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Abstract In this paper, the recently developed physically inspired non-gradient algorithm is employed for
structural optimizationwith frequency constraints. The algorithm being called vibrating particles system (VPS)
mimics the free vibration of single degree of freedom systems with viscous damping. Truss optimization with
frequency constraints has attracted substantial attention recently in order to enhance the dynamic performance
of structures. These kinds of problems are believed to represent nonlinear and non-convex search spaces with
several local optima and therefore are suitable for examining the capabilities of the new algorithms. A set of five
truss design problems are considered for evaluating the VPS in this article. The numerical results demonstrate
the efficiency and robustness of the new method and its competitive performance to other algorithms for
structural optimization problems.

1 Introduction

Fundamental frequencies of a structure are important, easily obtained characteristics which allow the designer
to keep out from the dangerous resonance phenomenon. When dynamic excitations are critical, these char-
acteristics cannot be neglected [1]. Frequency responses are highly implicit, non-convex, and nonlinear with
respect to the cross-sectional area of bar elements, so the search spaces normally contain multiple local minima
[2] and call for a competent optimization algorithm in order to be appropriately addressed.

Structural optimization considering natural frequency constraints has been studied since the 1980s [3] and
approached withmathematical programming andmeta-heuristic algorithms. Lin et al. [4] studied theminimum
weight design of structures under simultaneous static and dynamic constraints proposing a bi-factor algorithm
based on the Kuhn–Tucker criteria. Konzelman [5] considered the problem using some dual methods and
approximation concepts for structural optimization. Grandhi and Venkayya [6] utilized an optimality criterion
based on uniform Lagrangian density for a resizing and scaling procedure to locate the constraint boundary.
Wang et al. [7] proposed an optimality criteria on algorithm for combined sizing-layout optimization of a three-
dimensional truss structure. In this method, the sensitivity analysis helps to determine the search direction,
and the optimal solution is achieved gradually from an infeasible starting point with a minimum weight
increment, and the structural weight is indirectly minimized. Sedaghati [8] utilized a new approach using
combined mathematical programming based on the sequential quadratic programming (SQP) technique and
a finite element solver based on the integrated force method. Lingyun et al. [9] combined the simplex search
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method and the niche genetic hybrid algorithm (NGHA) for mass minimization of structures with frequency
constraints. Gomes [10] used the particle swarm optimization (PSO) algorithm to study simultaneous layout
and sizing optimization of truss structures with multiple frequency constraints. Kaveh and Zolghadr [11]
combined charged system search and big bang with trap recognition capability (CSS-BBBC) to solve layout
and sizing optimization problems of truss structures with natural frequency constraints. Miguel and Fadel
Miguel [12] employed harmony search (HS) and firefly algorithm (FA), to study simultaneous layout and sizing
optimization of truss structures with multiple frequency constraints. A hybrid optimality criterion (OC) and
genetic algorithm (GA) method was used by Zuo et al. [13] for truss optimization with frequency constraints.
Kaveh and Javadi [14] utilized hybridization of harmony search, ray optimizer, and particle swarm optimization
algorithm (HRPSO) for weight minimization of trusses under multiple natural frequency constraints. Kaveh
and IlchiGhazaan [15] employed particle swarmoptimizationwith an aging leader and challengers (ALC-PSO)
and HALC-PSO that transplants a harmony search-based mechanism to ALC-PSO as a variable constraint
handling approach to optimize truss structures with frequency constraints. Hosseinzadeh et al. [16] used a
hybrid electromagnetism-like mechanism algorithm and migration strategy (EM–MS) for layout and size
optimization of truss structures with multiple frequency constraints.

This paper proposes the application of the newly developed optimization algorithm so-called the vibrating
particles system (VPS) for an optimum design of truss structures with frequency constraints. In this method,
the solution candidates are considered as particles that gradually approach to their equilibrium positions.
Equilibrium positions are achieved from current population and historically best position in order to have a
proper balance between exploration and exploitation [17]. In order to evaluate the performance of the VPS,
five truss structures are optimized for minimum weight so that the design variables are considered to be the
cross-sectional areas of the members and/or the coordinates of some nodes. The truss examples have 10, 37,
72, 120 and 600 members, respectively. The numerical results indicate that the proposed algorithm is quite
competitive with other state-of-the-art metaheuristic methods.

The remainder of this paper is organized as follows: In Sect. 2, the mathematical formulations of the
structural optimization with frequency constraints are stated. The optimization algorithm is proposed after a
brief overview of the free vibration of single degree of freedom systems with viscous damping in Sect. 3. Five
structural design examples are studied in Sect. 4, and some concluding remarks are finally provided in Sect. 5.

2 Statement of the optimization problem

In this paper, the objective is to minimize the weight of the structure while satisfying some constraints on the
natural frequencies. Each variable should be chosen within a permissible range. The mathematical formulation
of these problems can be expressed as follows:

Find{X} = [x1, x2, . . . , xng]

to minimize W ({X}) =
nm∑

i=1

ρi Ai Li

subjected to:

⎧
⎨

⎩

ω j ≤ ω∗
j

ωk ≥ ω∗
k

xi min ≤ xi ≤ xi max

(1)

where {X} is the vector containing the design variables; ng is the number of design variables;W ({X}) presents
the weight of the structure; nm is the number of elements of the structure; ρi , Ai and Li denote the material
density, cross-sectional area, and the length of the i th member, respectively; ω j is the j th natural frequency
of the structure, and ω∗

j is its upper bound; ωk is the kth natural frequency of the structure, and ω∗
k is its lower

bound; xi min and xi max are the lower and upper bounds of the design variable xi , respectively.
To handle the constraints, the well-known penalty approach is employed. Thus, the objective function is

redefined as follows:

fcos t ({X}) = (1 + ε1.υ)ε2 × W ({X}), υ =
nc∑

j=1

max[0, g j ({X})] (2)
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Fig. 1 Free vibration of a system with damping

where υ denotes the sum of the violations of the design constraints and nc is the number of the constraints.
Here, ε1 is set to unity, and ε2 is calculated by

ε2 = 1.5 + 1.5 × iter

itermax
. (3)

Thus, in the first steps of the search process, ε2 is set to 1.5 and ultimately increased to 3. Such a scheme
penalizes the unfeasible solutions more severely as the optimization process proceeds. As a result, in the early
stages the agents are free to explore the search space, but at the end they tend to choose solutions with no
violation.

3 The vibrating particles system algorithm

This Section describes the VPS algorithm. First, a brief overview of the free vibration of single degree of
freedom systems with viscous damping is provided, and then the proposed method is presented.

3.1 The physical background of the VPS algorithm

There are two general types of vibrations, namely free vibration and forced vibration. In free vibration, the
motion is only maintained by the restoring forces, and in the forced vibration, a periodic force is applied to
the system. The effects of friction in a vibrating system can be neglected resulting in an undamped vibration.
However, all vibrations are actually damped to some degree by friction forces. These forces can be caused by
dry friction, or Coulomb friction, between rigid bodies, by fluid friction when a rigid body moves in a fluid,
or by internal friction between the molecules of a seemingly elastic body. In this Section, the free vibration
of single degree of freedom systems with viscous damping is studied. The viscous damping is caused by fluid
friction at low and moderate speeds. Viscous damping is characterized by the fact that the friction force is
directly proportional and opposite to the velocity of the moving body [18].

Figure 1 shows the vibrating motion of a body or system of mass m having viscous damping. A spring of
constant k and a dashpot are connected to the block. The effect of damping is provided by the dashpot, and the
magnitude of the friction force exerted on the plunger by the surrounding fluid is equal to cẋ (c is the coefficient
of viscous damping, and its value depends on the physical properties of the fluid and the construction of the
dashpot). When the block is displaced a distance x from its position of stable equilibrium, the equation of
motion can be expressed as:

mẍ + cẋ + kx = 0. (4)
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Fig. 2 Vibrating motion of under-damped system

Before presenting the solutions for this differential equation, we define the critical damping coefficient cc as:

cc = 2mωn, (5)

ωn =
√

k

m
(6)

where ωn is the natural circular frequency of the vibration.
Depending on the value of the coefficient of viscous damping, three different cases of damping can be

distinguished: (i) over-damped system (c > cc), (ii) critically damped system (c = cc) and (iii) under-damped
system (c < cc). The solutions of over-damped and critically damped system correspond to a non-vibratory
motion. Therefore, the system only oscillates and returns to its equilibrium position when c < cc.

The solution of Eq. (4) for an under-damped system is as follows:

x(t) = ρe−ξωnt sin(ωDt + φ), (7)

ωD = ωn

√
1 − ξ2, (8)

ξ = c

2mωn
(9)

where ρ and φ are constants generally determined from the initial conditions of the problem. ωD and ξ are
damped natural frequency and damping ratio, respectively. Equation (7) is shown in Fig. 2, and the effect of
damping ratio on vibratory motion is illustrated in Fig. 3.

3.2 The VPS algorithm

The VPS is a population-based algorithm which simulates a free vibration of single degree of freedom sys-
tems with viscous damping [17]. Similar to other multi-agent methods, VPS has a number of individuals
(or particles) consisting of the variables of the problem. The solution candidates gradually approach to their
equilibrium positions that are achieved from current population and historically best position in order to have a
proper balance between diversification and intensification. In VPS, the initial locations of particles are created
randomly in an n-dimensional search space,

x j
i = xmin + rand · (xmax − xmin), (10)

where x j
i is the j th variable of the particle i . xmin and xmax are the minimum and the maximum allowable

variables vectors; rand is a random number uniformly distributed in the range of [0, 1].
For each particle, three equilibriumpositionswith differentweights are defined, and during each generation,

the particle position is updated by learning from them: (i) the historically best position of the entire population
(HB), (ii) a good particle (GP), and (iii) a bad particle (BP). In order to select the GP and BP for each candidate
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Fig. 3 Free vibration of systems with four levels of damping: a ξ = 5%, b ξ = 10%, c ξ = 15% and d ξ = 20%

solution, the current population is sorted according to their objective function values in an increasing order,
and then GP and BP are chosen randomly from the first and second half, respectively.

A descending function based on the number of iterations is proposed in VPS to model the effect of the
damping level in the vibration that is depicted in Fig. 3.

D =
(

iter

itermax

)α

(11)

where iter is the current iteration number and itermax is the total number of iterations for the optimization
process. α is a constant.

According to the above concepts, the update rules in the VPS are given by

x j
i = w1 · [D · A · rand1 + HB j ] + w2 · [D · A · rand2 + GP j ] + w3 · [D · A · rand3 + BP j ], (12)

A = [w1 · (HB j − x j
i )] + [w2 · (GP j − x j

i )] + [w3 · (BP j − x j
i )], (13)

w1 + w2 + w3 = 1 (14)

where x j
i is the j th variable of the particle i . w1, w2, and w3 are three parameters to measure the relative

importance of HB, GP andBP, respectively. rand1, rand2, and rand3 are random numbers uniformly distributed
in the range of [0, 1]. The effect of A and D parameters in Eq. (12) is similar to that of ρ and e−ξωnt in Eq. (7),
respectively. Also, the value of sin(ωDt + φ) is considered unity in Eq. (12) (x(t) = ρe−ξωnt are shown in
Fig. 2 by red lines).

In order to have a fast convergence in the VPS, the effect of BP is sometimes considered in updating the
position formula. Therefore, for each particle, a parameter like p within (0, 1) is defined, and it is compared
with rand (a random number uniformly distributed in the range of [0,1]) and if p < rand, then w3 = 0 and
w2 = 1 − w1.

There is a possibility of boundary violation when a particle moves to its new position. In the proposed
algorithm, for handling boundary constraints a harmony search-based approach is used [19]. In this technique,
there is a possibility like harmony memory considering rate (HMCR) that specifies whether the violating
component must be changed with the corresponding component of the historically best position of a random
particle or it should be determined randomly in the search space. Moreover, if the component of a historically
best position is selected, there is a possibility like pitch adjusting rate (PAR) that specifies whether this value
should be changed with the neighboring value or not.

In this study, after the predefined maximum evaluation number, the optimization process is terminated.
However, any terminating condition can be used. The flowchart of the VPS is illustrated in Fig. 4.
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Fig. 4 Flowchart of the VPS algorithm

4 Test problems and optimization results

This Section discusses the computational examples used to investigate the performance of the proposed algo-
rithm. The values of population size, the total number of iterations, α, p, w1, and w2 are set to 20, 1500,
0.05, 70%, 0.3, and 0.3 for all examples, respectively. Sensitivity analyses of the VPS on these parameters
are investigated in [17]. Twenty independent optimization runs are carried out for the first four considered
examples, and the last example has been solved five times independently. The algorithm is coded inMATLAB,
and the structures are analyzed using the direct stiffness method by our own codes.

4.1 A 10-bar plane truss

The 10-bar plane truss is a well-known benchmark problem, and Fig. 5 shows the topology, nodal and element
numbering of this truss. The cross-sectional area of each of the members is considered to be an independent
variable. The material density is 2767.99kg/m3, and the modulus of elasticity is 68.95GPa for all elements.
At each free node (1–4), a non-structural mass of 453.6kg is attached. The range of cross-sectional area of all
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Fig. 5 Schematic of the 10-bar plane truss

Table 1 Comparison of optimized designs found for the 10-bar plane truss problem

Design variable Areas (cm2)

Wang et al. [7] Lingyun et al. [9] Gomes [10] Miguel and Fadel
Miguel [12]

Present work

1 32.456 42.234 37.712 36.198 35.1471
2 16.577 18.555 9.959 14.030 14.6668
3 32.456 38.851 40.265 34.754 35.6889
4 16.577 11.222 16.788 14.900 15.0929
5 2.115 4.783 11.576 0.654 0.6450
6 4.467 4.451 3.955 4.672 4.6221
7 22.810 21.049 25.308 23.467 23.5552
8 22.810 20.949 21.613 25.508 24.4680
9 17.490 10.257 11.576 12.707 12.7198
10 17.490 14.342 11.186 12.351 12.6845
Weight (kg) 553.8 542.75 537.98 531.28 530.77
Average optimized
weight (kg)

N/A 552.447 540.89 535.07 535.64

Standard deviation on
average weight (kg)

N/A 4.864 6.84 3.64 2.55

Table 2 Natural frequencies (Hz) evaluated at the optimum designs of the 10-bar plane truss problem

Frequency number Natural frequencies (Hz)

Wang et al. [7] Lingyun et al. [9] Gomes [10] Miguel and Fadel
Miguel [12]

Present work

1 7.011 7.008 7.000 7.0002 7.0000
2 17.302 18.148 17.786 16.1640 16.1599
3 20.001 20.000 20.000 20.0029 20.0000
4 20.100 20.508 20.063 20.0221 20.0001
5 30.869 27.797 27.776 28.5428 28.6008
6 32.666 31.281 30.939 28.9220 29.0628
7 48.282 48.304 47.297 48.3538 48.4904
8 52.306 53.306 52.286 50.8004 51.0476

elements is from 0.645 to 50cm2. The first three natural frequencies of the structure must satisfy the following
limitations: ( f1 ≥ 7Hz, f2 ≥ 15Hz, and f3 ≥ 20Hz.

Table 1 provides a comparison between some optimal design reported in the literature and the present work.
It can be seen that the lightest design (i.e., 530.77kg) and the best standard deviation on average (i.e., 2.55kg)
are obtained by the VPS. The firefly algorithm (FA) [12] achieved the best average optimized weight (i.e.,
535.07kg), and after that the VPS obtained 535.64kg. Table 2 reports the natural frequencies of the optimized
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Fig. 6 Schematic of the simply supported 37-bar plane truss

structures, and it is clear that none of the frequency constraints are violated. The VPS converges to the optimum
solution after 4620 analyses. The methods were utilized by Lingyun et al. [9], Gomes [10], and Miguel and
Fadel Miguel [12] give the best result in 8000, 2000 and 50,000 analyses. However, the VPS achieves the best
design of PSO [10] after 940 analyses.

4.2 A simply supported 37-bar plane truss

The 37-bar plane truss with initial configuration is shown in Fig. 6. Nodal coordinates in the upper chord
and member areas are regarded as design variables. In the optimization process, nodes of the upper chord can
be shifted vertically. In addition, nodal coordinates and member areas are linked to maintain the structural
symmetry. Thus, only five layout variables and fourteen sizing variableswill be redesigned for the optimization.
All parts on the lower chord (numbers 28–37) are modeled as bar elements with constant rectangular cross-
sectional areas of 4×10−3 m2 and the other are modeled as bar elements with initial cross-sectional areas of
1×10−4 m2. The material density is 7800kg/m3, and the modulus of elasticity is 210GPa for all elements. A
non-structural mass of 10kg is attached at each of the free nodes on the lower chord which remain fixed during
the design process. The first three natural frequencies of the structure must satisfy the following limitations:
f1 ≥ 20Hz, f2 ≥ 40Hz, and f3 ≥ 60Hz.

This truss structurewas previously optimized byWang et al. [7] utilizing an evolutionary node shift method,
Lingyun et al. [9] using a niche hybrid genetic algorithm, Gomes [10] employing particle swarm optimization
algorithm, Miguel and Fadel Miguel [12] using firefly algorithm, and Kaveh and Ilchi Ghazaan [15] utilizing
particle swarm optimization with an aging leader and challengers and harmony search-based side constraint
handling approach. Table 3 presents a comparison between the results of the optimal designs reported in the
literature and the present work. The best weight, average optimized weight and standard deviation on average
weight obtained by VPS and HALC-PSO [15] are approximately identical although their designs are different.
Table 4 shows the optimized structural frequencies (Hz) for variousmethods. None of the frequency constraints
are violated. The proposedmethod requires 7940 structural analyses to find the optimum solution while NHGA
[9], PSO [10], FA [12] and HALC-PSO [15] require 8000, 12,500, 50,000, and 10,000 structural analyses,
respectively.

4.3 A 72-bar space truss

The 72-bar space truss is shown in Fig. 7 as the third design example. The elements are divided into sixteen
groups, because of symmetry. The material density is 2767.99kg/m3, and the elastic modulus is 68.95GPa for
all members. Four non-structural masses of 2268kg are attached to the nodes 1–4. The allowable minimum
cross-sectional area of all elements is set to 0.645cm2. This example has two frequency constraints. The first
frequency is required to be f1 = 4Hz, and the third frequency is required to be f3 ≥ 6Hz.

Optimal structures found by Konzelman [5], Gomes [10], Kaveh and Zolghadr [11], Miguel and Fadel
Miguel [12], Kaveh and Ilchi Ghazaan [15] and the proposed method are summarized in Table 5. The CSS-
BBBC (hybridization of charged system search and big bangwith trap recognition capability) [11] obtained the
lightest design; however, the best designs of all methods are approximately identical. The average optimized
weight and the standard deviation on average weight of the VPS are less than those of all other methods.
Frequency constraints are satisfied by all methods (see Table 6). Figure 8 shows the comparison of best and
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Table 3 Comparison of optimized designs found for the 37-bar truss problem

Design variable Y coordinates (m) and areas (cm2)

Wang
et al. [7]

Lingyun
et al. [9]

Gomes [10] Miguel and Fadel
Miguel [12]

Kaveh and Ilchi
Ghazaan [15]

Present work

Y3, Y19 (m) 1.2086 1.1998 0.9637 0.9392 0.9750 0.9042
Y5, Y17 (m) 1.5788 1.6553 1.3978 1.3270 1.3577 1.2850
Y7, Y15 (m) 1.6719 1.9652 1.5929 1.5063 1.5520 1.5017
Y9, Y13 (m) 1.7703 2.0737 1.8812 1.6086 1.6920 1.6509
Y11 (m) 1.8502 2.3050 2.0856 1.6679 1.7688 1.7277
A1, A27 (cm2) 3.2508 2.8932 2.6797 2.9838 2.9652 3.1306
A2, A26 (cm2) 1.2364 1.1201 1.1568 1.1098 1.0114 1.0023
A3, A24 (cm2) 1.0000 1.0000 2.3476 1.0091 1.0090 1.0001
A4, A25 (cm2) 2.5386 1.8655 1.7182 2.5955 2.4601 2.5883
A5, A23 (cm2) 1.3714 1.5962 1.2751 1.2610 1.2300 1.1119
A6, A21 (cm2) 1.3681 1.2642 1.4819 1.1975 1.2064 1.2599
A7, A22 (cm2) 2.4290 1.8254 4.6850 2.4264 2.4245 2.6743
A8, A20 (cm2) 1.6522 2.0009 1.1246 1.3588 1.4618 1.3961
A9, A18 (cm2) 1.8257 1.9526 2.1214 1.4771 1.4328 1.5036
A10, A19 (cm2) 2.3022 1.9705 3.8600 2.5648 2.5000 2.4441
A11, A17 (cm2) 1.3103 1.8294 2.9817 1.1295 1.2319 1.2977
A12, A15 (cm2) 1.4067 1.2358 1.2021 1.3199 1.3669 1.3619
A13, A16 (cm2) 2.1896 1.4049 1.2563 2.9217 2.2801 2.3500
A14 (cm2) 1.0000 1.0000 3.3276 1.0004 1.0011 1.0000
Weight (kg) 366.5 368.84 377.20 360.05 359.93 359.94
Average optimized weight
(kg)

N/A 378.8259 381.2 360.37 360.23 360.23

Standard deviation on
average weight (kg)

N/A 9.0325 4.26 0.26 0.24 0.22

Table 4 Natural frequencies (Hz) evaluated at the optimum designs of the 37-bar truss problem

Frequency number Natural frequencies (Hz)

Wang
et al. [7]

Lingyun
et al. [9]

Gomes [10] Miguel and Fadel
Miguel [12]

Kaveh and Ilchi
Ghazaan [15]

Present work

1 20.0850 20.0013 20.0001 20.0024 20.0216 20.0002
2 42.0743 40.0305 40.0003 40.0019 40.0098 40.0005
3 62.9383 60.0000 60.0000 60.0043 60.0017 60.0000
4 74.4539 73.0444 73.0440 77.2153 76.7857 77.2124
5 90.0576 89.8244 89.8240 96.9900 96.3543 97.3173

average runs convergence histories for the proposed method. The VPS requires 4720 structural analyses to
find the optimum solution, while PSO [10], FA [12] and HALC-PSO [15] require 42,840, 100,000, and 8000
structural analyses, respectively.

4.4 A 120-bar dome truss

Figure 9 shows the 120-bar dome truss. The members are categorized into seven groups because of symmetry.
Thematerial density is 7971.810kg/m3, and themodulus of elasticity is 210GPa for all elements.Non-structural
masses are attached to all free nodes as follows: 3000kg at node one, 500kg at nodes 2–13 and 100kg at the
remaining nodes. Element cross-sectional areas can vary between 1 and 129.3cm2. The frequency constraints
are as follows: f1 ≥ 9Hz and f2 ≥ 11Hz.

The comparison of the results of the VPS algorithm with the outcomes of other algorithms is shown in
Table 7. The present algorithm yields the least weight. The best weight of the VPS algorithm is 8888.74kg,
while it is 9046.34kg for CSS-BBBC [11] and 8889.96kg for the HALC-PSO [15]. Moreover, it can be seen
that the lightest average optimized weight and the standard deviation on average weight are found by the
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Fig. 7 Schematic of the spatial 72-bar truss

Table 5 Comparison of optimized designs obtained for the 72-bar truss problem

Design variable Elements in the group Areas (cm2)

Konzelman
[5]

Gomes [10] Kaveh and
Zolghadr
[11]

Miguel and
Fadel
Miguel [12]

Kaveh and
Ilchi Ghaz-
aan [15]

Present
work

1 1–4 3.499 2.987 2.854 3.3411 3.3437 3.5017
2 5–12 7.932 7.849 8.301 7.7587 7.8688 7.9340
3 13–16 0.645 0.645 0.645 0.6450 0.6450 0.6450
4 17–18 0.645 0.645 0.645 0.6450 0.6450 0.6450
5 19–22 8.056 8.765 8.202 9.0202 8.1626 8.0215
6 23–30 8.011 8.153 7.043 8.2567 7.9502 7.9826
7 31–34 0.645 0.645 0.645 0.6450 0.6452 0.6450
8 35–36 0.645 0.645 0.645 0.6450 0.6450 0.6450
9 37–40 12.812 13.450 16.328 12.0450 12.2668 12.8175
10 41–48 8.061 8.073 8.299 8.0401 8.1845 8.1129
11 49–52 0.645 0.645 0.645 0.6450 0.6451 0.6450
12 53–54 0.645 0.645 0.645 0.6450 0.6451 0.6450
13 55–58 17.279 16.684 15.048 17.3800 17.9632 17.3362
14 59–66 8.088 8.159 8.268 8.0561 8.1292 8.1010
15 67–70 0.645 0.645 0.645 0.6450 0.6450 0.6450
16 71–72 0.645 0.645 0.645 0.6450 0.6450 0.6450
Weight (kg) 327.605 328.823 327.507 327.691 327.77 327.649
Average optimized
weight (kg)

N/A 332.24 N/A 329.89 327.99 327.670

Standard deviation on
average weight (kg)

N/A 4.23 N/A 2.59 0.19 0.018
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Table 6 Natural frequencies (Hz) evaluated at the optimum designs of the 72-bar truss problem

Frequency number Natural frequencies (Hz)

Konzelman
[5]

Gomes [10] Kaveh and
Zolghadr
[11]

Miguel and
Fadel Miguel
[12]

Kaveh and
Ilchi Ghazaan
[15]

Present
work

1 4.000 4.000 4.000 4.0000 4.000 4.0000
2 4.000 4.000 4.000 4.0000 4.000 4.0002
3 6.000 6.000 6.004 6.0000 6.000 6.0000
4 6.247 6.219 6.2491 6.2468 6.230 6.2428
5 9.074 8.976 8.9726 9.0380 9.041 9.0698

Fig. 8 Convergence curves obtained for the 72-bar truss

proposed method. Table 8 reports the natural frequencies of the optimized structures, and it is clear that none
of the frequency constraints are violated. Figure 10 shows the comparison of convergence curves of the best
and the average results obtained by the proposed method. The HALC-PSO [15] and VPS algorithms get the
optimal solution after 17,000 and 6860 analyses, respectively.

4.5 A 600-bar single-layer dome truss

The 600-bar single-layer dome structure shown in Fig. 11 is considered as the last example. The entire structure
is composed of 216 nodes and 600 elements.A substructure inmore details for nodal numbering and coordinates
is depicted in Fig. 12. Each of the elements of this substructure is considered as a design variable. Thus, this is
a size optimization problem with 25 variables. The material density is 7850kg/m3, and the elastic modulus is
200GPa for all members. A non-structural mass of 100kg is attached to all free nodes. The minimum cross-
sectional area of all parts is 1 × 10−4, and the maximum cross-sectional area is taken as 100 × 10−4 m2. The
frequency constraints are as follows: ω1 ≥ 5Hz and ω3 ≥ 7Hz.

The optimized designs found by the ECBO [20] and VPS are compared in Table 9. It can be seen that
the lightest design (i.e., 6133.02kg) is obtained by the VPS, and this method performs better than ECBO
in terms of average optimized weight and standard deviation on average weight. Table 10 reports the nat-
ural frequencies of the optimized structures, and it is clear that none of the frequency constraints are vio-
lated. The convergence rates of the best and average result found by the proposed method are provided in
Fig. 13. The ECBO and VPS algorithms get the optimal solution after 19,020 and 19,740 analyses, respec-
tively.
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Fig. 9 Schematic of the spatial 120-bar dome truss

5 Concluding remarks

Structural optimization with multiple natural frequency constraints is a challenging class of optimization
problems characterized by highly nonlinear and non-convex search spaces with numerous local optima. This
paper presents a vibrating particles system for finding the optimum design of this kind of problems. The
VPS has simple theoretical structure, and self-adaptation, cooperation and competition concepts are consid-
ered in its updating formula. The solution candidates gradually approach to HB, and any particle has the
chance to have influence on the new position of the other one; therefore, the self-adaptation and coopera-
tion between the particles are respectively provided. Moreover, since the influence of GP is more than that
of BP in position updating, the competition is supplied. Five planar and spatial trusses are studied in this
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Table 7 Comparison of optimized designs obtained for the 120-bar dome problem

Design variable Areas (cm2)

Kaveh and Zolghadr [11] Kaveh and Ilchi
Ghazaan [15]

Present work

1 17.478 19.8905 19.6836
2 49.076 40.4045 40.9581
3 12.365 11.2057 11.3325
4 21.979 21.3768 21.5387
5 11.190 9.8669 9.8867
6 12.590 12.7200 12.7116
7 13.585 15.2236 14.9330
Weight (kg) 9046.34 8889.96 8888.74
Average optimized weight (kg) N/A 8900.39 8896.04
Standard deviation on average weight (kg) N/A 6.38 6.65

Table 8 Natural frequencies (Hz) evaluated at the optimum designs of the 120-bar dome problem

Frequency number Natural frequencies (Hz)

Kaveh and Zolghadr [11] Kaveh and Ilchi Ghazaan [15] Present work

1 9.000 9.000 9.0000
2 11.007 11.000 11.0000
3 11.018 11.000 11.0000
4 11.026 11.010 11.0096
5 11.048 11.050 11.0491

Fig. 10 Convergence curves obtained for the 120-bar dome truss

Fig. 11 Schematic of the 600-bar single-layer dome truss
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Fig. 12 Details of a substructure of the 600-bar single-layer dome truss

Table 9 Comparison of optimized designs obtained for the 600-bar single-layer dome truss problem

Design variable (nodes) Areas (cm2)

Kaveh and Ilchi Ghazaan [20] Present work

1 (1–2) 1.4305 1.3030
2 (1–3) 1.3941 1.3998
3 (1–10) 5.5293 5.1072
4 (1–11) 1.0469 1.3882
5 (2–3) 16.9642 16.9217
6 (2–11) 35.1892 38.1432
7 (3–4) 12.2171 11.8319
8 (3–11) 16.7152 16.6149
9 (3–12) 12.5999 11.3403
10 (4–5) 9.5118 9.3865
11 (4–12) 8.9977 8.7692
12 (4–13) 9.4397 9.6682
13 (5–6) 6.8864 6.9826
14 (5–13) 4.2057 5.4445
15 (5–14) 7.2651 6.3247
16 (6–7) 6.1693 5.1349
17 (6–14) 3.9768 3.3991
18 (6–15) 8.3127 7.7911
19 (7–8) 4.1451 4.4147
20 (7–15) 2.4042 2.2755
21 (7–16) 4.3038 4.9974
22 (8–9) 3.2539 4.0145
23 (8–16) 1.8273 1.8388
24 (8–17) 4.8805 4.7965
25 (9–17) 1.5276 1.5551
Weight (kg) 6171.51 6133.02
Average optimized weight (kg) 6191.50 6142.03
Standard deviation on average weight (kg) 39.08 12.54
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Table 10 Natural frequencies (Hz) evaluated at the optimum designs of the 600-bar single-layer dome truss problem

Frequency number Natural frequencies (Hz)

Kaveh and Ilchi Ghazaan [20] Present work

1 5.002 5.0000
2 5.003 5.0003
3 7.001 7.0000
4 7.001 7.0001
5 7.002 7.0002

Fig. 13 Convergence curves obtained for the 600-bar single-layer dome truss

work to verify the proposed method. The numerical results of the investigated design examples bring out the
advantages of the proposed method in terms of speed of convergence, stability, and optimality of the final
solutions.
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