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Abstract The dynamic behavior of two-span suspended transmission lines is studied. The equations of the
two-span transmission lines are obtained with the help of Hamilton’s principle. Meanwhile, the boundary and
continuity conditions are ensured by the mechanics equilibrium condition. Then setting the determinant of the
coefficient matrix equal to zero, the exact eigenvalues can be given. Then, the results of the parametric analysis
of the in-plane and out-of-plane eigenproblems are presented, and the frequency avoidance phenomena are
introduced. Finally, the possible nonlinear interaction of two-span transmission lines is examined.

1 Introduction

The transmission line is a part of large span suspension cable structures. It is a flexible and light structure,widely
used in several engineering applications [1]. Due to their natural aptitude to perform large displacements, in
recent decades, they have been the focus of many researches conducted on nonlinear dynamics. Statics and
linear free dynamics of suspended horizontal and inclined cables were studied [2]. Afterward, pioneering
papers addressed nonlinear free dynamics, with special interest on frequency–amplitude relations and internal
resonances [3].

As far as the transmission lines or cables are concerned, a great deal of research has appeared on the
matter of nonlinear free and forced oscillations, regarding both the theoretical formulation of the problem
and the analysis of the structural behavior [2–9]. Moreover, the nonlinear response of elastic cables with the
flexural stiffness or flexural-torsional stiffness is considered [10,11]. Obviously, these studies are important
for understanding the large amplitude vibration mechanism of the cables. However, only the single cable was
considered. Therefore, the dynamic interaction between the different span cables cannot be reflected. In fact,
this kind of interaction has been verified by numerical investigation, analytical and experimental investigation
[12–17]. The transmission line can be simulated by several lumped masses connected by elastic elements
[18]. After establishing the kinetic energy and potential energy of the transmission line, the mass and stiffness
matrices can be determined through partial differential calculation [19].

Generally speaking, the two-span suspended transmission line system exhibits a coupling characteristic,
which is mainly governed by the force continuity conditions. Therefore, the accurate mathematical description
for the force continuity conditions of the system plays an important role in modeling of the two-span suspended
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transmission line system. The objective of the present paper is to develop a general dynamic model for the two-
span suspended transmission lines. First, we should keep the distinction between the two kinds of conditions.
So the paper also aims to demonstrate the boundary and connection conditions. Because of the particularity
of the connection condition, the analysis should consider both statics and dynamics. A set of nonlinear partial
differential equations governing the motion of the power transmission line is derived using the boundary
and connection conditions. Afterward, the homogeneous linearized equations are solved with eigenvalues. In
particular, a nonlinear model representative of planar vibrations is to be introduced in detail in the follow-up
work.

In this study, the main objective is to derive the refined model of two-span suspended transmission lines.
Some attention is focused on the natural frequencies and mode shapes of the two-span transmission lines. The
paper is organized as follows. In Sect. 2, the nonlinear motion equations of two-span transmission lines are
derived using Hamilton’s principle. Section3 performs the eigenvalue analysis of the in-plane and out-of-plane
linear problem. Moreover, the possible internal resonances in the two-span transmission lines are summarized.
The effects of the angle at the central support is discussed in Sect. 4. A short summary of results and remarks
is presented in Sect. 5.

2 The mathematical model

In this study, we first dynamically formulate the modeling of the two-span transmission lines. Two Cartesian
Coordinate systems are chosen to derive the equations of motion, as shown in Fig. 1. For the coordinate
system O1 − x1y1z1 (O2 − x2y2z2), the origin O(1,2) is placed at one of the supports of the cables. The static
(dashed line) and dynamic (solid line) configurations of the power transmission line are shown in Fig. 1. The
three-dimensional displacements of the cables are denoted by U1(x1, t) (U2(x2, t)), V1(x1, t) (V2(x2, t)) and
W1(x1, t) (W2(x2, t)) along the x1(x2), y1(y2) and z1(z2) directions, respectively. Moreover, we assume that
the bending and torsional shear rigidities of the cable are neglected. In addition,m is the mass per unit length of
the cables; l1,2 is the span of the cable; Ec is the Young’s modulus of the cable; Ac is the cross-section area of
the cable;Cu ,Cv andCw are the viscous damping coefficients of the cable per unit length; g is the gravitational
acceleration. At the central support, the kind of restraint is hinge, and θ1, θ2 are the angles between the dynamic
internal tension Ti and the y axis (see Fig. 1b).

The motion equations and corresponding boundary conditions of power transmission line can be obtained
by using the extended Hamilton’s principle, which may be expressed as

∫ t2

t1
δ(T −U )dt +

∫ t2

t1
δWdt = 0, (1)

where T is the kinetic energy, U is the strain energy of the transmission line, δW is the sum of the variation
of the potential energy and the virtual work of non-conservative forces, and δ is the first variation.

To facilitate the parametric study, the following nomenclature is used: The planar static of the cable catenary
curve is attained along the cable chord, with xi being the space variable:

yi (xi ) = 4di

[
xi
li

−
(
xi
li

)2
]

, i = 1, 2, (2)

(a) (b)

Fig. 1 The configurations of the model, a the two-span transmission lines; b the configurations of the central support
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where di is the sag of the cable, and Hi is the horizontal component of the cable tension specified by

Hi = mgl2i
8di

, i = 1, 2. (3)

Of course, under the previous assumptions and by using the classical Hamilton’s principle, the equations
of in-plane and out-of-plane motion can be obtained:

mÜi + CuU̇i = ∂

∂x

[
(Hi + Ec Acε (xi , t))

(
Ui

′)], (4)

mV̈i + Cv V̇i − mg = ∂

∂x

[
(Hi + Ec Acε (xi , t))

(
y′
i + Vi

′)], (5)

mẄi + CwẆi = ∂

∂x

[
(Hi + Ec Acε (xi , t))

(
Wi

′)]. (6)

Considering the static configuration, we can assume a quasi-static stretching during the cable motion.
Following this assumption, neglecting the acceleration and velocity terms in Eq. (4), and considering the
boundary condition of the cable, the displacement Ui (xi , t) can be expressed as:

Ui (xi , t) = xi
li

∫ li

0

(
yi,xi Vi,xi + V 2

i,xi
+ W 2

i,xi

2

)
dxi −

∫ xi

0

(
yi,xi Vi,xi + V 2

i,xi
+ W 2

i,xi

2

)
dxi . (7)

In this case, the approximate dynamic strain of the cable can be written as:

ε(xi , t) = 1

li

∫ li

0

(
yi,xi Vi,xi + V 2

i,xi
+ W 2

i,xi

2

)
dxi . (8)

Under the previous assumptions, in what follows, to ensure the continuity of the two-span transmission
line, the following conditions at the connection point of the cables (x1 = l1, x2 = l2) should hold:
Force conditions:

T1 sin θ1 = T2 sin θ2. (9)

Thus, the dynamic internal tension Ti is related to the strain as Ti = Ec Acε(xi , t). In here, because of the
swing angle of the transmission line insulators is very small, so the tension of the transmission line insulators
are neglected in the force conditions.
Displacement conditions:

U1(l1) cos
(π

2
− θ1

)
− V1(l1) sin

(π

2
− θ1 − θ2

)
= U2(l2),

U1(l1) sin
(π

2
− θ1

)
+ V1(l1) cos

(π

2
− θ1 − θ2

)
= V2(l2),

W1(l1) = W2(l2).

(10)

From the above analysis, the boundary and continuity conditions can be established by using the boundary
conditions, continuity conditions of the displacements and equilibrium conditions of the force. Specifically,
the force conditions (Eq.9) include the effects of the angle at the central support and the contribution of the
static configuration. It should be pointed out that the force conditions also reflect the contribution of the static
and dynamic configuration to the angle at the central support.

In order to write non-dimensional equations, the following normalization is introduced:

x∗
i = xi

li
; vi = Vi

li
; wi = Wi

li
; y∗

i = yi
di

; bi = di
li

; ui = Ui

li
;C∗

v = CV

mω1
;

C∗
w = CW

mω1
; τ = ω1t;α = Ec Ac

H
; i = 1, 2, (11)

where ω1 is the first natural frequency of the in-plane motion. Respectively, the overdot and prime indicate the
derivatives with respect to t and x . The non-dimensional frequency parameters are defined as:

ε∗(t) =
∫ 1

0
[by∗′

v′ + 1

2
(v′)2 + 1

2
(w′)2]dx . (12)
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Therefore, the non-dimensional equations of motion become

v̈i − 1

ωv
2

[
vi

′ + α(by′ + vi
′)ε(t)

]′ = 0, (13)

ẅi − 1

ωw
2

[
wi

′ + αwi
′ε(t)

]′ = 0, (14)

where the asterisks are dropped for simplicity.
From the following sections, the eigenvalue problem of the non-dimensional motion equations is depicted.

The modal analysis is performed considering the equations of motion linearized about the static equilibrium
configuration, which means that the linear term will be considered. Therefore, it is assumed that the structural
damping can be neglected. So the two sets of equations of in-plane motion and out-of-plane motion can be
analyzed separately.

It is known that nonlinear systems exhibit extremely complex behavior which linear systems can not. These
phenomena include jumps, bifurcations, saturation, subharmonic, superharmonic and internal resonances,
resonance captures, limit cycles, modal interactions and chaos. But in this paper, the main focus is on the
characterize of the linear modes. So in the companion manuscript, free nonlinear vibrations of the two-span
transmission lines away from internal resonances are studied.

3 Eigenvalue analysis in the linear problem

If we neglect all nonlinear terms and damping, the system equations governing the linear undamped free
vibration of the two-span suspended transmission line can be written as:

In-plane motion:

v̈i − 1

ωv
2

[
vi

′ + α
(
by′ + vi

′) ∫ 1

0
by′v′dx

]′
= 0. (15)

Out-of-plane motion:

ẅi − 1

ωw
2

[
wi

′ + αwi
′
∫ 1

0
by′v′dx

]′
= 0. (16)

Next, we apply the separation-of-variables method to determine the natural frequencies and natural modes
of the two-span suspended transmission lines.

3.1 In-plane eigenvalue problem

For this case, the general solution of the in-plane motion equation can be considered in the form

v =
[

v1
v2

]
=

[
φ1(x)
φ2(x)

]
e
iωv
ω1

τ
, x ∈ [0, 1], (17)

where ωv represents the in-plane natural frequency of the system. The use of separation of variables implies
that the motion is synchronous; that is, different points, say the points at x = x1 and x2, obtain their maxima
and minima at the same time although they may have different amplitudes V (x). In other words, that means
each of these mode shapes is related to a specific physical configuration of the system, which is a function of
spatial coordinates within the structure, but not a function of time.

Taking Eq. (17) into Eqs. (13) and (14), it is assumed that the higher order term is going to be negative.
Also the nonlinear term of the strain expansion equation is negative. In order to simplify the calculation, the
differential equations that define the undamped normal mode shapes in both cables domains are:

φ1
′′(x) + ωv1

2φ1(x) = 8αbε1, (18)

φ2
′′(x) + ωv2

2φ2(x) = 8αb2ε2, (19)
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with the following boundary and connection conditions:

φ1(1) cos θ2 = φ2(1) sin θ1, (20)

Ec Acε1 sin θ1 = Ec Acε2 sin θ2, (21)

φ1(0) = 0; φ2(0) = 0, (22)

where

ωv2 = ωv1
l2
l1

. (23)

The eigenvalue problem yields an infinite number of eigenvaluesωv , linear undamped natural frequencies, cor-
responding to an infinite number of eigenfunctions V (x), mode shapes. The non-dimensional modal stretching
is given by

εi =
∫ 1

0
by′φi

′dxi . (24)

It is found that the modal function in the cable domain is:

φi (x) = d1i cosωvx + d2i sinωvx + 8αb

ωv
2 Γi . (25)

To solve Eq. (25), we let

Γi =
∫ 1

0
4b(1 − 2xi )φi

′(xi )dxi , (26)

where, for a given φi , Γi is a constant, i = 1, 2, . . .. Then, substituting Eq. (26) into Eq. (25) yields

4bd1i (2sinωv − ωvcosωv − ωv) + 4bd2i (2 − 2cosωv − ωvsinωv) − ωvΓi = 0. (27)

Then, the determinant which determined to frequency of free vibrations of two-span transmission lines are as
following: ∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 8αb
ω2

v
0 0 0

cosωv sinωv
8αb
ω2

v
cos θ1 cosωv cos θ1 sinωv cos θ1

8αb
ω2

v

ν  −ωv 0 0 0
0 0 0 1 0 8αb

ω2
v

0 0 1 0 0 1
0 0 0 ν  −ωv

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (28)

where ν = 4b(2 sinωv − ωv cosωv − ωv),  = 4b(2 − 2 cosωv − ωv sinωv).
Apply Eq. (28), we can obtain the natural frequency of the i-th mode ωv . Then the corresponding i-th

modal shape can be written as:

φ1i (x) = c

[
cosωvi x + 1

4b

(
−4b (2sinωvi − ωvicosωvi − ωvi ) + ωvi

3

8αb

)
sinωvi x − ωvi

2

8αb

]
, (29)

φ2i (x) = c
ωv1

2

ωv2
2

cos θ1

cos θ2

[
cosωvi x + 1

4b

(
−4b (2sinωvi − ωvicosωvi − ωvi ) + ωvi

3

8αb

)
sinωvi x − ωvi

2

8αb

]
,

(30)

where the coefficient c can be determined with the normalization condition.
Next, applying the characteristic frequency equation, we will investigate the effects of the span ratio

l1/ l2 and the angles at the central support θ1,2 on the nondimensional natural frequencies with some numer-
ical examples. We choose the dimensional parameters and material properties of the cable as follows:
l1 = 120m, E = 1.95 × 105 MPa, A = 6.27 × 10−3 m2, θ1 = θ2 = π/12, b = 0.005. Figure2 shows
the variation of the in-plane natural frequencies of the two-span transmission lines with different parameters
l1/ l2. In particular, the horizontal straight lines represent the eigenvalues of the cable (2π, 4π).

It is seen that frequency avoidance phenomena are illustrated by loci of the frequencies ωv plotted versus
l1/ l2 for the transmission lines. As l1/ l2 increases slowly, two curves ofω progressively approach each other at
l1/ l2 ∼= 1.5, 5.5, and afterward abruptly diverge from each other. The sudden divergence avoids their crossing,
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Fig. 2 Variation of the in-plane natural frequencies of the cable with the span ratio l1/ l2

Fig. 3 In-plane system eigenvalue b-dependence

leading to an evident frequency veering phenomenon. Of course, this happens in a rapid but continuous way.
At this crossover point, a multiple of the 1:1 internal resonance may be activated. It is demonstrated that
both from theoretical and practical viewpoints, frequency avoidance phenomena, together with the coexisting
hybrid modes, are actually related to planar dynamics, distinguishing inclined cables from horizontal cables
that exhibit frequency crossover phenomena of symmetric/antisymmetric modes. It is seen that the values
(ω3, ω4) approach each other and thereafter abruptly diverge from each other. In other words, to describe
the sensitivity of the system, the nearness to avoided-crossing frequencies is achieved by varying the nonzero
detuning parameter of the 1:1 resonance.Of course, other internal resonances occur in other forms: for example,
investigating the frequencies of the system from ω1 to ω6 when a set of parameters have been fixed. Having a
close-up view of the frequencies, other forms of the internal resonances such as (1:2, 1:3) occur.

In order to describe the modal properties better, the sag-to-span ratio b is used to investigate the effects. It
is seen that the curve of the first eigenvalues of ωv is a straight line almost in whole range of the sag-to-span
b. From Fig. 3, θ1 = θ2 = π/12, l1/ l2 = 1, it is noticed that when the eigenvalue comes to the third, the locus
is mainly a straight line. That is to say the sag-to-span b could not affect the value of ωv . But in a small range
of b, close to 10−3, the alteration appears. Obviously, the sag-to-span has a powerful effect on the value of
the system frequency in a small range. The higher eigenvalue curves (fifth and eighth) are quite different. For
example, the fifth locus increases slowly from b = 10−4 to 10−3 and then keeps a straight line in a major
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Fig. 4 Variation of the localization factor with the span ratio l1/ l2

range, although the effect of the cable sag is small in this range. But corresponding to the second locus, it
has some slightly different conventions. It shows a behavior for b > 5 × 10−3 which looks like an inverted
parabol.

As is stated in Ref. [20], some mechanical properties of the transmission line are dissimilar. Therefore, the
transmission line is prone to exhibit a mode localization phenomenon, and the vibration amplitude of one sub-
systemmaybemuch larger than the one of the other sub-system [21].Due to significantmass difference between
two sub-systems, the large vibration amplitude of one sub-system cannot fully distinguish the strong mode
localization phenomenon. Therefore, to more clearly illustrate this phenomenon and reflect the contribution
of the sub-system eigenvalues to the mode shapes, the localization factor λi for the i-th mode is introduced,
defined as [20]

λi =
∫ 1
0 m1,2φ|ϕ2

i (x1,2)dx1,2∫ 1
0 m2φ|ϕ2

i (x2)dx2 + ∫ 1
0 m1φ|ϕ2

i (x1)dx1
. (31)

Obviously, the physical meaning of this factor is the mode kinematic energy ratio between the sub-system
and the system. Figure4 shows the variation of the localization factor of the lower ordermodewith the span ratio
l1/ l2. It is seen from Fig. 4 that the in-plane mode shape may exhibit the localization phenomenon (λi > 0.65)
as the span ratio l1/ l2 varies. Therefore, the mode shape exhibits a strong local characteristic, whereas the
mode shape may exhibit a hybrid characteristic (λi ≈ 0.50) when the curve veering phenomenon occurs or
the parameter is close to the crossover region, as shown in Fig. 4.

3.2 Out-of-plane eigenvalue problem

The separation-of-variables method is introduced in this paper:

w =
[

w1
w2

]
=

[
ψ1(x)
ψ2(x)

]
e
i ω
ω1

τ
, x ∈ [0, 1]. (32)

Similarly, the eigenmodes equations follow as

ψ1
′′(x) + ωw1

2ψ1(x) = 0, (33)

ψ2
′′(x) + ωw2

2ψ2(x) = 0, (34)

with the following boundary and connection conditions:

ψ1(1) = ψ2(1); (35)

ψ1(0) = 0, ψ2(0) = 0. (36)
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By manipulating Eqs. (32) and (33), the associated modal shapes are given by the following equation:

ψ1(x) = d1 cosωwx + d2 sinωwx, (37)

ψ2(x) = d3 cosωwx + d4 sinωwx . (38)

The nondimensional out-of-plane eigenmodes and natural frequencies can be obtained by

ψ(x) = c sin (mπx) and ωw = mπ for m = 1, 2, 3, . . . (39)

where the coefficient c is determined by
∫ 1
0 ψ(x)ψ(x)dx = 1. In other words, the structure is degenerated into

a single cable in the out-of-plane.

4 Effects of the angle at central support

In this study, two independent coordinate systems were chosen to model the two-span suspended transmission
lines. However, the behavior of the system reflects the effects of the angle at the central support through
the continuity conditions of force and displacement. In order to describe the effect of the parameters on the
modal properties comprehensively, the angle of the central support should be taken into account reasonably.
For simplicity, we assume that θ1 = θ2. From Table1, it can be seen that if the two parameters remain the
same, what matters is the frequency of the system changing with the parameter θ1 varying from π/12 to π/3.
Obviously, for the lower eigenvalues, taking the first frequency as an example, the change is very small (see
Table1). And the results show that with the parameter θ1 growing, the value increases, while the changing
peak differs a little. If one of the parameters l1/ l2, b remains constant, the frequencies of the system will
increase with an increase of the remaining parameters. Beyond that, some other information can be found from
the analysis results of the Table1. For example, after selecting a set of parameters, then contrast the adjacent
frequency of the system. It turns out that the angle affects the frequency avoidance phenomena.

5 Concluding remarks

Based on Hamilton’s principle, the refined model that describes two-span suspended transmission lines has
been presented in this paper. The eigenvalue analysis in the linear in-plane and out-of-plane problems has led
to the closed-form solutions of the mode shapes and characteristic frequency equations. The effects of the span
ratio and sag-to-span ratio on the natural frequencies of the two-span transmission lines have been investigated
as well as those of the inclined angle. It has been shown that these parameters are independent of the first type
of eigenvalue solution. Moreover, the characteristic of the mode shape has been examined. It has been shown
that the mode shapes are sensitive to the parameter change in the veering region, and the mode shapes may
exhibit strong localization phenomena. the possible nonlinear interaction of the two-span transmission lines is
discussed, such as 1:1 or 1:2 internal resonance.

Similarly, the number of suspended cables is greater than two in the systems of suspended transmission
lines. The in-plane and out-of-plane eigenvalue problems are also obtained by referring to the similar inferential

Table 1 Effects of the angle at central support

θ1 l1/ l2 b ω1 ω2 ω3 ω4 ω5 ω6

π/12 1 0.001 1.2302 2.3649 3.1412 5.7404 6.2832 6.7961
0.005 1.2392 1.8678 2.4058 3.1172 5.7469 6.2832

5 0.001 3.1435 6.2832 8.9868 9.4249 12.5664 15.4510
0.005 3.3751 6.2832 8.9868 9.4340 12.5664 15.4505

π/6 1 0.001 1.2327 2.3799 3.1411 5.7298 6.2832 6.8051
0.005 1.2417 1.8583 2.4205 5.7365 6.2832 6.8018

5 0.001 3.1438 6.2832 8.9869 9.4249 12.5664 15.7080
0.005 3.4009 6.2832 8.9868 9.4350 12.5664 15.4505

π/3 1 0.001 1.2425 1.8398 2.4346 3.1385 3.2359 3.6090
0.005 1.2509 1.8268 2.4715 3.1011 4.5948 4.8438

5 0.001 3.1453 6.2832 8.9868 9.4249 12.5664 15.4505
0.005 3.5780 6.2832 8.9868 9.4428 12.5664 15.4505
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reasoning method in this paper. Specifically, the boundary and continuity conditions at the central supports
between the i-th span and the (i + 1)-th span are similar to the force conditions and displacement conditions
(i = 1, 2, . . .). Moreover, there is a difference in height between the supports in two-span or multi-span
transmission lines; this is a somewhat difficult problem and needs further research.
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