.1635 0.6615 0.2241 0.2717
Ref. [37] 1.1662 0.6618 0.2245 0.2744

100 100 7×7×7 1.1232 0.6352 0.2045 0.2483
9×9×9 1.1366 0.6453 0.2196 0.2644
11×11×11 1.1359 0.6453 0.2179 0.2669
13×13×13 1.1358 0.6449 0.2178 0.2674
15×15×15 1.1358 0.6451 0.2179 0.2674
Ref. [37] 1.1382 0.6452 0.2183 0.27

1 0 0 7×7×7 2.494 0.3211 0.1052 0.1208
9×9×9 2.5136 0.3247 0.1117 0.1278
11×11×11 2.5109 0.3245 0.1109 0.1289
13×13×13 2.5107 0.3243 0.1108 0.1291
15×15×15 2.5106 0.3244 0.1109 0.1291
Ref. [37] 2.5134 0.325 0.1111 0.1306

100 0 7×7×7 2.3694 0.3042 0.0987 0.1164
9×9×9 2.3895 0.3078 0.1052 0.1234
11×11×11 2.3869 0.3076 0.1044 0.1245
13×13×13 2.3866 0.3074 0.1043 0.1248
15×15×15 2.3866 0.3075 0.1044 0.1248
Ref. [37] 2.3875 0.308 0.1047 0.1262

0 100 7×7×7 2.154 0.2751 0.0876 0.1085
9×9×9 2.1749 0.2789 0.0942 0.1156
11×11×11 2.1724 0.2787 0.0934 0.1167
13×13×13 2.1723 0.2785 0.0933 0.117
15×15×15 2.1722 0.2786 0.0934 0.117
Ref. [37] 2.1703 0.2791 0.094 0.1182

100 100 7×7×7 2.0592 0.2623 0.0827 0.1051
9×9×9 2.0803 0.2661 0.0893 0.1122
11×11×11 2.0779 0.2659 0.0885 0.1134
13×13×13 2.0777 0.2657 0.0884 0.1136
15×15×15 2.0777 0.2658 0.0885 0.1136
Ref. [37] 2.0746 0.2663 0.0893 0.1148

5.5 Case study 5

In this Section, a simply supported FGM rectangular plate made of aluminum and alumina is considered. The
properties of these two materials are as follows:

Aluminum Em = 70GPa, νm = 0.3,

Alumina Ec = 380GPa, νc = 0.3.

For the plate on a two-parameter (Winkler–Pasternak) elastic foundation, the boundary conditions at the lower
surface are taken as:

σz = Kww − Ksx
∂2w

∂x2
− Ksy

∂2w

∂y2
, τxz = τyz = 0 at z = 0 (16)
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Fig. 7 Effect of power law exponents on the variation of σx (a/2, b/2, z) along the z direction of a simply supported 3D-FGM
plate under thermal load (Tc =600K, qc = 0)

where Kw is the parameter of the Winkler foundation and Ksx and Ksy are the parameters of the Pasternak
foundation. The deflection and stresses in the plate on an elastic foundation are given in Table 2. Non-
dimensional parameters used in this Table are defined as follows:

σ ∗
x = − h2

qa2
σx

(
a

2
,
b

2
, 0

)
, σ ∗

y = − h2

qa2
σy

(
a

2
,
b

2
, 0

)
, σ ∗

xy = − h2

qa2
σxy (0, 0, 0) ,

w∗ = 100D0

qa4
w

(
a

2
,
b

2
,
h

2

)
, D0 = Ech3

12
(
1 − ν2

) , K0 = Kwa4

E0h3
, J0 = Ksxa2ν

E0h3
= Ksyb2ν

E0h3
,

E0 = 1.0GPa, ν = 0.3.

6 Numerical results and discussions

Consider a thick functionally graded square plate of side equal to 1 m (a = b = 1m). The material distribution
is according to Eq. (3), and constituentmaterials are SUS304 and Si3N4. The non-uniform load and temperature
at the top surface of the plate are considered to be as follows:

q (x, y, h) = −qc sin
(π

a
x
)
sin

(π

b
y
)

,

T (x, y, h) = 300 + (Tc − 300) × sin
(π

a
x
)
sin

(π

b
y
)

.

The other thermal boundary conditions are as follows:

T (x, y, 0) = T (0, y, z) = T (a, y, z) = T (x, 0, z) = T (x, b, z) = 300K.

First, the influence of various power law exponents for a plate with constant thickness-to-length ratio
(h/a = 0.1) is investigated. The boundary condition is assumed to be SSSS. The thermal conductivity (K) of
the plate according to Eq. (6) has an effect on the temperature distribution which induces thermal stresses in the
plate, which in turn affect the deflection and stresses. Since in the 3D-FGM plates both thermal and mechanical
properties vary along the thickness and in-plane directions, any change in the power law exponents can have
a noticeable effect on the deflection and the stress distributions caused by the temperature distribution. The
effect of various power law exponents on these quantities is shown in Figs. 7, 8, 9, and 10. Material change in
the z direction affects the distribution of σx throughout the thickness more than that of the in-plane directions
(see Figs. 7, 9). The magnitudes of the tensile stress at the bottom surface and the compressive stress at
the top surface of the 3D-FGM plate (nx = ny = nz = 1) are smaller than those of a 1D-FGM plate



Three-dimensional thermo-elastic analysis of FGM plates 891

Fig. 8 Effect of power law exponents on the deflection at x = a/2 and y = b/2 along the thickness of a simply supported
3D-FGM plate under thermal load (Tc = 600K, qc = 0)

Fig. 9 Effect of power law exponents on the variation of σx (a/2, b/2, z) along the zdirection of a simply supported 3D-FGM
plate under mechanical load (Tc =300K, qc =20MPa)

Fig. 10 The effects of power law exponents on the deflection at x = a/2 and y = b/2 along the thickness of a simply supported
3D-FGM plate under mechanical load (Tc =300K, qc = 20MPa)

(nx = 0, ny = 0, nz = 1). However, in the plates under mechanical loading it is the other way around (see
Fig. 7). Moreover, the plate deflection caused by thermal loading is affected by material change in the in-plane
directions more than that in the z-direction. However, it is the other way around for the mechanical loading as
shown in Fig. 8. Furthermore, the material variation direction of FG plates affects both the deflection and the
stresses even when the constituent materials are the same. In fact, it indicates that the composition of materials
in a three-directional functionally graded plate may be used as an effective variable for design optimization.
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Fig. 11 Variation of σx (a/2, b/2, z) through the thickness of 1D-FGM and 3D-FGM plates under thermal load for various
boundary conditions (Tc = 800K, qc = 0)

Fig. 12 Variation of σy(a/2, b/2, z) through the thickness of 1D-FGM and 3D-FGM plates under thermal load for various
boundary conditions (Tc = 800K, qc = 0)

Now the effect of various boundary conditions for 1D-FGM and 3D-FGM plates with a constant thickness-
to-length ratio (h/a = 0.1) is investigated. According to Figs. 11 and 12, the highest and the lowest differences
between the distribution of σx and σy in 1D-FGM and 3D-FGM plates occur under SSSS and CCCC boundary
conditions, respectively. Moreover, the largest difference between deflections of these two plates occurs under
the SSSS boundary condition as shown in Fig. 13. The magnitudes of stresses at the top and the bottom of
the 1D-FGM plate under the mechanical load are smaller than those of a 3D-FGM plate for all four boundary
conditions (see Figs. 14, 15). However, these stresses may be larger or smaller in the plates under the thermal
load depending on the boundary conditions.Moreover, the central deflection of the 3D-FGMplate is larger than
that of the 1D-FGM plate for all four boundary conditions, and this can be attributed to the higher proportion
of metal with smaller modulus of elasticity in the 3D-FGM plate (see Figs. 13, 16). By comparing the in-plane
normal stresses caused by thermal and mechanical loading, it is obvious that the thermal loading has a more
pronounced effect on the differences between the normal stresses in 1D-FGM and 3D-FGM plates rather than
the mechanical loading (see Figs. 11, 12, 14, 15).

The effects of thickness-to-length ratio of the plate on the variations of σx and the deflection along the
thickness direction are shown in Figs. 17, 18, 19, and 20. It is seen that these effects on the distribution of σx
along the thickness of the 1D-FGM and 3D-FGM plates are similar.

According to Fig. 19, the neutral plane (where σx is equal to zero) in a 3D-FGM plate is slightly higher than
that in a 1D-FGM plate. Moreover, it is obvious that the location of the neutral plane does not change when
the thickness-to-length ratio varies. Furthermore, the central deflection of the plate under both thermal and
mechanical loading decreases when the thickness-to-length ratio increases which may be due to the increase
in the stiffness of the plate (see Figs. 18, 19).
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Fig. 13 Variation of deflection at x = a/2 and y = b/2 through the thickness of 1D-FGM and 3D-FGM plates under thermal
load for various boundary conditions (Tc = 800K, qc = 0)

Fig. 14 Variation of σx (a/2, b/2, z) along the thickness of 1D-FGM and 3D-FGM plates under mechanical load for various
boundary conditions (Tc = 300K, qc = 1MPa)

Fig. 15 Variation of σy(a/2, b/2, z) along the thickness of 1D-FGM and 3D-FGM plates under mechanical load for various
boundary conditions (Tc = 300K, qc = 1MPa)
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Fig. 16 Variation of deflection at x = a/2 and y = b/2 along the thickness of 1D-FGM and 3D-FGM plates under mechanical
load for various boundary conditions (Tc = 300K, qc = 1MPa)

Fig. 17 Effect of thickness-to-length ratio (h/a) on σx (a/2, b/2, z) along the z direction of simply supported 1D-FGM and
3D-FGM plates under thermal load (Tc = 800K, qc = 0)

Fig. 18 Effect of thickness-to-length ratio (h/a) on the variation of deflection at x = a/2 and y = b/2 along the thickness of a
simply supported 1D-FGM and 3D-FGM plates under thermal load (Tc = 800K, qc = 0)
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Fig. 19 Effect of thickness-to-length ratio (h/a) on σx (a/2, b/2, z) along the z direction of a simply supported 1D-FGM and
3D-FGM plates under mechanical load (Tc = 300K, qc = 1MPa)

Fig. 20 Effect of thickness-to-length ratio (h/a) on the variation of the deflection at x = a/2 and y = b/2 along the thickness
of a simply supported 1D-FGM and 3D-FGM plates under mechanical load (Tc = 300K, qc = 1MPa)

Fig. 21 Effect of thermal conditions on the variation of σx (a/2, b/2, z) along the z direction of a simply supported 1D-FGM and
3D-FGM plates (qc = 0)
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Fig. 22 Effect of thermal conditions on the variation of deflection at x = a/2 and y = b/2 along the z direction of simply
supported 1D-FGM and 3D-FGM plates (qc = 0)

Fig. 23 3D-FGM rectangular plate on an elastic foundation

Fig. 24 Variations of w at x = a/2, y = b/2 along the thickness (mechanical load)

Figures 21 and 22 show the effect of Tc on the distribution of σx and the deflection along the thickness of
the plate. The thickness-to-length ratio is assumed to be constant (h/a = 0.1). It is seen that the distributions
of σx and of the deflection in the 1D-FGM and the 3D-FGM plates have similar variations with changes in
Tc. Moreover, the deflections of the plate increase with an increase in the temperature difference between the
bounding surfaces of the plate as expected.
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Fig. 25 Variations of σx at x = a/2, y = b/2 along the thickness (mechanical load)

Fig. 26 Variations of w at x = a/2, y = b/2 along the thickness (thermal load)

Fig. 27 Variation of σx at x = a/2, y = b/2 along the thickness (thermal load)
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In the case of a rectangular plate on an elastic foundation, the effects of the parameter J0 on the stress
distribution and the plate deflection are more pronounced than those of K0 which is true for both mechanical
and thermal loadings (see Figs. 24, 25, 26, 27).

7 Conclusions

The purpose of the present study is to investigate thermo-elastic deformations of three-directional functionally
graded rectangular plates. To this end, three-dimensional elasticity theory and the differential quadrature
method were applied. The results obtained have been compared with those published in the literature and those
obtained from Abaqus, and they showed good agreement. The effects of thickness-to-length ratio of the plate
and the power law exponents and various boundary conditions on the deflection and stresses were presented
for a 3D-FGM plate. The results obtained show that the stress and the deflection distributions can be changed
considerably by changing the direction of the material distribution. Moreover, one can control deflection or
stresses of a plate by using a proper combination of materials in 3D-FGMs more than that in 1D-FGMs.
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