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Abstract In this paper, we introduce a phenomenological model approximating the behaviour of masonry
structures, which is based on a low-tension elastic–brittle (EB) assumption with evolutionary tensile behaviour.
The EB model is conceived by embedding a decaying tensile strength in the material behaviour, and it is able
to achieve good agreement with the real behaviour of masonry. Since the model is quite sophisticated, non-
holonomic, and the EB solution depends—amongst other things—on the loading path, it is worthwhile to
investigate the relationships with more manageable and stable models rather than searching for unreliable
solutions that depend on poorly predictable data. Namely, whereas it is quite clear and largely agreed upon that
structural models widely applied in engineering (like perfectly plastic or no-tension models or other ones) are
well-conditioned problems, the same does not apply to brittle structures. In this case, exact solutions are hard
to be found and are scarcely attractive from the engineering point of view since they also depend on the load
history and on unverifiable variables such as the local tensile strength. In view of these considerations, in this
paper it is proved that stress fields in tensioned EB problems can be approached by highly stable solutions, on
the upper and lower sides of the relevant complementary energy, and that the approximation gets closer as the
limit tensile strength of the brittle material becomes lower.

Abbreviations

CE Complementary energy
MCE Minimum complementary energy
EB Elastic–brittle
EL Purely elastic
NT No-tension
PL Elastic–plastic
VWP Virtual work principle
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List of symbols

O Axis origin
s Curvilinear abscissa
� Length of the model mid-line
V, S1 Body volume and constrained part of the body surface
θ Direction tangent to the barycentre line
e(s) Eccentricity
h′(s), h′′(s) Distances of the upper and lower profiles of the arch from the cross-sectional barycen-

tre
n(s) Neutral axis
Ar (s) Resistant part of the cross section
Gr (s) Barycentre of Ar (s)
C(s) Solicitation centre
er Distance of C(s) from Gr (s)
dGr (s) Distance of Gr (s) from n(s)
ρ Material density
E Elastic modulus in compression of the masonry
g, c Gravity acceleration, fraction of the gravity acceleration
amax Maximum horizontal ground acceleration
τ , t Parameter governing the loading process, and one single value
p Surface loads
G Body forces
u Imposed displacement field on S1
Xi (i = 1, 2, 3) Unknown static variables (static redundancies)
X1, X2, X3 Thrust force, support force, and bending moment redundancies
S0(s), Si (s) Stress resultant vectors for the isostatic schemes under the applied loads and the i-th

unit redundancy Xi
N (s), T (s), M(s) Normal force, shear force, and bending moment
N0(s), T0(s), M0(s) Stress resultants referred to the isostatic scheme under the applied loads
Ni (s), Ti (s), Mi (s) Stress resultants referred to the isostatic scheme under the i-th unit redundancy Xi
Nd , Td , Md Values of the static redundancies on the basis of the leftward abutment of the portal

arch
ud , vd , φd Settlements of the foundation basis of the leftward abutment of the portal arch
σ Statically admissible stress
σ ′
o, ε

′
o Tensile yield stress and strain

σθ Stress component along θ
ε, εe, εf Strain and relevant elastic and fracture components
εEB, εfEB EB strain and fracture component
C(X1, X2, X3) Convex functional over the convex set (X1, X2, X3)
C Complementary energy functional
DEB, σEB, CEB EB admissible domain, solution stress and complementary energy
DEL,σEL, CEL EL admissible domain, solution stress and complementary energy
DNT, σNT, CNT NT admissible domain, solution stress and complementary energy
DPL, σPL, CPL PL admissible domain, solution stress and complementary energy
T, TNT Reactions in equilibriumwith anyNT statically admissible stress σ andwith the stress

solution σNT

1 Introduction

When addressing problems relevant to masonry structures, current assessed mechanical models are often
referred to, usually neglecting any skill of the masonry body to resist tensile stresses. The typical NT (no-
tension) hypothesis is often coupled to an indefinite resistance to compressive stresses under purely elastic
behaviour in compression or otherwise to some ductility in compression. Such models are able to produce
reliable theoretical/numerical results whilst offering some further advantages such as an acceptable computa-
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tional effort and manageability in civil engineering applications, witnessing the deep research attention on the
topic attracted during the last decades by the international scientific community [1–21].

Actually, the problem of performing reliable safety assessment about the behaviour of masonry structures,
whichmainly depends on the proper choice and implementation of thematerialmechanicalmodel, is of primary
interest. Despite the high number of researches already developed on the subject, it still represents a very central
and open research field, still needing great scientific effort. Under this perspective, thematerial modelling plays
a fundamental role. The analysis and theoretical treatment of masonry constructions often pushes towards the
adoption of more sophisticated mechanical models for masonry continua, aiming at embedding, for instance,
orthotropic behaviour, crushing in compression, cohesive, and/or frictional behaviour in shear, with strength
depending on the level of vertical compression, influence of the effective masonry arrangement, and so on.
In general, such models may be more accurate in principle but are less treatable and they are also much less
reliable in practice, depending on many uncertain parameters and properties. One should also distinguish
some features that may be easily overcome, like the limit in compression, from some other features, like the
orthotropic behaviour, that may be very interesting for analysis purposes giving place to further theoretical ad
hoc treatments, but are quite inessential on the side of field engineering.

One feature requiring a specific analytical treatment is represented by the brittleness in tension of the
stone/mortar assemblage, which is the object of the paper and that represents, or may represent, a significant
weakness in the structural assessment of masonry structures. All choices relevant to the proper planning and
application of the most appropriate interventions for the effective protection of the monumental heritage, also
by means, for example, of dynamic control strategies and new refurbishment techniques [22–26], need to be
based on reliable models.

The no-tension assumption for masonry solids is mainly supported by the circumstance that, even if some
(most times low) resistance to tensile stresses may exist in masonry, it is neither reliable nor exactly predictable
since it is point-dependent and it usually decays with time and after stress peaks (brittle behaviour). A more
realistic mechanical model may therefore be built up, able to take into account such, possibly low, skill
of the material body to resist tensile stresses, embedding the brittleness in tension and thus improving the
performance of the NT models when applied to the analysis of masonry structures. Obviously, such a variant
of the referenceNTmodel is expected to involve some increased computational effort andmakesmore complex
the implementation and the handling of the model for usual investigations.

To this regard, in the following an elastic–brittle tension-resistant model (EB) exhibiting an evolutionary
behaviour with a decay of the tensile resistance after stress peaks is illustrated. Because of its major complexity
with respect to the standardNTmodels, due to the tensile behaviour practically evolving towards the no-tension
behavior and the above-reported considerations about the increased numerical effort, investigations are required
about procedures for searching the solutions and about assessment of stability. On the other hand, the EBmodel
solution should be properly explored in order to evaluate the overall improvements possibly deriving from
the assumption of this more sophisticated behaviour of masonry with respect to the NT solution. This is also
required by the circumstance that, on one hand, a complete settlement of the NT theory is not yet achieved,
and, as mentioned, further studies are still needed for solving a number of problems, for example, relevant
to the still lacking availability of commercial NT software, or to the analysis of complex double curvature
NT surfaces as in the case of masonry vaults, but on the other hand these problems become more and more
complex when based on further sophisticated material models like, precisely, when brittle fracture phenomena
are taken into account.

In the set-up of the presented EB model, some non-null tensile resistance is considered, thus admitting the
occurrence of some tensile stresses in the material body, and an elastic–brittle behaviour in tension is coupled
to indefinite elastic behaviour in compression. The model may be also enriched in a subsequent research stage,
admitting some ductility in compression, as in the case of NT material. Differently from the NT material, the
EB model is characterised by an evolutionary resistance domain which, after occurrence of fractures, decays
towards the NT domain. Even in the EB model, like in the NT one, the fracture is assumed to be co-axial with
the stress state and some elastic re-entries are possible after the closure of fractures, by re-acquiring some skill
of reacting to tangent stresses. Thereafter, some exploration of the properties of the EB solution is presented
in the paper under the energetic profile, and comparisons with solutions relevant to other material models,
such as the NT solution, are developed in order to evaluate the opportunity and feasibility of adopting the EB
model.

The results of the developed theoretical investigation which is carried on in the paper allow to achieve
some final considerations about the convenience in adopting more complex phenomenological models, but
also allowing to evaluate to what extent the real behaviour of the structure depends on its loading history.
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2 The NT model for masonry under mono-axial stress states

2.1 The problem set-up for NT portal arches and vaults

In structural patterns like masonry portal arches and vaults, as shown for example for the case of a single
span portal arch in Fig. 1, the equilibrium between the internal stresses and the applied loads coupled to the
admissibility condition of the NT material, which is unable to resist tensile stresses, would require that the
internal resultants’ funicular line is included in the thickness of the portal arch (or vault).

The shear stress on any cross section of the arch and of the piers is, then, small in comparisonwith the normal
internal force, since the pressure line should be contained inside the profile of the structure; otherwise, the
structure would be at or over the collapse threshold, and no solution can exist. Therefore, it is common practice
to neglect the influence of the shear stress on the stress admissibility at any cross section, and one can assume
that the stress state is mono-axial at any point (i.e. the resultant force on any cross section is approximately
orthogonal to the section itself). This assumption results in a significant simplification of the cross-sectional
stress state, which may be assumed as mono-axial. Therefore, when adopting the NT (no-tension) assumption,
one may search for the NT solution by a stress approach based on the constrained minimisation of a suitably
defined complementary energy functional [8]. In such cases, the set of stress fields equilibrating the applied
loads can be built up by superposition whilst the stress field can be associated with the internal forces on every
cross section by a bi-linear distribution pattern as shown on the right side of Fig. 1. The overall structural system
is characterised by only three static redundancies, so that the number of static unknowns is much smaller than
the number of kinematic ones and a force approach turns the most convenient and practicable. The solution of
the structural problem, in this case, can be best approached through the minimum principle of complementary
energy, and the procedure is aimed at identifying the redundant reactions allowing constraint compatibility
whilst minimising the complementary energy functional, whose expression is inferred by the introduced stress
distribution.

In detail, let us refer to the single span portal arch model subject to a load pattern shown in Fig. 1, in
the xy-plane. In the following, vectors and tensors are denoted in bold. Let consider the loads represented by
surface forces p acting on the arcade and body forces G, both due to gravity acceleration g and to a possible
field of horizontal base accelerations

p =
[
px
py

]
=

[
cp
p

]
= p

[
c
1

]
, G =

[
Gx
Gy

]
=

[−amax
−g

]
= −ρg

[
c
1

]
, (1)

with ρ denoting the (constant) material density, and amax the maximum horizontal ground acceleration, set
equal to a fraction c of the gravity acceleration.

Equilibrium stress fields can be built up from stress resultant fields. At the generic curvilinear abscissa s
on the model mid-line (with origin in O), the stress resultants on the relevant cross section in terms of shear
force, normal force, and bending moment are denoted by T (s), N (s), and M(s), respectively.

Fig. 1 Portal arch model with the bi-linear stress pattern at the generic cross section
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Since the structure is characterised by three static redundancies, the set of stress fields equilibrating the
applied loads can be built up by a superposition scheme, where three redundant stress components are recog-
nised in the thrust force X1, the support force X2, and the bending moment X3 at the section where the arch is
supported by the abutment on the left. Once collected the stress resultants at the generic abscissa in a vector
S(s) = [T (s) N (s) M(s)]T , one can build up by superposition the stress field in equilibrium with the applied
loads for any value of the unknown static variables Xi for i = 1, 2, 3 as follows:

S (s) = S (s|X1, X2, X3) = S0 (s) +
3∑

i=1

XiSi (s), (2)

where S0(s) represents the stress resultant vector at the considered curvilinear abscissa corresponding to the
applied loads, whilst Si (s) denotes the one relevant to i-th pattern where the i-th static unknown Xi is assumed
equal to unit.

On the other side, the condition for static admissibility requires that the same fields do not violate the
condition for the resistance of the material. One should consider that, for static admissibility, the thrust line
must be internal to the profile of the arch, so that for any cross section the stress resultant forms a small angle
with respect to the mid-line, and the shear force results to be small with respect to the normal force. If one
neglects the influence of the shear stress on the stress admissibility at any point, one can assume that the stress
state σ is mono-axial at any point Q in the volume V (i.e. the resultant force on any cross section is orthogonal
to the section itself) and the resistance condition may be written in the form

σθ (Q) ≤ 0 ∀Q ∈ V, (3)

where θ denotes the direction tangent to the barycentre line at the point where the cross section containing Q
intersects the barycentre line.

The admissibility of the stress field is then guaranteed by the condition that the force resultant line is
everywhere in the interior of the arch profile; this condition implies that the eccentricity e(s) (which is given
by e(s) = M(s)/N (s)) of the stress resultant N (s), at the generic curvilinear abscissa, is required to be
bounded by the distances h′(s) and h′′(s) of the upper and lower profiles of the arch from the cross-sectional
barycentre (Fig. 1).

The NT admissibility conditions may be written in the form
{
N (s) ≤ 0
−h′ (s) ≤ M(s)

N (s) ≤ h′′ (s) ∀s ∈ (0, �), (4)

where � is the length of the model mid-line.

2.2 The MCE approach for NT arches, portal arches, and vaults

By the minimum complementary energy (MCE) approach, the NT solution of the stress problem should be
searched for in the class of the equilibrated and NT admissible solutions. Within the set of statically admissible
solutions, theMCE functional attains its minimum in solution [11]. Consequently, the NT stress solution can be
achieved by solving a suitably set up constrained minimum problem that, for NT structures under mono-axial
stress state, is expressed in the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find min
X1,X2,X3

C (X1, X2, X3) = 1
2

�∫
0

N2(s)
E Ar (s)

(
1 + er (s)

dGr (s)

)
ds − Ndud − Tdvd − Mdφd

Sub

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

equilibrium

⎧⎨
⎩

N (s) = N0 (s) + ∑3
i=1 Xi Ni (s)

T (s) = T0 (s) + ∑3
i=1 Xi Ti (s)

M (s) = M0 (s) + ∑3
i=1 Xi Mi (s)

admissibility

{
N (s) ≤ 0
−h′ (s) ≤ M(s)

N (s) ≤ h′′ (s)

∀s ∈ (0, �)
(5)

where E denotes the elastic modulus in compression of the masonry, er is the distance of the solicitation centre
C(s) from the barycentre Gr (s) of the resistant part Ar (s) of the cross section, and dGr (s) denotes the distance
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of Gr (s) from the neutral axis n(s) (as shown in Fig. 1). Moreover, Nd = N (0), Td = T (0), Md = M(0)
denote, respectively, the values assumed by the static redundancies on the basis of the leftward abutment, and
ud , vd , φd the settlements of the foundation basis of the leftward abutment; N0(s), T0(s), M0(s) represent the
stress resultants referred to the isostatic scheme under the applied loads, whereas Ni (s), Ti (s), Mi (s) represent
the stress resultants referred to the isostatic scheme under the i-th static redundancy Xi assumed equal to the
unit.

The constraint conditions set in Eq. (5) can be observed to be of linear type. The minimum of the convex
functional C(X1, X2, X3) over the convex set X defined by the linear inequalities given in Eq. (5) represents a
problem of convex optimisation. Because of the convexity of C(X1, X2, X3), if the admissible set DNT is not
empty, the NT solution exists and is unique. If, on the contrary, no solution exists for the inequalities in Eq.
(5), the set DNT is empty, since no purely compressive stress distribution on the cross section can equilibrate a
force applied at a point exterior to the section. Therefore, in this case, although the inequalities in Eq. (5) are
written with reference to a particular stress pattern, no other stress pattern can hold.

By the principles of masonry limit analysis if no solution exists for Eq. (5), the structure is over the failure
condition in the sense of the static theorem. However, it is worthwhile to notice that the limit analysis in the
sense of the kinematical theorem can be viewed at more as a test for the existence of solutions rather than as a
tool for the safety assessment. Collapse mechanisms associated with unilateral hinges activation, in fact, can
hardly be associated with admissible values of stress, and/or if plasticity is assumed in compression, ductility
of masonry is a hope rather than a fact.

3 Relationships of the stress solutions under different material assumptions

3.1 Selection of mechanical models: purely elastic, elastic–plastic, no-tension, and elastic–brittle low tension

As shown in the previous section, in structures of the type of arches, portal arches, and vaults under investigation,
one may neglect the influence of the shear stress on the stress admissibility at any point, and one assumes that
the stress state is mono-axial at any point. The stress solution is thus desirable since it represents the fastest
way to pursue the solution with the lowest computational effort, by performing a complementary energy
minimisation under the admissibility conditions relevant to the adopted material model.

In the following, we consider four different mechanical models of the material, i.e. (i) the no-tension
(NT) model, (ii) the purely elastic (EL) model, (iii) the elastic–brittle (EB) low-tension model, and (iv) the
elastic–plastic (PL) model, in order to analyse the relationships existing between the relevant stress solutions.
The stress–strain diagrams for the four models are reported in Fig. 2. One should emphasise that some of the
mentioned mechanical models are unreliable when applied to the masonry material (like in the case of the
elastic assumption and, even more, in the case of the elastic–plastic one) and, therefore, their investigation
should be considered of purely academic interest if not critically correlated to the behaviour of the problem at
hand. Anyway, one should emphasise that available commercial software based on such assumptions is often
forced to comply with the masonry behaviour, and, thus, some practical interest arises in deepening the matter.

3.2 The no-tension solution as a constrained minimum of the complementary energy functional

Under the NT hypothesis, the material obeys a number of conditions regarding the stress σ and the strain ε,
composed by an elastic and fracture component, εe and εf , which express the conditions that allow or do not
allow the development of the fractures. For NT admissibility, the fracture strain is required to be non-negative,
which means that only detachment is allowed. Besides, the stress is required to be non-positive, that is to say
purely compressive.

Thus, first of all, one has

ε = εe + εf , εe = σ

E
,

εf ≥ 0
σ ≤ 0

}
⇒ σ · εf ≤ 0. (6)

The development of fractures and the local detachment along a plane surface at a point can only occur when
no stress acts on that surface. Therefore, marking by σNT the solution stress, the following conditions apply in
the solution:
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Fig. 2 Mechanical models for the masonry material body. a Elastic. b Elastic–plastic. cNo-tension. d Elastic–brittle low tension

σNT = 0 ⇒ εe = 0, εe = σNT
E

εf > 0 ⇒ σNT = 0
σNT < 0 ⇒ εf = 0

}
⇒ σNT · εf = 0

(7)

After introducing the reactions TNT and T equilibrated, respectively, by the stress solution σNT and by any NT
statically admissible stress σ , one may introduce the expressions of the CE (complementary energy) functional
for the two cases, denoted by CNT and C (dependence on the stress field is omitted), and they are as follows:

CNT = 1

2E

∫
V

σ 2
NTdV −

∫
S1

TNT · udS, C = 1

2E

∫
V

σ 2dV −
∫
S1

T · udS, (8)

where u is the field of the constrained displacements on the constrained part S1 of the surface of the body with
volume V . One may show that the difference	C = C−CNT is non-negative for any statically admissible stress
field and the CE functional attains its minimum in solution. To this aim, one starts from the application of the
VWP (virtual work principle). One considers any admissible stress field given by the difference (σ − σNT) in
equilibrium with the reactive force field (T − TNT), and, on the other side, the solution strain ε compatible
with the field of the constrained displacements u that satisfy the kinematic constraints on the surface S1. One
thus gets ∫

V

(σ − σNT) · εdV =
∫
S1

(T − TNT) · udS

→
∫
V

(σ − σNT) · εedV +
∫
V

(σ − σNT) · ε f dV =
∫
S1

(T − TNT) · udS

→ 1

E

∫
V

(σ − σNT) · σNTdV +
∫
V

σ · ε f dV =
∫
S1

(T − TNT) · udS. (9)
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Thereafter, one substitutes Eq. (9) in the expression of the relevant variation in the complementary energy
functional, and since from Eq. (6) one has that σ · ε f ≤ 0, one finally gets

	C = C − CNT = 1

2E

∫
V

(
σ 2 − σ 2

NT

)
dV −

∫
S1

(T − TNT) · udS

= 1

2E

∫
V

(σNT − σ)2 dV −
∫
V

σ · ε f dV ≥ 0. (10)

Equation (10) demonstrates that the mentioned energetic functional’s variation is non-negative 	C ≥ 0 for
any admissible variation in the stress field imposed starting from the solution, and, therefore, that C ≥ CNT.
Therefore, since C ≥ CNT, the NT complementary energy functional in solution attains a value that is always
upper-bounded by the one relevant to any other NT statically admissible stress field, i.e. by any stress field
that equilibrates the applied loads and satisfies the NT material admissibility conditions identifying the NT
solution domain DNT.

The NT stress solution is then characterised by the constraint minimum of the CE functional

σNT : CNT = C (σNT) = min
σ∈DEL∩DNT

C (σ ), (11)

where DEL represents the purely elastic solution domain where no constraints do apply.
This circumstance allows the specialisation of the problem for the search of the solution for the cases at

hand, like in Sect. 3.1 with regard to arches.

3.3 Comparison of the purely elastic solution with the no-tension solution in energetic terms

Since the stress solution σEL in case of linear elastic behaviour of the continuum would be characterised, in
turn, by the minimum CEL of the complementary energy under the only constraint imposed by the equilibrium
with the applied loads

σEL : CEL = C (σEL) = min
σ∈DEL

C (σ ), (12)

one may infer that the NT solution is lower-bounded by the linear elastic one in its definition domain

CEL ≤ CNT. (13)

In Fig. 3a, the contour lines of the objective function represented by the complementary energy functional are
depicted together with the purely elastic stress solution, which coincides with the absolute minimum of the
functional. In Fig. 3c, the NT admissibility domain is represented as well, with the identification of the relevant
NT solution placed on the boundary of such domain at the point minimising the energy functional.

3.4 Properties of the elastic–brittle low-tension solution and its comparison with the no-tension solution in
energetic terms

Although it is temporary because of time decay and brittleness, some tensile resistance, possibly low, may
be usually exhibited by the masonry, and it might be embedded in a more realistic mechanical model. The
formulation of an EB low-tension (elastic–brittle) behaviour should represent an improvement of the NT
modelling, and it is of some interest to investigate the relationships between the two solutions. One thus adopts
a brittle behaviour in tension of the type depicted in Fig. 2d.

After denoting by τ the parameter governing the loading process (e.g. the time variable), and, for any value
t of τ , one gets

σ (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Eε (t) if

⎧⎨
⎩

ε (t) ≤ 0
or
max
0≤τ≤t

ε (τ ) ≤ ε′
o

0 if

⎧⎨
⎩

ε (t) ≥ 0
and
max
0≤τ≤t

ε (τ ) > ε′
o

(14)
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Fig. 3 Energetic properties of: a the purely elastic (EL) solution; b the no-tension (NT) solution; c the elastic-plastic (PL) solution

with ε′
o the yield positive strain.

One should notice that, also in this case, one has that the work of fracture is null:

σ (t) · ε f (t) = 0 ∀t. (15)

Denoting by σNT and CNT, respectively, the stress and the complementary energy attained in the NT solution,
and by σEB and CEB the same quantities relevant to the low-tension elastic–brittle solution, after developing
some algebraic operations, one can show that

CNT ≥ CEB. (16)

Actually, denoting all variables relevant to the EB (low-tension elastic brittle) solution by the index (·)EB, one
may calculate the difference between to the NT and EB solutions in energetic terms as follows:

CNT = 1

2E

∫
V

σ 2
NTdV −

∫
S1

TNT · udS, CEB = 1

2E

∫
V

σ 2
EBdV −

∫
S1

TEB · udS, (17)

	C = CNT − CEB = 1

2E

∫
V

(
σ 2
NT − σ 2

EB

)
dV −

∫
S1

(TNT − TEB) · udS. (18)

By applying the VWP to stresses (σNT − σEB) and forces (TNT − TEB) equilibrating null external loads and
to the strains εEB and displacements u, one gets

∫
V

(σNT − σEB) · εEBdV =
∫
S1

(TNT − TEB) · udS. (19)
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Whence, after substitution, one gets

	C = CNT − CEB = 1

2E

∫
V

(
σ 2
NT − σ 2

EB

)
dV −

∫
V

(σNT − σEB) · εEBdV . (20)

Since

εEB = σEB

E
+ εfEB, (21)

with ε f EB the fracture strain in the EB case, from Eq. (20) one gets

	C = CNT − CEB = 1

2E

∫
V

(
σ 2
NT − σ 2

EB − 2σNTσEB + 2σ 2
EB

)
dV −

∫
V

(σNT − σEB) · εfEBdV, (22)

and finally

	C = CNT − CEB = 1

2E

∫
V

(
σNT − σEB

)2 dV −
∫
V

(
σNTεfEB − σEBεfEB

)
dV . (23)

One observes that the quadratic term in Eq. (23) cannot be negative, whilst the product σNT · εfEB cannot be
positive; moreover, the product σEB · εfEB is always zero. This implies that the considered variation in the
functional is non-negative:

	C = CNT − CEB = 1

2E

∫
V

(
σNT − σEB

)2 dV −
∫
V

σNTεfEBdV ≥ 0. (24)

Therefore, in case of non-null tensile resistance (σ ′
o > 0), i.e. of elastic–brittle low-tension material, the

relevant complementary energy in the solution is lower than the one relevant to the no-tension resistance case,
and they are as follows:

	C = CNT − CEB ≥ 0

⇒ CNT ≥ CEB. (25)

Since the energetic solution CEL relevant to the indefinitely linear elastic behaviour without any bound on the
tensile resistance minimises the energetic functional within the set of stress fields equilibrating the applied
loads, one may infer the following order between the three complementary energies in the solution:

CNT ≥ CEB ≥ CEL (26)

As a consequence, the elastic–brittle solution is demonstrated to be closer, in terms of complementary energy,
to the purely elastic one than the NT solution, and it may therefore be considered more realistic. In Fig. 3a, the
contour lines of the objective CE function are depicted together with the purely elastic stress solution, which
coincides with the absolute minimum of the functional. The NT admissibility domain is represented as well in
Fig. 3b, with the identification of the relevant NT solution placed on the boundary of such domain at the point
minimising the energy functional.

3.5 Comparison of the holonomic elastic–plastic solution with the elastic–brittle solution in energetic terms

Asmentioned in the above, the elastic–plastic hypothesis should be considered under a purely academic profile
for masonrymaterial, since it is usually scarcely credible except for few particular cases. Nevertheless, it makes
sense for comparison purposes with the EB and NT solutions.

Let denote by σEB and CEB the stress and the complementary energy values attained in the elastic–brittle
solution, and by σPL and CPL the same quantities relevant to the elastic–plastic holonomic solution. Since
σEB ≤ σ ′

o, with σ ′
o the tensile yield stress, and the elastic–plastic stress solution attains the minimum value of

the energy functional between all the possible stress fields equilibrating the loads and with stresses lower than
σ ′
o, one infers that

CEB ≥ CPL. (27)

Consequently, the elastic–plastic solution is closer than the EB solution to the elastic one, as regards the
complementary energy. Figure 3c reports the contour lines of the objective function together with the elastic–
plastic stress solution.
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4 Boundary theorems on the EB stress solution

4.1 Upper bound and lower bound theorems for the EB stress solution

By coupling the inequalities inferred in Sect. 3 with reference to the four considered mechanical models (no-
tension NT, elastic–brittle low-tension EB, elastic–plastic PL, and purely elastic EL), some bounding theorems
may be formulated on the EB stress solution, concerning the relationships shown in the previous sections with
the relevant stress solutions. The considered solutions have been shown to satisfy an order property with
reference to the relevant energetic functionals of the type

CNT ≥ CEB ≥ CPL ≥ CEL. (28)

The following bounding theorems can thus be formulated concerning the EB stress solution:

(I) Upper Bound Theorem:

“In an elastic–brittle structure with tensile strength under mono-axial stress, the complementary energy
functional attains a value that is upper-bounded in the solution by the complementary energy value relevant
to the no-tension solution. The bound gets sharper as the limit tensile strength gets smaller”.

(II) Lower Bound Theorem:

“In an elastic–brittle structure with tensile strength under mono-axial stress, the complementary energy
functional attains a value that is lower-bounded in the solution by the complementary energy value relevant
to the holonomic plastic (and a fortiori to the elastic) solution. The bound gets sharper as the limit tensile
strength gets smaller”.

It can be concluded that if the material is endowed with a low tensile strength σ ′
o, the difference between

the NT and EB solutions can be neglected as σ ′
o approaches zero.

4.2 Representation of the solutions and formulation outcomes

In Fig. 4, the complementary energy functional is represented through its contour lines where the functional is
constant with decreasing values as one moves towards the central minimum point, together with the constraints
imposed by the admissibility conditions relevant to the different materials.

One can observe that the elastic–plastic admissibility allows to identify the elastic–plastic domain DPL
where the relevant solution σPL should be searched for, whilst the NT solution σNT should be searched for in
the relevant statically admissible stress domain DNT that is, of course, included in DPL.

In synthesis:

(i) the elastic solution σEL is attained at the unconstrained minimum point of the CE functional (Fig. 3a);
(ii) the no-tension solution σNT, since it should attain the minimum admissible value, is placed at the tangent

point of the CE line tangent to the contour of the NT domain DNT (Fig. 3b);
(iii) the plastic solution σPL, since it should attain the minimum admissible value, is placed at the tangent point

of the CE line tangent to the contour of the plastic domain DPL (Fig. 3c);
(iv) the elastic–brittle solution σEB is placed in the area bounded by the contour of the elastic–plastic domain

DPL and the CE line relevant to the NT solution (Fig. 4).

Based on the above considerations, one may infer that:

– The EB solution belongs to the area bounded between the PL and the NT solutions, as shown in Fig. 4. If
σ ′
o is small (low-tension material), this area is very narrow, so that the difference between the NT and the

EB solution fades away.
– That narrow area, which is a part of the region included between the two definition domains of the plastic
and the NT solutions, gets even smaller as the tensile limit σ ′

o of the material gets smaller, or it decreases
because of the decay in time.

– When the yield tensile resistance is attained in the structure, the stress level is substantially very close to
the NT case.

– Definitely for low-tension material, like in most masonry textures, the stress regimes relevant to the EB
and the NT solutions are approximately the same, with the NT case working on the safe side from the point
of view of structural assessment.
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Fig. 4 CE optimum properties of the stress solutions

5 Conclusions

The paper introduces the formulation of an original mechanical model for masonry material, which is able
to embed some skill of resisting tensile stresses; one also discusses its opportunity for safety assessment
of masonry structures. Under this perspective, the presented elastic–brittle (EB) low-tension model aims at
producing some improvement with respect to standard no-tension (NT) models, where no-tension is admitted
by the material, still allowing the same fracture modes as the NT ones and an evolutionary behaviour tending
to the NT one.

Since, by the reasons discussed in Sect. 1, as far as the sophistication of the model is increased, the
computational effort required by the implementation of the model itself tends to become both cumbersome
and unreliable for engineering purposes, it is of primary importance to recognise that the attempt to fit the
material properties in details does not produce significant improvements.

The properties of the EB solution are investigated through the development of an original theoretical
formulation starting from Eq. (14), which leads to the set-up of two bounding theorems, formulated in Sect. 4.1
for the EB stress solution.

In conclusion, after proving that the EB solution, in energetic terms, is upper-bounded by the NT solution
and lower-bounded by the PL (elastic–plastic) solution, one may observe that the EB and NT solutions in
practical cases turn to be very close to each other. They are indeed characterised by some approximately
equal stress regimes, pushing towards the adoption of the less sophisticated model which, despite making the
computational effort lighter, is able to offer a more stable solution with an improved engineering reliability of
the consequent assessments.
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