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Abstract In this paper, a penny-shaped crack in an infinite elasticmediumsubjected to vertical pressure loading
at the crack surface under the influence of surface stress is considered. The Gurtin–Murdoch continuum theory
of elasticmaterial surfaces is adopted, and theHankel integral transform is employed to solve this axisymmetric
boundary value problem. A set of simultaneous dual integral equations is solved by employing an appropriate
numerical solution scheme. Selected numerical results are presented to portray the influence of the surface
stress on the elastic field. Numerical results reveal that the surface stress has a significant influence on both
stress and displacement fields. It is also found that the material becomes tougher with the presence of surface
stress. In addition, the elastic field also shows size-dependent behavior deviating from the classical crack
solution. The solutions presented in this study provide fundamental understanding of the influence of surface
stress on fracture mechanics problems. It can also be used as a benchmark solution for the development of
numerical techniques, such as FEM and BEM, for analysis of more complicated problems associated with
cracks under the influence of surface stress.

1 Introduction

In recent years, studies onmechanics of nanomaterials and nanostructures have become increasingly important
in various advanced engineering applications. In nanoscale structures, the influence of excess energy associated
with the surface/interface atoms, called surface/interfacial free energy, is significant due to their high surface-
to-volume ratio (e.g., see [1,2]). As a result, their mechanical behavior becomes size-dependent [3]. Atomistic
simulations are powerful techniques to accurately analyze problems related to nanoscale systems; however,
they require a very large computational effort. Thus, studying problems at the nanoscale based on the modified
continuum mechanics concepts accounting for surface energy effects is an attractive option to obtain first
approximations for this class of problems.

A rigorous theory based on the continuum mechanics concepts was developed to incorporate the surface
and interfacial energy effects by Gurtin and Murdoch [4,5]. The surface is modeled as a zero thickness layer
perfectly bonded to the underlying bulk material. Miller and Shenoy [6] examined the size effects of nanoscale
plates and bars by employing theGurtin–Murdoch continuummodel and found that the results were in excellent
agreement with those obtained from atomistic simulations. Several researchers analyzed nanoscale mechanics
problems based on the Gurtin–Murdoch theory and neglected the out-of-plane components of surface stress
(e.g., [7–12]). Later, Wang et al. [13] showed that the out-of-plane components of surface stress could be
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significant even in the case of small deformations particularly for curved and rotated surfaces. Intarit et al.
[14] considered the complete set of surface stresses in the analysis of a two-dimensional elastic layer under
buried loading and found that the elastic field depends significantly on the surface elastic constants and residual
surface stress. The complete version of the Gurtin–Murdoch model was also employed to study problems of an
elastic layer under axisymmetric surface loading [15] and rigid frictionless indentation on an elastic half-space
[16]. In addition, influence of surface stress is also important in problems involving soft elastic solids [17].

Fracture mechanics, which is concerned with the mechanical behavior of materials in the presence of
cracks, has important practical applications. The study of cracks in devices and structures encountered in
engineering applications is essential for both reliability and safety. Several crack problems were studied in the
context of classical continuum theory in the presence of crack surface tension. Wu [18] and Wu and Wang
([19,20]) investigated the influence of surface tension on cracks and proposed that surface tension induced
a pair of point loads at the crack tip. With the assumption of a blunt crack tip, Wang et al. [21] and Fu et
al. [22] found that surface stress has a significant influence on stresses and displacements in the vicinity of
crack tip, especially when the curvature of the crack tip is in the nanoscale. The solutions of Mode I, II and
III cracks were derived with the consideration of surface stresses by assuming that the crack tip stresses are
finite by Kim et al. [23,24]. The above studies dealt exclusively with plane crack (2-D) problems, whereas it is
useful to examine more practical crack geometries such as penny-shaped cracks. The classical penny-shaped
crack problem has been extensively studied (e.g., [25–28]), but studies related to its counterpart with surface
elasticity based on the Gurtin–Murdoch theory are very limited. Recently, a numerical procedure based on the
coupling of the standard finite element technique and the boundary integral equation method was proposed by
Nguyen et al. [29] to investigate nanosized penny-shaped cracks in an infinite elastic medium under Mode I
loading. However, their formulation accounts only for the residual surface tension and ignores the influence
of the surface Lamé constants. A literature review indicates that an analytical solution for the penny-shaped
crack problem with the complete version of the Gurtin–Murdoch theory has not yet been reported.

The influence of surface stresses on the elastic field of a penny-shaped crack in an infinite elastic medium
is presented in this paper to provide a fundamental understanding of the behavior of nanoscale fracture.
Axisymmetric vertical pressure loading is applied on the crack surface, and a perfectly sharp crack tip is
assumed. The analysis is based on the complete version of the Gurtin–Murdoch theory of surface elasticity.
The Hankel integral transform is used to reduce the problem to a set of dual integral equations together with
an efficient numerical solution scheme for dual integral equations are employed to solve the boundary value
problem involving non-classical boundary conditions associated with the surface stresses. Selected numerical
results are presented to portray the influence of surface stresses on stress and displacement fields.

2 Governing equations and general solutions

Consider a penny-shaped crack with radius a in an infinite elastic medium and subjected to axisymmetric
vertical loading p(r) as shown in Fig. 1. In the present study, a sharp crack tip model is applied and, as a
result, the crack geometry can be fully described by two geometrically identical, flat, circular surfaces on the
plane z = 0. The elastic medium is governed by the Gurtin–Murdoch continuum theory [4,5]. In the absence
of body forces, the equilibrium equations, constitutive laws and strain–displacement relations of an isotropic
bulk material are given by

σi j, j = 0, (1)

σi j = 2μεi j + λδi jεkk, (2)

εi j = 1

2

(
ui, j + u j,i

)
, (3)

where ui , σi j and εi j denote, respectively, the components of displacement, stress and strain tensors; and μ
and λ are Lamé constants of the bulk material.

On the crack surface, the equilibrium equation, constitutive laws and strain-displacement relations can be
expressed as ([4,5]):

σ s
iα,α + σi j n j = 0, (4)

σ s
βα = τ sδβα + 2

(
μs − τ s

)
εβα + (

λs + τ s
)
εγ γ δβα + τ susβ,α; σ s

3α = τ sus3,α, (5)

εsαβ = 1

2

(
usα,β + usβ,α

)
, (6)
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Fig. 1 Penny-shaped crack in infinite elastic medium under vertical loading

where the superscript ‘s’ is used to denote the quantities corresponding to the surface; μs and λs are surface
Lamé constants; τ s is the residual surface stress (or surface tension) under unstrained conditions; ni denotes
the components of unit normal vector of the surface; and Greek subscripts take the value of 1 or 2, while the
Latin subscripts vary from 1 to 3.

Due to the symmetry of the system shown in Fig. 1 about the z-axis, a cylindrical coordinate system (r, θ, z)
is used in the formulation, and the elastic field is independent of θ , i.e., uθ = 0 and σrθ = σzθ = 0. The general
solutions for the bulk stresses and displacements can be expressed by using Hankel integral transforms as [30]

σrr =
∞∫

0

ξ

[
λ
d3�

dz3
+ (λ + 2μ) ξ2

d�

dz

]
J0 (ξr) dξ − 2 (λ + μ)

r

∞∫

0

ξ2
d�

dz
J1 (ξr) dξ, (7)

σθθ = λ

∞∫

0

ξ

[
d3�

dz3
− ξ2

d�

dz

]
J0 (ξr) dξ + 2 (λ + μ)

r

∞∫

0

ξ2
d�

dz
J1 (ξr) dξ, (8)

σzz =
∞∫

0

ξ

[
(λ + 2μ)

d3�

dz3
− (3λ + 4μ) ξ2

d�

dz

]
J0 (ξr) dξ, (9)

σr z =
∞∫

0

ξ2
[
λ
d2�

dz2
+ (λ + 2μ) ξ2�

]
J1 (ξr) dξ, (10)

ur = λ + μ

μ

∞∫

0

ξ2
d�

dz
J1 (ξr) dξ, (11)

uz =
∞∫

0

ξ

[
d2�

dz2
− λ + 2μ

μ
ξ2�

]
J0 (ξr) dξ, (12)

where

�(ξ, z) = (A + Bz)e−|ξ |z . (13)
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Note that Jn(ξ) denotes the Bessel functions of the first kind of order n. In addition, A and B are arbitrary
functions to be determined from the boundary conditions.

3 Solution of boundary value problem

Due to the symmetry about z-axis and the assumption that surface tension is constant, the boundary conditions
on the crack surface (z = 0) can be expressed as

σzz + τ s
(
d2uz
dr2

+ 1

r

duz
dr

)
= −p (r) when 0 < r < a, (14)

uz = 0 when a < r < ∞, (15)

σr z + κs
(
d2ur
dr2

+ 1

r

dur
dr

− ur
r2

)
= 0 when 0 < r < a, (16)

σr z = 0 when a < r < ∞, (17)

where κs = 2μs + λs is a surface material constant.
It is worth noting that the boundary conditions (14) and (16) are only applicable to flat crack surfaces

located on the plane z = 0 (resulting directly from the sharp crack tip assumption). The treatment of crack
face conditions associated with non-flat crack surfaces resulting from other crack models (e.g., a blunt crack
model) is not considered in the present study.

By substituting stresses anddisplacements fromEqs. (7) – (12) intoEqs. (14) – (17), the boundary conditions
can be expressed as a set of simultaneous dual integral equations as

∫ ∞

0

2∑

j=1

ci j
(
ξ
)
f j

(
ξ
)
Jνi

(
ξr

)
dξ = hi (r) when 0 < r < 1, (18)

∫ ∞

0

2∑

j=1

di j
(
ξ
)
f j

(
ξ
)
Jνi

(
ξr

)
dξ = gi (r) when 1 < r < ∞, (19)

where i = 1, 2; ξ = ξa; r = r/a, and

c =
⎡

⎣2 (λ + μ)
ξ
4

a4
+ λ+μ

μ
τ s

ξ

a5

5
2μξ

3

a3
+ 2τ s ξ

4

a4

2 (λ + μ)
ξ
4

a4
+ λ+μ

μ
ξ

a5

5
κs −2λξ

3

a3
+ λ+μ

μ
κs ξ

4

a4

⎤

⎦ ;

d =
⎡

⎣
λ+μ
μ

ξ
3

a3
2 ξ

2

a2

2 (λ + μ)
ξ
4

a4
−2λξ

3

a3

⎤

⎦ ;

f =
[
A

(
ξ
)

B
(
ξ
)
]

; v =
[
0
1

]
; h =

[−p (r)
0

]
; g =

[
0
0

]
and p (r) = ap (ar) .

Equations (18) and (19) can then be reduced to

∫ ∞

0

2∑

j=1

ei j
(
ξ
)
ψ j

(
ξ
)
Jνi

(
ξr

)
dξ = hi (r) when 0 < r < 1, (20)

∫ ∞

0
ψi

(
ξ
)
Jνi

(
ξr

)
dξ = 0 when 1 < r < ∞, (21)

where ψi
(
ξ
) = ∑2

j=1 di j
(
ξ
)
f j

(
ξ
)
and

e = cd−1 =
⎡

⎣
2μ(λ+μ)
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ξ
a + τ s

ξ
2

a2
μ

λ+2μ

− μ
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2

a2
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κs ξ

a

⎤
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To solve Eqs. (20) and (21), ψ j is defined as [31]

ψ j
(
ξ
) = ξ̄1−β j

∞∑

m=0

ϕ jm Jν j+2m+β j

(
ξ̄
)
. (22)

Equation (21) will be automatically satisfied due to the following properties of Sonine-Schafheitlin integrals
[32]:

∫ ∞

0
ξ̄1−β j Jν j

(
ξr

)
Jν j+2m+β j

(
ξ̄
)
dξ̄ = 0 when r > 1, 2(ν j + m + 1) > 0 and β j > 0. (23)

Equation (20) can then be written as

∞∑

m=0

2∑

j=1

ϕ jm

∫ ∞

0
ξ̄1−β j ei j

(
ξ̄
)
Jνi

(
ξr

)
Jν j+2m+β j

(
ξ̄
)
dξ̄ = hi (r) when 0 < r < 1, (24)

where ϕ jm are the unknown coefficients to be determined.
Multiplying both sides of Eq. (24) by

r̄1+νi
(
1 − r̄2

)βi−1 �k
(
νi + βi , 1 + νi , r̄

2) , k = 0, 1, 2, . . .,m,

and then integrating with respect to r from 0 to 1 yields [33]

∞∑

m=0

2∑

j=1

ϕ jm

∫ ∞

0
ξ̄1−β j−βi ei j

(
ξ̄
)
Jνi+2k+βi

(
ξ
)
Jν j+2m+β j

(
ξ̄
)
dξ̄ = Qi (νi , βi , k) , (25)

where

Qi (νi , βi , k) = �(νi + k + 1)

2βi−1�(νi + 1)�(k + βi )

∫ 1

0
hi (r̄)r̄

1+νi
(
1 − r̄2

)βi−1 �k
(
νi + βi , 1 + νi , r̄

2) dr̄

and �n is the following Jacobi polynomial, which is defined in terms of hypergeometric series [32] as

�n (α, γ, x) = 2F1 (−n, α + n; γ ; x) , (26)

and 2F1(a, b; c; x) is the hypergeometric function.
The coefficients ϕ jm can be obtained by solving Eq. (25). Note that the unspecified constant, β j , in Eq.

(25) must be positive to make the integral appearing in Eq. (25) to converge. Finally, the arbitrary functions A
and B can be expressed as

A
(
ξ̄
) = λμ

(λ + μ) (λ + 2μ)

a3

ξ̄3

[
ψ1

(
ξ̄
) + a

λξ̄
ψ2

(
ξ̄
)]

, (27)

B
(
ξ̄
) = μ

(λ + 2μ)

a2

ξ̄2

[
ψ1

(
ξ̄
) − a

2μξ̄
ψ2

(
ξ̄
)]

. (28)

4 Numerical results and discussion

In this section, selected numerical results are presented to portray the influence of surface energy effects on the
elastic field. The solutions for stresses and displacements can be obtained from Eqs. (7)–(12) with the arbitrary
functions A and B given by Eqs. (27) and (28). In this study, the semi-infinite integrals in Eqs. (7)–(12) are
evaluated by using a globally adaptive numerical quadrature scheme based on the 21-point Gauss-Kronrod
rule [34]. The surface elastic constants can be obtained from atomistic simulations ([6,35,36]). In particular,
Si [100] is chosen, in the numerical study, as a representative material with the bulk and surface properties
λ/μ = 1.94, μ = 40.2262 GPa, λs = 4.4939 N/m, μS = 2.7779 N/m and τ s = 0.6506 N/m [6]. In addition,
following non-dimensional quantities, r0 = r/Λ0, z0 = z/Λ0 and a0 = a/Λ0 whereΛ0 = κs/μ is a reference
length-scale parameter defined in terms of κs and μ of Si [100]. The numerical results in the present study
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Fig. 2 Convergence of vertical stress solution in the vicinity of crack tip

correspond to the case of a penny-shaped crack in an infinite elasticmedium subjected to a uniformly distributed
vertical load, p0, applied on the crack surface (i.e., p(r) = p0 in Fig. 1).

The arbitrary functions A and B, given by Eqs. (27) and (28), are expressed as combinations of ψ1 and
ψ2, which are given in terms of infinite series as shown in Eq. (22). The convergence and accuracy of the
present solution are first verified by plotting the vertical stress in the vicinity of the crack tip to determine the
appropriate number of terms,m, used in the series expansion defined in Eq. (22). Figure 2 shows a comparison
of non-dimensional vertical stress in the vicinity of the crack obtained from the present scheme with no surface
stress effects (i.e., κs = τ s = 0) for different m values with the classical solution given by Fabrikant [37]. It
is seen that accurate results are obtained from the present solution scheme for m ≥ 60. In Fig. 3, the present
solutions for vertical stress and crack opening displacement are compared with the classical solutions provided
by Fabrikant [37] and the numerical solutions given by Nguyen et al. [29], which ignore the surface Lamé
constants (i.e., κs = 0), to confirm the high accuracy of the present solution scheme.

Figures 4 and 5 show the influence of surface energy effects on the elastic field in the vicinity of the crack. A
non-dimensional crack radius of a0 = 1.0 is considered in the numerical study. Variations of non-dimensional
vertical stresses and non-dimensional crack opening displacement along the r -direction are shown in Figs. 4
and 5 for different values of surface residual stress (τ s) and surface material constant (κs), respectively. Note
that the broken lines in Fig. 4 denote the classical elasticity solution [37] and, during the variation of either τ s

or κs , all other material parameters associated with Si [100] remain unchanged.
The solutions for non-dimensional vertical stress close to the crack tip given in Figs. 4a and 5a show the

effects of surface residual stress and surface elastic constants, respectively. Surface residual stress has a major
influence on the crack tip vertical stress field, whereas the influence of surface elastic constants is negligible.
Note that the difference observed in Fig. 5a between the classical elasticity solution and the present solution
is primarily due to the effect of surface residual stress. It is observed that the presence of surface stress results
in a substantial reduction in the crack tip vertical stress. Similar behavior was also observed in the 2-D crack
solution by Kim et al. [24], in which the assumption of finite stress at the crack tip is considered. The present
solutions in Figs. 4 and 5 also indicate that the order of singularity of stress is lower than the square root
singularity corresponding to the classical solutions. This finding is consistent with that pointed out by several
researchers (e.g., [38–42]); in particular, the stress singularity along the crack front reduces from the square
root to logarithmic singularity when the surface stresses are accounted for in the mathematical model. The
crack opening displacement solutions presented in Figs. 4b and 5b indicates that the magnitude of the crack
opening displacement is substantially reduced due to the presence of surface stress. This is physically realistic
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Fig. 3 Comparison with existing solutions: a vertical stress; b crack opening displacement

as a stretched (tensioned) crack face would be stiffer, similar to a cable under tension. Here again, the surface
elastic constants show almost negligible influence on the crack opening displacement.

In Fig. 6, a set of numerical results is shown to demonstrate the size-dependent behavior of the present
solution when the influence of surface energy effects (surface stress and surface elastic constants) is included.
Solutions are presented for the radial variation of crack tip vertical stress and crack opening displacement
across the crack surface for Si [100]. The corresponding non-dimensional solution for the classical elasticity
case is also shown, and it is size-independent. It is found that as the crack size increases the current solution
accounting for surface energy effects moves toward the classical solution. This is physically realistic as a
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Fig. 4 Variation of elastic field for different magnitudes of surface residual stress (τ s): a vertical stress; b crack opening dis-
placement

stretched larger crack would show increasing crack opening displacements. The results show that a smaller
crack has a lower crack tip stress and crack opening displacement.

The influence of surface residual stress and crack radius, respectively, on non-dimensional vertical stress
at the vicinity of crack tip, i.e., at r/a = 1.01, and non-dimensional crack opening displacements at the
center of the crack are presented in Figs. 7 and 8. The corresponding solutions for the classical elasticity case
are also shown in both figures. It is evident from Fig. 7 that the residual surface stress (τ s) displays strong
influence on the crack tip stress and the central crack opening displacement. The stress and displacement both
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Fig. 5 Variation of elastic fields for different magnitudes of surface material constant (κs): a vertical stress; b crack opening
displacement

decrease rapidly, from their classical elasticity counterparts, with an increase in the surface residual stress
before approaching their limiting values. The size-dependent behavior due to the presence of surface stress
effects can be clearly observed in Fig. 8. Both crack tip stress and central crack opening displacement obtained
from the current model accounting for surface stress effects depend significantly on the crack size (a0) for
relatively small values of a0. Such size dependency gradually vanishes as a0 increases, and both stress and
displacement converge to the corresponding classical solutions, which are shown as the broken lines in Fig. 8.
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Fig. 6 Variation of elastic fields for different crack sizes (a0): a vertical stress; b crack opening displacement

5 Conclusions

A theoretical model is presented for a penny-shaped crack in an infinite elastic medium in the presence of
surface energy effects. The formulation is based on the Gurtin–Murdoch continuum theory and the application
of Hankel integral transforms. It is shown that the solution to the crack problem can be reduced to a set
of simultaneous dual integral equations similar to the classical elasticity case. The integral equation system
is solved numerically and shows good convergence. The numerical results indicate that the surface energy
effects have a significant influence on both stress and displacement fields of a medium with crack. The surface
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Fig. 7 Non-dimensional elastic fields under vertical loading against residual surface stresses (τ s) for difference crack sizes (a0):
a vertical stresses in the vicinity of crack tip; b crack opening displacements at the center of the crack

residual stress has a far significant influence on the elastic field compared to the surface elastic constants.
Surface residual stress reduces the crack opening displacement and the near-front vertical stress. As a result,
the strength of the stress singularity along the crack front is clearly lowered when compared to the classical
case. In contrast to the classical crack solution, the present study shows the substantial size dependency of
a elastic field. Both crack tip stress field and crack opening displacement show a substantial dependency on
the crack size and the magnitude of non-dimensional vertical stress, and crack opening displacement increase
with increasing crack length. For larger cracks, the influence of surface energy is smaller. The present solution
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Fig. 8 Size dependency of non-dimensional a crack tip stress at r/a = 1.01; and b central crack opening displacement for
different magnitudes of surface residual stress (τ s)

can be used as a benchmark for assessing the accuracy of numerical models based on the finite element and
boundary element methods that can be used to analyze more complicated crack problems in the presence of
surface energy effects.
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