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Abstract Closed-form expressions are derived and discussed, using an extended dislocation layer method,
for the components of the stress and electric fields created by a moving non-constantly loaded antiplane,
Griffith-type strip crack within one-dimensional piezoelectric quasicrystals. Some typical numerical results
are displayed graphically. Explicit results for the fields of an analogous stationary crack subjected to non-
constant loading are derived, as a special case.

1 Introduction

Wide-ranging technological applications of quasicrystals are increasingly being exploited following their
observation experimentally in 1982 byShechtman and the first general announcement in 1984 of their discovery
by Shechtman et al. [1]. Such materials unusually exhibit quasiperiodic translational symmetry and non-
traditional orientational symmetry and have been found experimentally to be quite brittle and thus subject to
defects.

There has been tremendous interest and progress in the development of comprehensive elasticity theories
of quasicrystals, and the solutions of numerous boundary value problems within quasicrystals having been
adequately reviewed and referenced by, for example, Ding et al. [2] and Fan [3,4].

However, more recently, exciting advances have been achieved on the detailed analyses and practical uti-
lization of their inherent piezoelectric coupling effects. The fundamental governing equations of piezoelectric
quasicrystals are now sufficiently well established for authors to have begun to study some boundary value
problems in such materials by extending the techniques that have been adopted previously to successfully
investigate the analogous situations in quasicrystals.

In 2004, Zhou et al. [5] investigated the piezoresistive behaviour of quasicrystals, and Li and Liu [6] used
group representation theory to study the matrix forms of the piezoelectric coefficient tensors under all 31 point
groups of one-dimensional quasicrystals. Further, a group-theoretical method was used by Rao et al. [7] to
determine the second-order piezoelectric tensor coefficients in classes of quasicrystals.

Altay andDökmeci [8] presented the basic equations governing the physical responses of three-dimensional
piezoelectric quasicrystals in differential and variational invariant forms. The results of Li and Liu [6] were
utilized by Wang and Pan [9] to analyse in detail the fields created by a screw dislocation moving uniformly
within a one-dimensional hexagonal piezoelectric quasicrystal. Subsequently, Yang et al. [10] used the general-
ized Stroh formalism to investigate analytically and numerically the elastic-electric fields around a stationary
straight dislocation situated parallel to a periodic axis in one-dimensional quasicrystals with piezoelectric
effects.
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General three-dimensional solutions of static problems in one-dimensional hexagonal piezoelectric qua-
sicrystals were developed by Li et al. [11] by the application of rigorous operator theory with two displacement
functions. Using the methods of an operator and functions of a complex variable, Yu et al. [12] presented
solutions of plane problems in one-dimensional piezoelectric quasicrystals, and, as an application, used the
semi-inverse method to consider a mode III stationary crack in a hexagonal piezoelectric quasicrystal that is
subject to far-field constant loads. Moreover, Yu et al. [13] adopted complex variable theory to investigate the
elastic and electric fields of a one-dimensional hexagonal piezoelectric quasicrystal containing an antiplane
elliptical cavity.

Most recently, conformal mapping techniques and complex variable theory enabled Guo et al. [14] to con-
sider an embedded elliptical inclusion in one-dimensional hexagonal piezoelectric quasicrystal composites,
and Yang and Li [15] to study a shear problem of a circular hole with a straight crack within one-dimensional
hexagonal quasicrystals with piezoelectric effects. As a special case, these results reduce to those for a corre-
sponding stationary constantly loaded Griffith crack.

However, no analysis by any technique whatsoever has been presented previously of a moving, non-
constantly loaded, mode III strip crack in quasicrystals with piezoelectric effects. The objective of the analysis
presented here is therefore to briefly show how the method of continuous dislocation layers, which was
originally devised for use in isotropic purely elastic solids, can be appropriately adapted to explicitly deduce new
and useful closed-form expressions for the fields’ components of such a crack. With the boundary conditions
necessitating finding the solutions of a system of three simultaneous equations which lead to three soluble
integral equations, this involves considerably lengthy detailed algebraic manipulation, but nevertheless it is an
extremely convenient and valuable extension of the basic technique.

In Sect. 2, the fundamental three-dimensional equations governing the behaviour of piezoelectric qua-
sicrystals are first summarized, before the underlying constitutive equations of one-dimensional hexagonal
piezoelectric quasicrystals with point group 6mm are outlined. The basic problem considered here is then
formulated. As a prerequisite, in Sect. 3, the phonon and phason displacement and stress field components and
the electric potential of a moving screw dislocation are stated, before the traditional dislocation layer method
is extended, in Sect. 4, to derive and discuss closed-form representations for the fields around a non-uniformly
loaded, moving antiplane shear crack, in such a material. Illustrative numerical results are displayed graphi-
cally for the variation with speed of a stress component around the crack tip. In Sect. 5, the particular results
for the previously unreported situation of a stationary non-uniformly loaded strip crack are deduced. Finally,
a summary of the main features of this investigation is given in the concluding Sect. 6.

2 Basic equations for piezoelectric quasicrystals and formulation of the problem

The general three-dimensional equations governing the components of the material fields within the linear
theory of piezoelectric quasicrystals have been conveniently expressed in both differential and variational
invariant forms by Altay and Dökmeci [8]. Relative to a fixed system of rectangular Cartesian coordinates
(x1, x2, x3), the quasistatic equilibrium equations, in the absence of body forces and an electric charge density,
the constitutive equations can be written compactly, respectively, using a suffix notation where i, j, k, l =
1, 2, 3 with the adoption of the repeated suffices summation convention, as

σi j,i = 0, Hi j,i = 0, Di j,i = 0, (1)

σi j = ci jkl(uk,l + ul,k)/2 + Ri jklwk,l − eki j Ek, (2)

Hi j = Rkli j (uk,l + ul,k)/2 + Ki jklwk,l − e′
ki j Ek, (3)

Di = eki j (u j,k + uk, j )/2 + e′
ki jw j,k − εi j E j , (4)

with a comma followed by p denoting partial differentiation with respect to xp for p = i, j, k, l.
The components of the phonon stress and displacement, the phason stress and displacement, and the electric

displacement and field are denoted by σi j , ui , Hi j , wi , Di and Ei , respectively, and ci jkl , Ri jkl , Ki jkl , ei jk, e′
i jk

and εi j are the phonon elastic constants, the phonon–phason coupling constants, the phason elastic constants,
the phonon and phason piezoelectric constants, and the dielectric constants, respectively.

Here a non-constantly generally loaded strip crack of Griffith type is considered to be moving in its own
plane with a uniform velocity within a homogeneous one-dimensional hexagonal piezoelectric quasicrystal
with point group 6 mm.
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A system of fixed rectangular Cartesian coordinates (x, y, z) is chosen so that the material, which in its
initial natural reference state has a uniform density, ρ, and is everywhere stress free and at rest, has the x − y
plane as its periodic plane and the positive z-axis as its direction of quasiperiodicity.

Within the material, the resulting components σXY , εXY and uX of the phonon stress and strain tensors
and displacement vector, HzX , wzX , and wX of the phason stress and strain tensors and displacement vector,
and DX and EX of the electric displacement and field vectors, for X and Y = x , y or z, are then interrelated
through constitutive equations having the matrix forms

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σxx
σyy
σzz
σyz
σxz
σxy
Hzz
Hzx
Hzy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0 R1 0 0
c12 c11 c13 0 0 0 R1 0 0
c13 c13 c33 0 0 0 R2 0 0
0 0 0 2c44 0 0 0 0 R3
0 0 0 0 2c44 0 0 R3 0
0 0 0 0 0 c11 − c12 0 0 0
R1 R1 R2 0 0 0 K1 0 0
0 0 0 0 2R3 0 0 K2 0
0 0 0 2R3 0 0 0 0 K2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εxx
εyy
εzz
εyz
εxz
εxy
wzz
wzx
wzy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 e31
0 0 e31
0 0 e33
0 e15 0
e15 0 0
0 0 0
0 0 e′

33
e′
15 0 0
0 e′

15 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣
Ex
Ey
Ez

⎤
⎦ , (5)

⎡
⎣
Dx
Dy
Dz

⎤
⎦ =

⎡
⎣

0 0 0 0 2e15 0 0 e′
15 0

0 0 0 2e15 0 0 0 0 e′
15

e31 e31 e33 0 0 0 e′
33 0 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εxx
εyy
εzz
εyz
εxz
εxy
wzz
wzx
wzy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
⎡
⎣

ε11 0 0
0 ε11 0
0 0 ε33

⎤
⎦
⎡
⎣
Ex
Ey
Ez

⎤
⎦ , (6)

with

εXY = 1

2

(
∂uX

∂Y
+ ∂uY

∂X

)
, wzX = ∂wz

∂X
. (7)

Utilizing the conventional contracted Voigt’s notation with i and j taking integer values here, the elastic
moduli in the phonon and phason fields are denoted by ci j and Ki , respectively, the phonon–phason coupling
elastic moduli by Ri , the piezoelectric moduli by ei j and e′

i j , and the dielectric moduli by εi j .
It is assumed that, at time t , the region y = 0, vt − c < x < vt + c,−∞ < z < ∞ of the x − z plane is

occupied by a moving crack of width 2c and constant speed of propagation v, as illustrated in Fig. 1, with a
moving coordinate ξ defined for convenience by

ξ = x − vt. (8)

An electric potential, φ, can be defined such that the electric field vector, E, can be written in terms of the
electric potential, φ, as

E = −∇φ. (9)
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Fig. 1 A loaded Griffith crack at time t , moving with uniform speed v in the x-direction

The application symmetrically to the two faces of the moving crack of non-constant phonon, phason and
electrical loads subject to the boundary conditions

σyz(ξ, 0) = T (ξ), Hzy(ξ, 0) = H(ξ), Dy(ξ, 0) = D(ξ), for |ξ | < c, (10)

with the non-uniform functions T (ξ),H(ξ), and D(ξ) specified and the medium remaining undisturbed at
infinity, induces a mode III antiplane deformation in which the field variables are all independent of z.

Analyses corresponding to that below can be developed similarly by an interested reader for investigating
antiplane deformations created by instead specifying on the crack faces whatever combinations involving any
three of the components σyz, εyz, Hzy, wzy, Dy or Ey are desired.

3 Moving piezoelectric quasicrystal screw dislocation

Before embarking upon a study of the fields around this moving mode III crack, it is desirable to outline the
basic properties of a "piezoelectric quasicrystal screw dislocation" moving within the medium upon which the
analysis is dependent.

This has an extended Burgers vector which is generalized from that of a conventional purely elastic screw
dislocation by having finite discontinuities across its slip plane of magnitudes b in the phonon displacement
component uz, d in the phason displacement component wz , and b4 (the strength of the charge dipole line) in
the electric potential.

Expressions for the field quantities around such a dislocation have been presented by Wang and Pan [9].
In particular, for a screw dislocation line at the origin parallel to the z-axis moving along the x-axis with a
speed v in a one-dimensional hexagonal piezoelectric quasicrystal with point group 6 mm, it can be shown
after appropriately renaming and regrouping various parameters and material moduli that

uIIIz (ξ, y) = 1

2π(α2 + R
2
)

[
b

{
α2 tan−1

(
β1y

ξ

)
+ R

2
tan−1

(
β2y

ξ

)}

+ dαR

{
tan−1

(
β1y

ξ

)
− tan−1

(
β2y

ξ

)}]
, (11)

wIII
z (ξ, y) = 1

2π(α2 + R
2
)

[
bαR

{
tan−1

(
β1y

ξ

)
− tan−1

(
β2y

ξ

)}

+ d

{
R
2
tan−1

(
β1y

ξ

)
+ α2 tan−1

(
β2y

ξ

)}]
, (12)
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φIII(ξ, y) = 1

2π

{
b

[
1

ε11(α2 + R
2
)

{
α(e15α + e′

15R) tan−1
(

β1y

ξ

)
− R(e′

15α − e15R) tan−1
(

β2y

ξ

)}

−e15
ε11

tan−1
(
y

ξ

)]

+ d

[
1

ε11(α2 + R
2
)

{
R(e15α + e′

15R) tan−1
(

β1y

ξ

)
+ α(e′

15α − e15R) tan−1
(

β2y

ξ

)}

−e′
15

ε11
tan−1

(
y

ξ

)]
+ b4 tan

−1
(
y

ξ

)}
, (13)

with throughout the superscript III indicating that the quantities are associated with a mode III deformation.
Here

α =
{
c44 − K +

√
(c44 − K )2 + 4R

2
}

/2, (14)

with the piezoelectrically stiffened elastic constants in the phonon and phason fields, c44 and K , and the
piezoelectrically stiffened phonon–phason coupling elastic constant, R, respectively, given by

c44 = c44 + e215
ε11

, K = K + e′2
15

ε11
, R = R + e15e′

15

ε11
, (15)

where the moduli R3 and K2 have been abbreviated to simply R and K , respectively, throughout for ease of
presentation, and

βi =
√
1 − v2

s2i
for i = 1 and 2. (16)

The two piezoelectrically stiffened wave speeds, s1 and s2, under antiplane shear conditions are given by

si = √εi/ρ, (17)

with

ε1 =
{
c44 + K +

√
(c44 − K )2 + 4R

2
}

/2, ε2 =
{
c44 + K −

√
(c44 − K )2 + 4R

2
}

/2. (18)

The corresponding nonzero components of the phonon and phason stresses and electric displacement then
follow, from Eqs. (11)–(13) using the constitutive equations (5) and (6), in the forms

σ III
xz (ξ, y) = − y

2π

{
b

[
1

(α2 + R
2
)

{
β1α(c44α + R

2
)

ξ2 + β2
1 y

2
+ β2R

2
(c44 − α)

ξ2 + β2
2 y

2

}
− e215

ε11(ξ2 + y2)

]

+ d

[
R

(α2 + R
2
)

{
β1(c44α + R

2
)

ξ2 + β2
1 y

2
− β2α(c44 − α)

ξ2 + β2
2 y

2

}
− e15e′

15

ε11(ξ2 + y2)

]
+ b4

e15
ξ2 + y2

}
,

(19)

σ III
yz (ξ, y) = ξ

2π

{
b

[
1

(α2 + R
2
)

{
β1α(c44α + R

2
)

ξ2 + β2
1 y

2
+ β2R

2
(c44 − α)

ξ2 + β2
2 y

2

}
− e215

ε11(ξ2 + y2)

]

+ d

[
R

(α2 + R
2
)

{
β1(c44α + R

2
)

ξ2 + β2
1 y

2
− β2α(c44 − α)

ξ2 + β2
2 y

2

}
− e15e′

15

ε11(ξ2 + y2)

]
+ b4

e15
ξ2 + y2

}
,

(20)

H III
zx (ξ, y) = − y

2π

{
b

[
R

(α2 + R
2
)

{
β1α(α + K )

ξ2 + β2
1 y

2
− β2(αK − R

2
)

ξ2 + β2
2 y

2

}
− e15e′

15

ε11(ξ2 + y2)

]
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+ d

[
1

(α2 + R
2
)

{
β1R

2
(α + K )

ξ2 + β2
1 y

2
+ β2α(αK − R

2
)

ξ2 + β2
2 y

2

}
− e′2

15

ε11(ξ2 + y2)

]
+ b4

e′
15

ξ2 + y2

}
,

(21)

H III
zy (ξ, y) = ξ

2π

{
b

[
R

(α2 + R
2
)

{
β1α(α + K )

ξ2 + β2
1 y

2
− β2(αK − R

2
)

ξ2 + β2
2 y

2

}
− e15e′

15

ε11(ξ2 + y2)

]

+ d

[
1

(α2 + R
2
)

{
β1R

2
(α + K )

ξ2 + β2
1 y

2
+ β2α(αK − R

2
)

ξ2 + β2
2 y

2

}
− e′2

15

ε11(ξ2 + y2)

]
+ b4

e′
15

ξ2 + y2

}
,

(22)

DIII
x (ξ, y) = − y

2π

be15 + de′
15 − b4ε11

ξ2 + y2
, (23)

DIII
y (ξ, y) = ξ

2π

be15 + de′
15 − b4ε11

ξ2 + y2
. (24)

The corresponding phonon and phason strain and electric field components can be derived analogously
from Eqs. (11)–(13), if required.

4 Moving shear crack

The classical “dislocation layer technique” depends upon the recognition that a loaded crack can be modelled
as a planar continuous array of appropriate dislocations to which it is equivalent. It was originally implemented
for studying cracks within isotropic elastic solids, as usefully summarized by, for example, Bilby and Eshelby
[16] and Lardner [17]. But this fundamental concept is exploited and extended here for studying the mode III
crack under consideration currently by distributing an arrangement of moving piezoelectric quasicrystal screw
dislocations, throughout the region of the crack plane |ξ | < c, y = 0, −∞ < z < ∞.

With the densities of the discontinuities in the phonon and phason displacement components and electric
potential of the proposed dislocations denoted by f (ξ), g(ξ), and f4(ξ), respectively, it follows fromEqs. (20),
(22), and (24) that at a point on the ξ -axis the resulting components of the phonon and phason stresses and
electric displacement are represented by

σyz(ξ, 0) = b

2π

[{
β1α(c44α + R

2
) + β2R

2
(c44 − α)

α2 + R
2

}
− e215

ε11

]∫ c

−c

f (ξ ′)
ξ − ξ ′ dξ ′

+ d

2π

[
R

{
β1(c44α + R

2
) − β2α(c44 − α)

α2 + R
2

}
− e15e′

15

ε11

]∫ c

−c

g(ξ ′)
ξ − ξ ′ dξ ′

+b4e15
2π

∫ c

−c

f4(ξ ′)
ξ − ξ ′ dξ ′, (25)

Hzy(ξ, 0) = b

2π

[
R

{
β1α(α + K ) − β2(αK − R

2
)

α2 + R
2

}
− e15e′

15

ε11

]∫ c

−c

f (ξ ′)
ξ − ξ ′ dξ ′

+ d

2π

[{
β1R

2
(α + K ) + β2α(αK − R

2
)

α2 + R
2

}
− e′2

15

ε11

]∫ c

−c

g(ξ ′)
ξ − ξ ′ dξ ′

+b4e′
15

2π

∫ c

−c

f4(ξ ′)
ξ − ξ ′ dξ ′, (26)

Dy(ξ, 0) = be15
2π

∫ c

−c

f (ξ ′)
ξ − ξ ′ dξ ′ + de′

15

2π

∫ c

−c

g(ξ ′)
ξ − ξ ′ dξ ′ − b4ε11

2π

∫ c

−c

f4(ξ ′)
ξ − ξ ′ dξ ′. (27)

The Plemelj formulae are used for the evaluation of the improper integrals in Eqs. (25)–(27) which are
taken to have their Cauchy principal values. After extremely lengthy and intricate algebraic manipulation
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and simplification, the solutions of the system of three simultaneous equations which is yielded by equating
the designated boundary conditions (10) to the above expressions (25)–(27) can be derived in the concise forms

∫ c

−c

f (ξ ′)
ξ − ξ ′ dξ ′ = 2π

bβ1β2ε11(c44K − R
2
)(α2 + R

2
)

×
[
ε11

{
β1R

2
(α + K ) + β2α(αK − R

2
)
}
T (ξ) − ε11R

{
β1(c44α + R

2
) − β2α(c44 − α)

}
H(ξ)

−
[
e′15R

{
β1(c44α + R

2
) − β2α(c44 − α)

}
− e15

{
β1R

2
(α + K ) + β2α(αK − R

2
)
}]

D(ξ)
]
,

(28)∫ c

−c

g(ξ ′)
ξ − ξ ′ dξ ′ = 2π

dβ1β2ε11(c44K − R
2
)(α2 + R

2
)

×
[
−ε11R

{
β1α(α + K ) − β2(αK − R

2
)
}
T (ξ) + ε11

{
β1α(c44α + R

2
) + β2R

2
(c44 − α)

}
H(ξ)

+
[
e′15
{
β1α(c44α + R

2
) + β2R

2
(c44 − α)

}
−e15R

{
β1α(α + K ) − β2(αK − R

2
)
}]

D(ξ)
]
, (29)

∫ c

−c

f4(ξ
′)

ξ − ξ ′ dξ ′ = 2π

b4β1β2ε11(c44K − R
2
)(α2 + R

2
)

×
{
−
[
e′15R

{
β1α(α + K ) − β2(αK − R

2
)
}

− e15
{
β1R

2
(α + K ) + β2α(αK − R

2
)
}]

T (ξ)

+
[
e′15
{
β1α(c44α + R

2
) + β2R

2
(c44 − α)

}
− e15R

{
β1(c44α + R

2
) − β2α(c44 − α)

}]
H(ξ)

−
[
β1β2(c44K − R

2
)(α2 + R

2
) − e215

ε11

{
β1R

2
(α + K ) + β2α(αK − R

2
)
}

− e′215
ε11

{
β1α(c44α + R

2
) + β2R

2
(c44 − α)

}
+ e15e

′
15

ε11
R
(
β1

{
α(α + K ) + (c44α + R

2
)
}

−β2

{
α(c44 − α) + (αK − R

2
)
})]

D(ξ)
}

. (30)

The relative phonon and phason displacements and electric potential of the two crack faces are also restricted
to be zero at ξ = ±c, and the befitting solutions of the integral equations (28)–(30) for the densities can be
deduced from the studies of Muskhelishvili [18] and Gakhov [19], for example, to be

f (ξ) = 2

πbβ1β2ε11(c44K − R
2
)(α2 + R

2
)

1
(
c2 − ξ2

) 1
2

∫ c

−c

(
c2 − ξ ′2) 1

2

ξ ′ − ξ

×
[
ε11

{
β1R

2
(α + K ) + β2α(αK − R

2
)
}
T (ξ ′) − ε11R

{
β1(c44α + R

2
) − β2α(c44 − α)

}
H(ξ ′)

−
[
e′15R

{
β1(c44α + R

2
) − β2α(c44 − α)

}
− e15

{
β1R

2
(α + K ) + β2α(αK − R

2
)
}]

D(ξ ′)
]
dξ ′, (31)

g(ξ) = 2

πdβ1β2ε11(c44K − R
2
)(α2 + R

2
)

1
(
c2 − ξ2

) 1
2

∫ c

−c

(
c2 − ξ ′2) 1

2

ξ ′ − ξ

×
[
−ε11R

{
β1α(α + K ) − β2(αK − R

2
)
}
T (ξ ′) + ε11

{
β1α(c44α + R

2
) + β2R

2
(c44 − α)

}
H(ξ ′),

+
[
e′15
{
β1α(c44α + R

2
) + β2R

2
(c44 − α)

}
− e15R

{
β1α(α + K ) − β2(αK − R

2
)
}]

D(ξ ′)
]
dξ ′, (32)

f4(ξ) = 2

πb4β1β2ε11(c44K − R
2
)(α2 + R

2
)

1
(
c2 − ξ2

) 1
2

∫ c

−c

(
c2 − ξ ′2) 1

2

ξ ′ − ξ

×
{
−
[
e′15R

{
β1α(α + K ) − β2(αK − R

2
)
}

− e15
{
β1R

2
(α + K ) + β2α(αK − R

2
)
}]

T (ξ ′)

+
[
e′15
{
β1α(c44α + R

2
) + β2R

2
(c44 − α)

}
− e15R

{
β1(c44α + R

2
) − β2α(c44 − α)

}]
H(ξ ′)
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−
[
β1β2(c44K − R

2
)(α2 + R

2
) − e215

ε11

{
β1R

2
(α + K ) + β2α(αK − R

2
)
}

− e′215
ε11

{
β1α(c44α + R

2
) + β2R

2
(c44 − α)

}
+ e15e

′
15

ε11
R
(
β1

{
α(α + K ) + (c44α + R

2
)
}

−β2

{
α(c44 − α) + (αK − R

2
)
})]

D(ξ ′)
}
dξ ′. (33)

With expressions for the required densities, f (ξ), g(ξ), and f4(ξ), now having been ascertained, all the
components of the phonon, phason and electric fields which are of interest can be deduced as desired from
Eqs. (19)–(24) and (31)–(33).

As an illustration, for example, it is inferred from Eq. (20) that

σyz(ξ, y) = b

2π

∫ c

−c
(ξ − ξ ′′)

[
1

(α2 + R
2
)

{
β1α(c44α + R

2
)

(ξ − ξ ′′)2 + β2
1 y

2
+ β2R

2
(c44 − α)

(ξ − ξ ′′)2 + β2
2 y

2

}

− e215
ε11{(ξ − ξ ′′)2 + y2}

]
f (ξ ′′)dξ ′′

+ d

2π

∫ c

−c
(ξ − ξ ′′)

[
R

(α2 + R
2
)

{
β1(c44α + R

2
)

(ξ − ξ ′′)2 + β2
1 y

2
− β2α(c44 − α)

(ξ − ξ ′′)2 + β2
2 y

2

}

− e15e′
15

ε11{(ξ − ξ ′′)2 + y2}
]
g(ξ ′′)dξ ′′ + b4

2π

∫ c

−c
(ξ − ξ ′′) e15

(ξ − ξ ′′)2 + y2
f4(ξ

′′)dξ ′′. (34)

Then, by directly substituting into this the representations (31)–(33) for the densities, it follows after much
involved rearrangement and manipulation that this phonon stress component can be conveniently expressed as

σyz(ξ, y) = 1

π2

∫ c

−c

(
c2 − ξ ′2) 1

2

⎡
⎢⎣{�1T (ξ ′) + �3H(ξ ′) + �5D(ξ ′)

} ∫ c

−c

(ξ − ξ ′′)dξ ′′
(
c2 − ξ ′′2) 12 (ξ ′ − ξ ′′)

{
(ξ − ξ ′′)2 + β2

1 y
2
}

+ {�2T (ξ ′) − �3H(ξ ′) + �6D(ξ ′)
} ∫ c

−c

(ξ − ξ ′′)dξ ′′
(
c2 − ξ ′′2) 12 (ξ ′ − ξ ′′)

{
(ξ − ξ ′′)2 + β2

2 y
2
}

− e15
ε11

D(ξ ′)
∫ c

−c

(ξ − ξ ′′)dξ ′′
(
c2 − ξ ′′2) 12 (ξ ′ − ξ ′′)

{
(ξ − ξ ′′)2 + y2

}

⎤
⎦ dξ ′, (35)

with the dimensionless constants �1, �2, �3,�5 and �6 given by

�1 = (c44α + R
2
)(αK − R

2
)

(α2 + R
2
)(c44K − R

2
)
, �2 = R

2
(c44 − α)(α + K )

(α2 + R
2
)(c44K − R

2
)
, (36)

�3 = R(c44α + R
2
)(c44 − α)

(α2 + R
2
)(c44K − R

2
)
, �5 = (c44α + R

2
){e′

15R(c44 − α) + e15(αK − R
2
)}

ε11(α2 + R
2
)(c44K − R

2
)

, (37)

�6 = − R(c44 − α){e′
15(c44α + R

2
) − e15R(α + K )}

ε11(α2 + R
2
)(c44K − R

2
)

. (38)

For future reference, it is appropriate to note at this stage that

�1 + �2 = 1, �5 + �6 = e15
ε11

. (39)
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To aid the clarity of presentation, it is beneficial to introduce the functions F F
k (θk),Rk(ξ, y), and θk(ξ, y),

which are defined for k = β1, β2, and 1, and F = T ,H, and D, by

F F
k (θk) = 1

π

∫ c

−c

ky cos θk + (ξ − ξ ′) sin θk

Rk
{
(ξ − ξ ′)2 + k2y2

} (
c2 − ξ ′2) 12 F(ξ ′)dξ ′, (40)

Rke
iθk = {c2 − (ξ + iky)2

} 1
2 , (41)

where the square root function in Eq. (41) has branches that are determined with θk chosen to be zero for
|ξ | < c, y = 0+ and elsewhere by analytic continuation. This enables Eq. (35) to be neatly written, using the
result (A.2) in the “Appendix”, as

σyz(ξ, y) = �1FT
β1

(
θβ1

)+ �2FT
β2

(
θβ2

)+ �3

{
FH

β1

(
θβ1

)− FH
β2

(
θβ2

)}

+�5FD
β1

(
θβ1

)+ �6FD
β2

(
θβ2

)− e15
ε11

FD
1 (θ1) . (42)

Similar analyses for other components, using Eqs. (19) and (21)–(24) in conjunction with Eqs. (31)-(33), (A.1)
and (A2), produce the expressions

Hzy(ξ, y) = �4

{
FT

β1

(
θβ1

)− FT
β2

(
θβ2

)}+ �2FH
β1

(
θβ1

)+ �1FH
β2

(
θβ2

)

+�7FD
β1

(
θβ1

)+ �8FD
β2

(
θβ2

)− e′
15

ε11
FD
1 (θ1) , (43)

Dy(ξ, y) = FD
1 (θ1) , (44)

σxz(ξ, y) = −�1

β1
FT

β1

(
θβ1 − π

2

)
− �2

β2
FT

β2

(
θβ2 − π

2

)
− �3

{
1

β1
FH

β1

(
θβ1 − π

2

)
− 1

β2
FH

β2

(
θβ2 − π

2

)}

−�5

β1
FD

β1

(
θβ1 − π

2

)
− �6

β1
FD

β2

(
θβ1 − π

2

)
+ e15

ε11
FD
1

(
θ1 − π

2

)
, (45)

Hzx (ξ, y) = −�4

{
1

β1
FT

β1

(
θβ1 − π

2

)
− 1

β2
FT

β2

(
θβ2 − π

2

)}
− �2

β1
FH

β1

(
θβ1 − π

2

)
− �1

β2
FH

β2

(
θβ2 − π

2

)

−�7

β1
FD

β1

(
θβ1 − π

2

)
− �8

β2
FD

β2

(
θβ2 − π

2

)
+ e′

15

ε11
FD
1

(
θ1 − π

2

)
, (46)

Dx (ξ, y) = −FD
1

(
θ1 − π

2

)
(47)

where

�4 = R(α + K )(αK − R
2
)

(α2 + R
2
)(c44K − R

2
)
, �7 = R(α + K ){e′

15R(c44 − α) + e15(αK − R
2
)}

ε11(α2 + R
2
)(c44K − R

2
)

, (48)

�8 = (αK − R
2
){e′

15(c44α + R
2
) − e15R(α + K )}

ε11(α2 + R
2
)(c44K − R

2
)

, (49)

and it is noted that

�7 + �8 = e′
15

ε11
. (50)

It is relevant to observe here that Eqs. (42), (43), (45), and (46) indicate explicitly that, when the boundary
conditions (10) are imposed, all the phonon and phason stress components depend upon T ,H, andD together
with the piezoelectric quasicrystal material constants and the speed of the crack, while it is clear from Eqs. (44)
and (47) that the components of the electric displacement depend upon D and the crack speed only.

The distributions near a crack tip that are of interest practically of these components can be considered by
putting

ξ = c + r cosψ, y = r sinψ (51)



556 G. E. Tupholme

in terms of polar coordinates r and ψ , into Eqs. (42)–(47) and studying cases where r � c. As r → 0, it can
be shown from Eq. (41) that approximately

Rk ∼
{
2cr
(
cos2 ψ + k2 sin2 ψ

) 1
2

} 1
2

, (52)

θk ∼ −(π − �k)/2, (53)

with
�k = tan−1(k tanψ) (54)

where tan−1(. . .) indicates the principal value of the inverse tangent for 0 ≤ ψ ≤ π/2 and π plus the principal
value for π/2 ≤ ψ ≤ π . Substitution of these into Eqs. (42)–(47) and (40), with the definition

�k = (cos2 ψ + k2 sin2 ψ
) 1
4 , (55)

for k = β1, β2 and 1, yields

σyz(r, ψ) ∼ KT√
r

{
�1

�β1

cos

(
�β1

2

)
+ �2

�β2

cos

(
�β2

2

)}
+ KH√

r
�3

{
1

�β1

cos

(
�β1

2

)
− 1

�β2

cos

(
�β2

2

)}

+KD√
r

{
�5

�β1

cos

(
�β1

2

)
+ �6

�β2

cos

(
�β2

2

)
− e15

ε11
cos

(
ψ

2

)}
, (56)

Hzy(r, ψ) ∼ KT√
r

�4

{
1

�β1

cos

(
�β1

2

)
− 1

�β2

cos

(
�β2

2

)}
+ KH√

r

{
�2

�β1

cos

(
�β1

2

)
+ �1

�β2

cos

(
�β2

2

)}

+KD√
r

{
�7

�β1

cos

(
�β1

2

)
+ �8

�β2

cos

(
�β2

2

)
− e′

15

ε11
cos

(
ψ

2

)}
, (57)

Dy(r, ψ) ∼ KD√
r
cos

(
ψ

2

)
, (58)

σxz(r, ψ) ∼ −KT√
r

{
�1

β1�β1

sin

(
�β1

2

)
+ �2

β2�β2

sin

(
�β2

2

)}

−KH√
r

�3

{
1

β1�β1

sin

(
�β1

2

)
− 1

β2�β2

sin

(
�β2

2

)}

−KD√
r

{
�5

β1�β1

sin

(
�β1

2

)
+ �6

β2�β2

sin

(
�β2

2

)
− e15

ε11
sin

(
ψ

2

)}
, (59)

Hzx (r, ψ) ∼ −KT√
r

�4

{
1

β1�β1

sin

(
�β1

2

)
− 1

β2�β2

sin

(
�β2

2

)}

−KH√
r

{
�2

β1�β1

sin

(
�β1

2

)
+ �1

β2�β2

sin

(
�β2

2

)}

−KD√
r

{
�7

β1�β1

sin

(
�β1

2

)
+ �8

β2�β2

sin

(
�β2

2

)
− e′

15

ε11
sin

(
ψ

2

)}
, (60)

Dx (r, ψ) ∼ −KD√
r
sin

(
ψ

2

)
(61)

as r → 0, where the phonon and phason stress and electric displacement intensity factors, KT , KH, and KD,
are defined for F = T ,H, and D by

KF = − 1

π
√
2c

∫ c

−c

(
c + ξ ′

c − ξ ′

) 1
2

F(ξ ′)dξ ′ (62)
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Fig. 2 Distribution of the scaled component of the phonon stress,
√
r105σψz/KT around the crack tip for the scaled speeds

v/s2 = 0 and v/s2 = 0.99

and correspond to that at the end of an isotropic elastic Griffith crack.
Finally, from Eqs. (56) and (59), (57), and (60), and (58) and (61), respectively, it follows that expressions

near the crack tip for the components σψz and Hzψ of the phonon and phason stress and Dψ of the electric
displacement can be written in the forms

σψz(r, ψ) ∼ �1KT + �3KH + �5KD√
r�β1

{
1

β1
sin

(
�β1

2

)
sinψ + cos

(
�β1

2

)
cosψ

}

+�2KT − �3KH + �6KD√
r�β2

{
1

β2
sin

(
�β2

2

)
sinψ + cos

(
�β2

2

)
cosψ

}
− e15KD

ε11
√
r
cos

(
ψ

2

)
,

(63)

Hzψ(r, ψ) ∼ �4KT + �2KH + �7KD√
r�β1

{
1

β1
sin

(
�β1

2

)
sinψ + cos

(
�β1

2

)
cosψ

}

−�4KT − �1KH − �8KD√
r�β2

{
1

β2
sin

(
�β2

2

)
sinψ + cos

(
�β2

2

)
cosψ

}
− e′15KD

ε11
√
r
cos

(
ψ

2

)
,

(64)

Dψ(r, ψ) ∼ KD√
r
cos

(
ψ

2

)
. (65)

These indicate that, as in isotropic elastic materials, a 1/
√
r crack-tip behaviour governs all the field

components and that their only dependence upon the non-uniform excitations, T (ξ),H(ξ), and D(ξ), of the
crack face is inherent upon the intensity factors introduced in Eq. (62).

For a material with specified piezoelectric quasicrystal moduli, it is interesting to remark that the sizes
of the concentrated fields around the crack tip can be changed as required in a given practical situation by
modifying any of the applied loads accordingly.

Agreement is attained with the corresponding results of Tupholme [20] for pure quasicrystals when the
piezoelectric effects here are removed by putting e15 = e′

15 = 0 throughout.
FromEqs. (31)–(33), it is evident that the above analysis is not validwhenβ1 = 0 orβ2 = 0 or c44K−R

2 =
0. From the definition (16), it follows that these particular values of β1 and β2 are achieved when the crack
speed, v, reaches that of the two shear wave speeds, s1 and s2, given by Eq. (17).

There is a scarcity of reliable data for the values of the material moduli of piezoelectric quasicrystals, but
representatively Li et al. [11] give c44 = 5.0 × 1010Nm−2, R = 1.2 × 109Nm−2, K = 3.0 × 108Nm−2,
e15 = −0.138Cm−2, e′

15 = −0.160Cm−2, ε11 = 82.6 × 10−12 C2N−1m−2. These, with typically ρ =
5.1 × 103 kg m−3, yield the corresponding wave speeds to be s1 ≈ 3139ms−1 and s2 ≈ 333ms−1. Further,

the product of c44 and K has a much larger magnitude than that of R
2
, and thus c44K − R

2
does not vanish.

Illustrative curves are depicted in Fig. 2 for the variation of the scaled component of the phonon
stress,

√
r105σψz/KT , with the angle ψ around the crack tip for a representative electrically impermeable
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crack with H(ξ) = D(ξ) = 0. The corresponding numerical values of this scaled component can be cal-
culated from Eq. (63), using the above data for the material constants when the crack speed, v, is such that
0 ≤ v/s2 < 1. The graphs presented demonstrate that as ψ increases from zero at a particular speed there is a
decrease in the magnitude of the component of stress, with the decrease being smaller as the speed increases
up to v/s2 = 0.99 than that experienced around a stationary crack tip.

5 Stationary shear crack

No investigation of a stationary, non-uniformly loaded crack within a piezoelectric quasicrystal has been
presented previously. It is therefore worthwhile to briefly exhibit the much simplified components of the fields
which follow as a special case of the above analysis when v = 0 throughout.

It is seen, from Eq. (16), that β1 = β2 = 1 if v = 0 and thus, by recalling from Eqs. (39) and (50) that
�1 + �2 = 1,�5 + �6 = e15/ε11 and �7 + �8 = e′

15/ε11, Eqs. (42)–(47) reduce for a stationary crack to

σyz(x, y) = FT
1 (θ1) , Hzy(x, y) = FH

1 (θ1) , Dy(x, y) = FD
1 (θ1) , (66)

σxz(x, y) = −FT
1

(
θ1 − π

2

)
, Hzx (x, y) = −FH

1

(
θ1 − π

2

)
, Dx (x, y) = −FD

1

(
θ1 − π

2

)
. (67)

Correspondingly, with v = 0, Eqs. (56)–(61) yield that as r → 0

σyz(r, ψ) ∼ KT√
r
cos

(
ψ

2

)
, Hzy(r, ψ) ∼ KH√

r
cos

(
ψ

2

)
, Dy(r, ψ) ∼ KD√

r
cos

(
ψ

2

)
, (68)

σxz(r, ψ) ∼ −KT√
r
sin

(
ψ

2

)
, Hzx (r, ψ) ∼ −KH√

r
sin

(
ψ

2

)
, Dx (r, ψ) ∼ −KD√

r
sin

(
ψ

2

)
, (69)

and finally, from Eqs. (63)–(65),

σψz(r, ψ) ∼ KT√
r
cos

(
ψ

2

)
, Hzψ(r, ψ) ∼ KH√

r
cos

(
ψ

2

)
, Dψ(r, ψ) ∼ KD√

r
cos

(
ψ

2

)
. (70)

It is noteworthy from Eqs. (70) that for a stationary crack the stress component σψz(r, ψ) depends upon
the load T (x) alone and Hzψ(r, ψ) upon the loadH(x) alone. This contrasts with the fields of a moving crack
for which Eqs. (63) and (64) show that instead σψz(r, ψ), and Hzψ(r, ψ) each depend upon T (ξ),H(ξ), and
D(ξ).

In the particular case, when the specified loads imposed on a stationary crack are pure constants, given by
T (x) = T= constant,H(x) = H = constant, and D(x) = D = constant, the three intensity factors in Eq. (62)
can be deduced to be simply

KT = −
√
c

2
T, KH = −

√
c

2
H, KD = −

√
c

2
D, (71)

and thus the representations (68) become

σyz(r, ψ) ∼ −
√

c

2r
T cos

(
ψ

2

)
, Hzy(r, ψ) ∼ −

√
c

2r
H cos

(
ψ

2

)
, Dy(r, ψ) ∼ −

√
c

2r
D cos

(
ψ

2

)
.

(72)

This simplified specialized situation has been considered using a complex variable method by Yu et al. [12].
The results in Eq. (72) do indeed reproduce their solutions, with −T,−H , and −D replaced by the remote
loads σ∞

yz , H
∞
zy and D∞

y , respectively, which they impose.
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6 Concluding remarks

The components of the phonon and phason stress and electric fields created within piezoelectric quasicrystals
by a moving mode III Yoffe-like crack which is subjected to non-constant phason, phason, and electric loads
are derived as analytical explicit expressions.

The focus of the analysis is upon using an appropriate adaptation of the classical technique of continuous
dislocation layers to one-dimensional hexagonal piezoelectric quasicrystals.

Graphical illustrations of the variation in the component of the phonon stress with the angle around the tip
of the crack are displayed for a range of crack speeds.

Finally, the main results of the analogous, simpler analysis of a stationary crack, which have not been
presented previously, are derived.

Appendix

It can be deduced using the methods of complex contour integration that

∫ c

−c

dξ ′′
(
c2 − ξ ′′2) 12 (ξ ′ − ξ ′′)

{
(ξ − ξ ′′)2 + k2y2

} = π
{
ky sin� − (ξ − ξ ′) cos�

}

ykR
{
(ξ − ξ ′)2 + k2y2

} , (A.1)

∫ c

−c

(ξ − ξ ′′)dξ ′′
(
c2 − ξ ′′2) 12 (ξ ′ − ξ ′′)

{
(ξ − ξ ′′)2 + k2y2

} = π
{
ky cos� + (ξ − ξ ′) sin�

}

R
{
(ξ − ξ ′)2 + k2y2

} (A.2)

for a constant k, where the branches of

Rei� = {c2 − (ξ + iky)2
} 1
2

are selected as for those in Eq. (52).
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