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Abstract An analytical approach is adopted to investigate Rayleigh waves in a layered composite structure
with corrugated boundaries. The structure of the model has been taken in such a way that the pre-stressed
piezoelectric layer with rotation is lying over a pre-stressed, rotating, gravitational orthotropic substrate. The
frequency equations of the consideredwave have been obtained in the formof a determinant for both electrically
open and short cases. Notable effects of various parameters (piezoelectric constant, initial stress, rotation,
undulation parameter and position parameter) on Rayleigh wave velocity have been observed. Numerical
computation and graphical demonstration have been carried out. The obtained results arematchedwith existing
results, under certain conditions. Also, the analytical solution of the problem is matched and found in good
agreement with the solution obtained by the finite element method. The outcomes are widely useful for the
development and characterization of rotation sensors and SAW devices.

1 Introduction

Around the beginning of twentieth century, the study of wave propagation in composites containing piezoelec-
tric materials has attracted much attention due to the possible engineering applications. Dynamic or transient
behaviour of piezoelectric materials are the primary concern in design as well as in performance. Piezoelectric
materials have the ability to produce electrical energy from mechanical energy. For instance, they can convert
mechanical vibrations into electricity. Such devices are commonly referred to as energy harvesters and can
be used in certain applications like wireless transmission, technology for colour television sets, cell phones
and Global Positioning Systems. Bluestein [1], Cheng [2], Fang [3] and Wang [4] have discussed numer-
ous problems of surface wave propagation in piezoelectric media. To prevent the piezoelectric material from
showing brittle fracture, the layered piezoelectric structures are usually pre-stressed during the manufacturing
process. As initial stresses are inseparable in surface acoustic wave devices and resonators, analysis of such
effects has been done using different approaches. Wave propagation in pre-stressed piezoelectric structures
has been studied by several authors; some of them are Chai andWu [5], Simionescu [6], Liu [7], Singh [8] and
Son [9]. Yang [10] has explained various problems of surface wave propagation in piezoelectric media. Du
et al. [11] have studied the Love wave propagation in a functionally graded piezoelectric material layer. Cao
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et al. [12] have discussed Rayleigh waves in a piezoelectric wafer with subsurface damage. The propagation
of elastic surface waves in a layered structure consisting of a semi-infinite solid substrate in contact with a
finite layer of different material properties has been of interest due to its many applications in geophysics,
material science, non-destructive evaluation and acoustic devices. Propagation of Rayleigh-type surface waves
in a transversely isotropic piezoelectric layer over a piezomagnetic half-space has been discussed by Pang et
al. [13]. Excitation and propagation of shear horizontal waves in a piezoelectric layer imperfectly bonded to
a metal or elastic substrate have been materialized by Li and Jin [14]. Propagation of Rayleigh waves in an
elastic half-space of orthotropic material has been studied by Abd-Alla [15]. He has investigated the generation
of waves in an orthotropic elastic solid medium under the influence of initial stress and gravity field. Effects
of rotation, magnetic field, initial stress and gravity on Rayleigh waves in a homogeneous orthotropic elastic
half-space have been shown by Abd-Alla et al. [16]. Clarke and Burdness [17] have studied exclusively the
effect of rotation on Rayleigh waves. They found that the rotation in an isotropic medium does not increase
the number of waves but it affects their speeds significantly. Sensors are usually a layered structure involving
configuration of a thin layer over a substrate. Among different layered structures, a piezoelectric structure is
considered to be more competent as it enables the electric excitation of Rayleigh waves. In many realistic
models, it is believed that the boundaries of the layer of the material medium are not perfectly plane but rather
undulated in nature. The presence of the undulated nature of the irregular boundaries in the material properties
generally produces a significant influence on the elastic waves propagating through the medium. Moreover,
the shape of the irregularity may be arbitrary. In order to get a practical insight into the problem involving
these irregular boundaries, an attempt has been made by considering corrugated boundary surfaces in the
present problem. These non-planar boundaries in the material medium must be taken into account for a more
accurate modelling procedures and interpretation of the results. Hurd [18] has investigated the propagation
of electromagnetic waves along an infinite corrugated surface. Glass and Maradudin [19] have studied the
leaky surface-elastic waves on both, flat and strongly corrugated surfaces for isotropic, non-dissipative media.
Recently, Singh et al. [20] discussed the Love-type waves in a corrugated piezoelectric structure.

Usually, surface acoustic wave (SAW) devices and sensors adopt a layer/substrate model to achieve high
performance. However, due to the mismatch of material properties, there exists a residual stress during the
manufacturing process of piezoelectric surface acoustic wave devices. The study of Rayleighwave propagation
in this type of material provides outstanding results for characteristics of such type of wave. Orthotropic
composites are sometimes used as the substrate of layered piezoelectric devices to enhance their mechanical
performance. These facts altogether set the motivation for the present study. The objective of this paper is
to investigate the effect of piezoelectric constant, initial stress, rotation, undulation parameter and position
parameter on the Rayleigh wave velocity. The present study provides a theoretical framework for designing
and development of devices involving piezoelectric composites. It is observed that different parameters of the
medium have a significant effect on the Rayleigh wave velocity.

2 Formulation of the problem

We consider a gravitational orthotropic substrate with initial stress and rotation covered with pre-stressed
piezoelectric layer with rotation of thickness H as shown in Fig. 1. A corrugated interface is taken on the
boundary of the two media. We choose a Cartesian coordinate system in such a way that the x-axis is in the
direction of wave propagation and the z axis pointing vertically downwards. The corrugation parameters ζ1 (x)
and ζ2 (x) are continuous functions of x , independent of y.

The functions ζ j (x) can be taken as periodic in the nature, and their Fourier series expansions are given
by Singh [21] as

ζm(x) =
∞∑

n=1

(
ζm
n einpx + ζm−ne

−inpx
)
, m = 1, 2.

Here ζn (x) and ζ−n (x) are Fourier series expansion coefficients with wave number (p), wave length
(
2π
p

)

and n is the order of series. Amplitude of irregular boundaries surface assumed to be very small compared to
the wavelength.

We establish the constants a1, a2,U 1
n , V 1

n such that

ζ 1±1 = a1
2

, ζ 1±2 = a2
2

, ζ 1±1 = Um
n ∓ iV m

n

2
, m = 1, 2 and n = 2, 3, . . .
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Fig. 1 Configuration of piezoelectric-layered structure and its coordinate

Using the above relations, the series may be converted to

ζ1 = a1 cos bx +
∞∑
n=2

[
U 1
n cos nbx + V 1

n sin nbx
]
,

ζ2 = a2 cos bx +
∞∑
n=2

[
U 2
n cos nbx + V 2

n sin nbx
]
,

where Um
n , Vm

n are cosine and sine Fourier coefficients, respectively.
Now, we consider the following:

ζm±n =

⎧
⎪⎨

⎪⎩

0 if n �= 1,
a1
2 if n = 1,m = 1,
a2
2 if n = 1,m = 2.

Also, we have considered the upper corrugated boundary surface as ζ1 = a1 cos bx and the corrugated
interface between layer and half-space as ζ2 = a2 cos bx, where a1 and a2 are corresponding amplitudes of
the corrugated boundary surfaces.

2.1 Governing equation for piezoelectric layer

The equation of motion and the charge equation for a piezoelectric layer with initial stress are

(
σi j + u j,kσ

1
ik

)
,i + ρ1 fi = ρ1

[
�̈u +
( �Ω × �Ω × �u

)
+
(
2 �Ω × �̇u

)]

, j
, (1)

Di,i = 0, (2)

where Di and σ are increments of electric displacement and electric charge density due to a dynamic distur-
bance superposed on the initial state, ui are components of the displacement vector, fi is the body force per

unit mass, σ 1
ik is the stress tensor referring to initial stress, ρ1 is the mass density of the layer and

( �Ω × �Ω × �u
)

and
(
2 �Ω × �̇u

)
are the centripetal and Coriolis acceleration, respectively.
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The constitutive equations of the piezoelectric medium can be expressed as

σi j = ci jklεkl − emi j Em,

Dm = eimjεkl + pim Em,

εkl = 1

2

(
ui, j + u j,i

)
, Em = −φ,m, (3)

where ci jkl , emi j and εkl are the elastic, piezoelectric and dielectric constants, respectively, and φ is the scalar
electric potential.

Hence, the equation of motion for a linear transversely isotropic piezoelectric medium without body force
can be written as

(
c11 + σ 1

11

) ∂2u1
∂x2

+ (c31 + c44)
∂2w1

∂x∂z
+ (c44 + σ 1

33

) ∂2u1
∂z2

+ (e31 + e15)
∂2φ1

∂x∂z

= ρ1

(
∂2u1
∂t2

− Ω2
1u1 + 2Ω1

∂w1

∂t

)
, (4)

(
c44 + σ 1

11

) ∂2w1

∂x2
+ (c31 + c44)

∂2u1
∂x∂z

+ (c33 + σ 1
33

) ∂2w1

∂z2
+ e15

∂2φ1

∂x2
+ e33

∂2φ1

∂z2

= ρ1

(
∂2w1

∂t2
− Ω2

1w1 + 2Ω1
∂u1
∂t

)
, (5)

e15
∂2w1

∂x2
+ (e15 + e31)

∂2u1
∂x∂z

+ e33
∂2w1

∂z2
− ε11

∂2φ1

∂x2
− ε33

∂2φ1

∂z2
= 0. (6)

2.2 Governing equation for half-space

The components of body forces are X = 0, Z = −g (where g is acceleration due to gravity). Considering that
the initial compression stress field due to gravity field is hydrostatic (Datta [22]), the state of initial stress τi j
becomes

τ11 = τ33 = τ, τ13 = 0. (7)

The equilibrium conditions of the initial stress field are

∂τ

∂x
= 0,

∂τ

∂z
− ρg = 0. (8)

Substituting Eqs. (7) and (8) into the three-dimensional form of the dynamical equations of an elastic
mediumunder initial compression stress P in the x-direction, consideringLorentz’s body forces F , we establish

∂τ11

∂x
+ ∂τ12

∂y
+ ∂τ13

∂z
+ P

(
∂ω21

∂y
− ∂ω13

∂z

)
− ρ2g

∂ω

∂x
= ρ2

(
∂2u2
∂t2

− Ω2
2u2 + 2Ω2

∂w2

∂t

)
, (9)

∂τ12

∂x
+ ∂τ22

∂y
+ ∂τ23

∂z
+ P

∂ω12

∂x
= ρ2

∂2v2

∂t2
, (10)

∂τ13

∂x
+ ∂τ23

∂y
+ ∂τ33

∂z
− P

∂ω13

∂x
+ ρ2g

∂u2
∂x

= ρ2

(
∂2w2

∂t2
− Ω2

2w2 − 2Ω2
∂u2
∂t

)
, (11)

where

ωi j = 1

2

(
∂ui
∂x j

− ∂u j

∂xi

)
.

Due to the characteristic of Rayleigh waves, the equation of motion reduces to

∂τ11

∂x
+ ∂τ13

∂z
− P

∂ω13

∂z
− ρ2g

∂ω

∂x
= ρ2

(
∂2u2
∂t2

− Ω2
2u2 + 2Ω2

∂w2

∂t

)
, (12)

∂τ13

∂x
+ ∂τ33

∂z
− P

∂ω13

∂x
+ ρ2g

∂u

∂x
= ρ2

(
∂2w2

∂t2
− Ω2

2w2 − 2Ω2
∂u2
∂t

)
, (13)
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where

τ11 = (c11 + P)
∂u2
∂x

+ (c13 + P)
∂w2

∂z
, (14)

τ13 = c44

(
∂u2
∂z

+ ∂w2

∂x

)
, (15)

τ33 = c13
∂u2
∂x

+ c33
∂w2

∂z
. (16)

Introducing Eqs. (14), (15) and (16) into Eqs. (12) and (13) with assumption that c44 = 1
2 (c11 − c13) , we

obtain

(c11 + P)

(
2
∂2u2
∂x2

+ ∂2u2
∂z2

+ ∂2w2

∂x∂z

)
+ c13

(
∂2w2

∂x∂z
− ∂2u2

∂z2

)
− 2ρ2g

∂w2

∂x

= 2ρ2

(
∂2u2
∂t2

− Ω2
2u2 + 2Ω2

∂w2

∂t

)
, (17)

c11

(
∂2w2

∂x2
+ ∂2u2

∂x∂z

)
+ (c13 + P)

(
∂2u2
∂x∂z

− ∂2w2

∂x2

)
+ 2ρ2g

∂u2
∂x

+ 2c33
∂2w2

∂z2

= 2ρ2

(
∂2w2

∂t2
− Ω2

2w2 − 2Ω2
∂u2
∂t

)
. (18)

Assuming that displacement components are derivable from the displacement potentials φ (x, z, t) and
ψ (x, z, t) by the relations

u2 = ∂φ

∂x
− ∂ψ

∂z
and w2 = ∂φ

∂z
+ ∂ψ

∂x
. (19)

From Eqs. (17), (18) and (19), we have

(c11 + P)∇2φ − ρ2g
∂ψ

∂x
= ρ2

(
∂2φ

∂t2
− Ω2

2φ + 2Ω2
∂ψ

∂t

)
, (20)

(c11 + P − c13) ∇2ψ + 2ρ2g
∂φ

∂x
= 2ρ2

(
∂2ψ

∂t2
− Ω2

2φ + 2Ω2
∂ψ

∂t

)
, (21)

and

c11

(
∂2ψ

∂x2
− ∂2ψ

∂z2

)
− (c13 + P) ∇2ψ + 2ρg

∂φ

∂x
+ 2c33

∂2ψ

∂z2
= 2ρ2

(
∂2ψ

∂t2
− Ω2

2φ + 2Ω2
∂ψ

∂t

)
, (22)

c11
∂2φ

∂x2
+ c33

∂2φ

∂z2
− ρ2g

∂ψ

∂x
= ρ2

(
∂2φ

∂t2
− Ω2

2φ + 2Ω2
∂ψ

∂t

)
, (23)

where

∇2 = ∂2

∂x2
+ ∂2

∂z2
.

Since the initial compressive wave has been taken in the direction of x only, the velocities of the body
waves are different in the (x, z) directions. Equations (20) and (23) represent the compressive wave along the x
and z directions, whereas Eqs. (21) and (22) represent the shear wave along the z and x directions, respectively.
Hence we solve only Eqs. (20) and (22).
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3 Analytical solutions

3.1 Solution for piezoelectric Layer

We seek the solution of Eqs. (4), (5) and (6) as

u1 = U1e
ik(x−ct), w1 = W1e

ik(x−ct) and φ1 = φ1e
ik(x−ct). (24)

Using Eq. (24) in Eqs. (4), (5) and (6), we obtain

(
c44 + σ 1

33

)
U ′′
1 + (k2ρ1c2 − k2

(
c11 + σ 1

11

)+ ρ1Ω
2
1

)
U1 + ik (c13 + c44)W

′
1

+ 2Ω1ρ1ikcW1 + ik (e31 + e15) φ
′
1 = 0, (25)

(
c33 + σ 1

33

)
W ′′

1 + (k2ρ1c2 − k2
(
c44 + σ 1

11

)+ Ω2
1ρ1
)
W1 + ik (c13 + c44)U

′
1

+ 2ρ1kciΩ1U1 + e33φ
′′
1 − e15k

2φ1 = 0, (26)

e33W
′′
1 − e15k

2W1 + ik (e15 + e31)U
′
1 − ε33φ

′′
1 + ε11k

2φ1 = 0. (27)

On solving Eqs. (25), (26) and (27), we get

(
D6χ1 + χ2D

4 + χ3D
2 + χ4

) (
U1,W1, φ1

) = 0, (28)

where

χ1 = − (ε33
(
c33 + σ 1

33

)+ e233
)

e33
(
c33 + σ 1

33

) ,

χ2 = 2e15(
c33 + σ 1

33

) + e33(
c33 + σ 1

33

) + ε33

e33
(υ1 + υ2) + ε11

e33
− ε33 (c13 + c44)2

e33
(
c33 + σ 1

33

) (
c44 + σ 1

33

)

− (e15 + e31) (c13 + c44)

e33
(
c44 + σ 1

33

) + (e15 + e31)2

e33
(
c44 + σ 1

33

) ,

χ3 = ε11

e33
(υ1 + υ2) − (e15)2

e33 (c13 + c44)
− 2e15a1(

c33 + σ 1
33

) − e33a1a2(
c33 + σ 1

33

) + ε11 (c13 + c44)2

e33
(
c33 + σ 1

33

) (
c44 + σ 1

33

)

+ 2 (e15 + e31) (c13 + c44) e15
e33
(
c44 + σ 1

33

) (
c33 + σ 1

33

) − (e15 + e31)2 υ2

e33
(
c44 + σ 1

33

) + 4ρ2
1c

2ε33Ω
2
1

e33
(
c44 + σ 1

33

) (
c33 + σ 1

33

)
ω2

,

χ4 = ε11υ1υ2

e33
+ (e15)2 υ1

e33
(
c33 + σ 1

33

) − 4ρ2
1c

4ε11Ω
2
1

e33
(
c44 + σ 1

33

) (
c33 + σ 1

33

)
ω2

,

υ1 =
(
c11 + σ 1

11

)
(
c44 + σ 1

33

) − ρ1Ω
2
1(

c44 + σ 1
33

)
(
1 − Ω2

1

ω2

)
, υ2 =

(
c44 + σ 1

33

)
(
c33 + σ 1

33

) − ρ1Ω
2
1(

c33 + σ 1
33

)
(
1 − Ω2

1

ω2

)
.

Hence, the mechanical displacement and electric potential for the piezoelectric layer are

u1 =
(
Ae−ikλ1z + Be−ikλ2z + Ce−ikλ3z + A′eikλ1z + B ′eikλ2z + C ′eikλ3z

)
eik(x−ct), (29)

w1 =
(
Ae−ikλ1z + Be−ikλ2z + Ce−ikλ3z + A

′
eikλ1z + B

′
eikλ2z + C

′
eikλ3z

)
eik(x−ct), (30)

φ1 =
(
Ae−ikλ1z + Be−ikλ2z + Ce−ikλ3z + A

′
eikλ1z + B

′
eikλ2z + C

′
eikλ3z

)
eik(x−ct), (31)

where A, B,C, A′, B ′,C ′, A, B, B, A
′
, B

′
,C

′
, A,B,C,A′,B ′,C ′, are constants and are defined as A =

P ′A, B = Q′B,C = R′C, A
′ = SA′, B ′ = T B ′,C ′ = VC ′, A = P ′′A, B = Q′′B,C = R′′C, A

′ =
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S′A′, B
′ = T ′B ′,C

′ = V ′C ′. And

P ′ = −P ′′

(s11 + S)
, Q′ = −Q′′

(m11 + T )
, R′ = −R′′

(n11 + V )
,

P ′′ =
(
a12 − a11k2λ21

) (
a22 − a21k2λ21

)+ (a24 − ikλ1a23)
(
a14 + k2λ21a13

)

iλ1ka15
(
a22 − a21k2λ21

)+ (e33k2 + k2λ21e33
) (
a14 + k2λ21a13

) ,

Q′′ =
(
a12 − a11k2λ22

) (
a22 − a21k2λ22

)+ (a24 − ikλ2a23)
(
a14 + k2λ22a13

)

iλ2ka15
(
a22 − a21k2λ22

)+ (e33k2 + k2λ22e33
) (
a14 + k2λ22a13

) ,

R′′ =
(
a12 − a11k2λ23

) (
a22 − a21k2λ23

)+ (a24 − ikλ3a23)
(
a14 + k2λ23a13

)

iλ3ka15
(
a22 − a21k2λ23

)+ (e33k2 + k2λ23e33
) (
a14 + k2λ23a13

) ,

S = −k2λ1 (e15 + e31)
(
e15k2 + k2λ21e33

)+ (ε′
11k

2 + k2λ21ε11
)
(a24 + ikλ1a23)(

a22 − k2λ21a22
) (

ε′
11k

2 + k2λ21ε11
)− (e15k2 + k2λ21e33

) (
e15k2 + k2λ21e33

) ,

T = −k2λ2 (e15 + e31)
(
e15k2 + k2λ22e33

)+ (ε′
11k

2 + k2λ22ε11
)
(a24 + ikλ2a23)(

a22 − k2λ22a22
) (

ε′
11k

2 + k2λ22ε11
)− (e15k2 + k2λ22e33

) (
e15k2 + k2λ22e33

) ,

V = −k2λ3 (e15 + e31)
(
e15k2 + k2λ23e33

)+ (ε′
11k

2 + k2λ23ε11
)
(a24 + ikλ3a23)(

a22 − k2λ23a22
) (

ε′
11k

2 + k2λ23ε11
)− (e15k2 + k2λ23e33

) (
e15k2 + k2λ23e33

) .

3.2 Solution for half-space

The solutions for Eqs. (20) and (22) are considered as

φ = f (z) eik(x−ct), (32)

ψ = h (z) eik(x−ct). (33)

Substituting Eqs. (32), (33) into Eqs. (20) and (22), we have

f ′′ (z) + β2
2 f (z) − iρ2α1k

α2 h (z) = 0, (34)

h′′ (z) + β2
3h (z) + 2iρ2α2k

β2 f (z) = 0, (35)

where

β2 = c2ρ2k2 + ρ2Ω
2
2

α2 − k2, β3 = 2ρ0c2k2 + (c′
13 + P

)
k2 − c′

11k
2 + 2ρ2Ω2

2

β2 , α1 = g + 2Ω2c,

α2 = g − 2Ω2c, α = c11 + P, β2 = 2c′
33 − (c′

11 − c′
13 − P

)
.

For simplification, Eqs. (34) and (35) may be written as
[(

d2

dz2
+ λ24

)(
d2

dz2
+ λ25

)]
( f, h) = 0, (36)

where

λ24 + λ25 = β2
2 + β2

3 and λ24λ
2
5 = β2

2β
2
3 −
[√

2α1α2ρ2k

α1β

]2
.

Now we assume that the solution of Eq. (36) has the form

f (z) = Ae−iλ4z + Beiλ4z + Ce−iλ4z + Deiλ5z, (37)

h (z) = A′e−iλ4z + B ′eiλ4z + C ′e−iλ4z + D′eiλ5z, (38)

where A, B,C, D, A′, B ′,C ′ and D′ are constants.
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We consider the appropriate solution in view of the condition f (z) → 0, h (z) → 0 as z → ∞:

φ =
(
Ae−iλ4z + Ce−iλ5z

)
eik(x−ct), (39)

ψ =
(
A′e−iλ4z + C ′e−iλ5z

)
eik(x−ct), (40)

where

A′ = i AL1 and C ′ = iCL2

such that

L1 = α2
(
λ24 − β2

2

)

ρ2α1k
and L2 = α2

(
λ25 − β2

2

)

ρ2α2k
.

Hence, the mechanical displacement and electric potential for the orthotropic half-space are

u2 =
[
Ae−iλ4z (ik − λ4L1) + Ce−iλ5z (ik − λ5L2)

]
eik(x−ct), (41)

w2 =
[
Ae−iλ4z (−iλ4 − kL1) + Ce−iλ5z (−iλ5 − kL2)

]
eik(x−ct). (42)

4 Boundary conditions

For Rayleigh wave propagation in piezoelectric-layered structure, mechanical displacements and electrical
potentials satisfy the following boundary and interface continuity conditions. It may be noted that two kinds
of electrical boundary conditions, i.e. electrical open and short conditions, are to considered in this study.

1. Traction free conditions at the free surface are given by

(a)
(
τzx − ζ ′

1τxx
) = 0 (43)

(b)
(
τzz − ζ ′

1τzx
) = 0 (44)

2. Electrical boundary condition at the free surface is expressed as

φ1 (ζ − h, y) = 0 (Electrically short condition) (45)

3. Electrical boundary conditions at the free surface may be written as

D1 (ζ − h, y) = 0 (Electrically open condition) (46)

4. Along the interfaces between piezoelectric layer and orthotropic half-space, the stresses, mechanical dis-
placements, electrical potentials are all continuous:

(a) u1 = u2, (47)

(b) w1 = w2, (48)

(c) φ1 = φ2, (49)

(d)
(
τzx − ζ ′

2τxx
)
1 = (τzx − ζ ′

2τxx
)
2 , (50)

(e)
(
τzz − ζ ′

2τzx
)
1 = (τzz − ζ ′

2τzx
)
2 , (51)

where ζ ′
1 = ∂ζ1

∂x and ζ ′
2 = ∂ζ2

∂x .

The subscripts “1” and “2” are used for upper corrugated piezoelectric layer and lower corrugated
orthotropic half-space, respectively.
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5 Frequency equation

From Eq. (43), we get

A
[(−c44ikλ1 + aikc44 + a′ike15

)− ζ ′
1

(
ikc11 − ikλ1ac13 + a′e31

)]
e−ikλ1(ζ1−H)

+ B
[(−c44ikλ2 + bikc44 + b′ike15

)− ζ ′
1

(
ikc11 − ikλ2bc13 + b′e31

)]
e−ikλ2(ζ1−H)

+C
[(−c44ikλ3 + cikC44 + c′ike15

)− ζ ′
1

(
ikc11 − ikλ3cc13 + c′e31

)]
e−ikλ3(ζ1−H)

+ A′ [(c44ikλ1 + dikc44 + d ′ike15
)− ζ ′

1

(
ikc11 + ikλ1dc13 + d ′e31

)]
eikλ1(ζ1−H)

+ B ′ [(c44ikλ2 + eikc44 + e′ike15
)− ζ ′

1

(
ikc11 + ikλ2ec13 + e′e31

)]
eikλ2(ζ1−H)

+C ′ [(c44ikλ3 + f ikc44 + f ′ike15
)− ζ ′

1

(
ikc11 + ikλ3 f c13 + f ′e31

)]
eikλ3(ζ1−H) = 0. (52)

Equation (44) yields

A
[(
c13ik − λ1aikc33 − a′ikλ1e33

)− ζ ′
1

(
aikc44 − ikλ1c44 + a′ike15

)]
e−ikλ1(ζ1−H)

+B
[(
c13ik − λ2bikc33 − b′ikλ2e33

)− ζ ′
1

(
bikc44 − ikλ2c44 + b′ike15

)]
e−ikλ2(ζ1−H)

+C
[(
c13ik − λ3cikc33 − c′ikλ3e33

)− ζ ′
1

(
cikc44 − ikλ3c44 + c′ike15

)]
e−ikλ3(ζ1−H)

+ A′ [(c13ik + dikλ1c33 + d ′ikλ1e33
)− ζ ′

1

(
ikc44λ1 + ikdc44 + d ′ike15

)]
eikλ1(ζ1−H)

+ B ′ [(c13ik + eikλ2c33 + e′ikλ2e33
)− ζ ′

1

(
ikc44λ2 + ikec44 + e′ike15

)]
eikλ2(ζ1−H)

+C ′ [(c13ik + f ikλ3c33 + f ′ikλ3e33
)− ζ ′

1

(
ikc44λ3 + ik f c44 + f ′ike15

)]
eikλ3(ζ1−H) = 0. (53)

Using Eq. (45), we obtain

a′Ae−ikλ1(ζ1−H) + b′Be−ikλ2(ζ1−H) + c′Ce−ikλ3(ζ1−H) + d ′Deikλ1(ζ1−H)

+ e′Eeikλ2(ζ1−H) + f ′Feikλ3(ζ1−H) = 0. (54)

In view of Eq. (46), we establish

A
[
e15 (−ikλ1 + ika) + ika′ε11

]
e−ikλ1(ζ1−H) + B

[
e15 (−ikλ2 + ikb) + ikb′ε11

]
e−ikλ2(ζ1−H)

+C
[
e15 (−ikλ3 + ikc) + ikc′ε11

]
e−ikλ3(ζ1−H) + D

[
e15 (ikλ1 + ikd) + ikd ′ε11

]
eikλ1(ζ1−H)

+ E
[
e15 (ikλ2 + ike) + ike′ε11

]
eikλ2(ζ1−H) + F

[
e15 (ikλ3 + ik f ) + ik f ′ε11

]
eikλ3(ζ1−H) = 0. (55)

Form Eq. (47), we have

Ae−ikλ1ζ2+Be−ikλ2ζ2+Ce−ikλ3ζ2+Deikλ1ζ2+Eeikλ2ζ2+Feikλ3ζ2+LX1e
−ikλ4ζ2+MX2e

−ikλ5ζ2 = 0. (56)

Equation (48) leads to

Aae−ikλ1ζ2 + Bbe−ikλ2ζ2 + Cce−ikλ3ζ2 + Ddeikλ1ζ2 + Eeeikλ2ζ2

+ F f eikλ3ζ2 + LY1e
−ikλ4ζ2 + MY2e

−ikλ5ζ2 = 0. (57)

From Eq. (49), we find

Aa′e−ikλ1ζ2 + Bb′e−ikλ2ζ2 + Cc′e−ikλ3ζ2 + Dd ′eikλ1ζ2 + Ee′eikλ2ζ2 + F f ′eikλ3ζ2 = 0. (58)

Using Eq. (50), we obtain

A
[(
c13ik − ikλ1ac33 − ikλ1a

′e33
)− ζ ′

2

(−c44ikλ1 + ikac44 + a′ike15
)]
e−ikλ1ζ2

+ B
[(
c13ik − ikλ2bc33 − ikλ2b

′e33
)− ζ ′

2

(−c44ikλ2 + ikbc44 + b′ike15
)]
e−ikλ2ζ2

+C
[(
c13ik − ikλ3cc33 − ikλ3c

′e33
)− ζ ′

2

(−c44ikλ3 + ikcc44 + c′ike15
)]
e−ikλ3ζ2

+ D
[(
c13ik + ikλ1dc33 + ikλ1d

′e33
)− ζ ′

2

(
c44ikλ1 + ikdc44 + d ′ike15

)]
eikλ1ζ2

+ E
[(
c13ik + ikλ2ec33 + ikλ2e

′e33
)− ζ ′

2

(
c44ikλ2 + ikec44 + e′ike15

)]
eikλ2ζ2
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+ F
[(
c13ik + ikλ3 f c33 + ikλ3 f

′e33
)− ζ ′

2

(
c44ikλ3 + ik f c44 + f ′ike15

)]
eikλ3ζ2

− L
[(
c′
13ikX1 − c′

33ikY1λ4
)− ζ ′

2

(
c′
44ikY1 − c′

44ikX1λ4
)]
e−kλ4ζ2

− M
[(
c′
13ikX2 − c′

33ikY2λ5
)− ζ ′

2

(
c′
44ikY2 − c′

44ikX1λ5
)]
e−kλ5ζ2 = 0. (59)

From Eq. (51), we get

A
[(−c44λ1 + ac44 + a′e15

)
ik − ζ ′

2

(
ikc11 − ikλ1ac13 + e31a

′)] e−ikλ1ζ2

+ B
[(−c44λ2 + bc44 + b′e15

)
ik − ζ ′

2

(
ikc11 − ikλ2bc13 + e31b

′)] e−ikλ2ζ2

+C
[(−c44λ3 + cc44 + c′e15

)
ik − ζ ′

2

(
ikc11 − ikλ3cc13 + e31c

′)] e−ikλ3ζ2

+ D
[(
c44λ1 + dc44 + d ′e15

)
ik − ζ ′

2

(
ikc11 + ikλ1dc13 + e31d

′)] eikλ1ζ2

+ E
[(
c44λ2 + ec44 + e′e15

)
ik − ζ ′

2

(
ikc11 + ikλ2ec13 + e31e

′)] eikλ2ζ2

+ F
[(
c44λ3 + f c44 + f ′e15

)
ik − ζ ′

2

(
ikc11 + ikλ3 f c13 + e31 f

′)] eikλ3ζ2

− L
[(
c′
44ikY1 − c′

44ikX1λ4
)− ζ ′

2

((
c′
11 + P

)
ikX1 − (c′

13 + P
)
ikY1λ4

)]
e−ikλ4ζ2

− M
[(
c′
44ikY2 − c′

44ikX2λ5
)− ζ ′

2

((
c′
11 + P

)
ikX2 − (c′

13 + P
)
ikY2λ5

)]
e−ikλ5ζ2 = 0. (60)

5.1 Frequency equation for electrically open case

By eliminating the constants from Eqs. (52), (53) and (55)–(60) and applying the necessary and sufficient
condition for the existence of non-trivial solutions, we have

∣∣Ai j
∣∣
8×8 = 0, (61)

where

A11 = [(−c44ikλ1 + aikc44 + a′ike15
)− ζ ′

1

(
ikc11 − ikλ1ac13 + a′e31

)]
e−ikλ1(ζ1−H),

A12 = [(−c44ikλ2 + bikc44 + b′ike15
)− ζ ′

1

(
ikc11 − ikλ2bc13 + b′e31

)]
e−ikλ2(ζ1−H),

A13 = [(−c44ikλ3 + cikc44 + c′ike15
)− ζ ′

1

(
ikc11 − ikλ3cc13 + c′e31

)]
e−ikλ3(ζ1−H),

A14 = [(c44ikλ1 + dikc44 + d ′ike15
)− ζ ′

1

(
ikC11 + ikλ1dc13 + d ′e31

)]
eikλ1(ζ1−H),

A15 = [(c44ikλ2 + eikc44 + e′ike15
)− ζ ′

1

(
ikc11 + ikλ2ec13 + e′e31

)]
eikλ2(ζ1−H),

A16 = [(c44ikλ3 + f ikc44 + f ′ike15
)− ζ ′

1

(
ikc11 + ikλ3 f c13 + f ′e31

)]
eikλ3(ζ1−H),

A17 = 0 = A18,

A21 = [(C13ik − λ1aikC33 − a′ikλ1e33
)− ζ ′

1

(
aikC44 − ikλ1C44 + a′ike15

)]
e−ikλ1(ζ1−H),

A22 = [(C13ik − λ2bikC33 − b′ikλ2e33
)− ζ ′

1

(
bikC44 − ikλ2C44 + b′ike15

)]
e−ikλ2(ζ1−H),

A23 = [(C13ik − λ3cikC33 − c′ikλ3e33
)− ζ ′

1

(
cikC44 − ikλ3C44 + c′ike15

)]
e−ikλ3(ζ1−H),

A24 = [(C13ik + dikλ1C33 + d ′ikλ1e33
)− ζ ′

1

(
ikC44λ1 + ikdC44 + d ′ike15

)]
eikλ1(ζ1−H),

A25 = [(C13ik + eikλ2C33 + e′ikλ2e33
)− ζ ′

1

(
ikC44λ2 + ikeC44 + e′ike15

)]
eikλ2(ζ1−H)

A26 = [(C13ik + f ikλ3C33 + f ′ikλ3e33
)− ζ ′

1

(
ikC44λ3 + ik f C44 + f ′ike15

)]
eikλ3(ζ1−H),

A27 = 0 = A28, A31 = [e15 (−ikλ1 + ika) + ika′ε11
]
e−ikλ1(ζ1−H),

A32 = [e15 (−ikλ2 + ikb) + ikb′ε11
]
e−ikλ2(ζ1−H),

A33 = [e15 (−ikλ3 + ikc) + ikc′ε11
]
e−ikλ3(ζ1−H), A34 = [e15 (ikλ1 + ikd) + ikd ′ε11

]
eikλ1(ζ1−H),

A35 = [e15 (ikλ2 + ike) + ike′ε11
]
eikλ2(ζ1−H), A36 = F

[
e15 (ikλ3 + ik f ) + ik f ′ε11

]
eikλ3(ζ1−H),

A37 = 0 = A38,

A41 = e−ikλ1ζ2 , A42 = e−ikλ2ζ2 , A43 = Ce−ikλ3ζ2 , A44 = Deikλ1ζ2 , A45 = Eeikλ2ζ2 , A46 = Feikλ3ζ2 ,

A47 = X1e
−ikλ4ζ2 , A48 = X2e

−ikλ5ζ2 ,
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A51 = ae−ikλ1ζ2 , A52 = be−ikλ2ζ2 , A53 = ce−ikλ3ζ2 , A54 = deikλ1ζ2 , A55 = eeikλ2ζ2 , A56 = f eikλ3ζ2 ,

A57 = Y1e
−ikλ4ζ2 , A58 = Y2e

−ikλ5ζ2 , A61=a′e−ikλ1ζ2 , A62=b′e−ikλ2ζ2 , A63 = c′e−ikλ3ζ2 , A64 = d ′eikλ1ζ2 ,
A65 = e′eikλ2ζ2 , A66 = f ′eikλ3ζ2 , A67 = 0 = A68,

A71 = [(c13ik − ikλ1ac33 − ikλ1a
′e33
)− ζ ′

2

(−c44ikλ1 + ikac44 + a′ike15
)]
e−ikλ1ζ2 ,

A72 = [(c13ik − ikλ2bc33 − ikλ2b
′e33
)− ζ ′

2

(−c44ikλ2 + ikbc44 + b′ike15
)]
e−ikλ2ζ2 ,

A73 = [(c13ik − ikλ3cc33 − ikλ3c
′e33
)− ζ ′

2

(−c44ikλ3 + ikcc44 + c′ike15
)]
e−ikλ3ζ2 ,

A74 = [(c13ik + ikλ1dc33 + ikλ1d
′e33
)− ζ ′

2

(
c44ikλ1 + ikdc44 + d ′ike15

)]
eikλ1ζ2 ,

A81 = [(−c44λ1 + ac44 + a′e15
)
ik − ζ ′

2

(
ikc11 − ikλ1ac13 + e31a

′)] e−ikλ1ζ2 ,

A82 = [(−c44λ2 + bc44 + b′e15
)
ik − ζ ′

2

(
ikc11 − ikλ2bc13 + e31b

′)] e−ikλ2ζ2 ,

A83 = [(−c44λ3 + cc44 + c′e15
)
ik − ζ ′

2

(
ikc11 − ikλ3cc13 + e31c

′)] e−ikλ3ζ2 ,

A75 = [(c13ik + ikλ2ec33 + ikλ2e
′e33
)− ζ ′

2

(
c44ikλ2 + ikec44 + e′ike15

)]
eikλ2ζ2 ,

A76 = [(c13ik + ikλ3 f c33 + ikλ3 f
′e33
)− ζ ′

2

(
c44ikλ3 + ik f c44 + f ′ike15

)]
eikλ3ζ2 ,

A77 = [(c′
13ikX1 − c′

33ikY1λ4
)− ζ ′

2

(
c′
44ikY1 − c′

44ikX1λ4
)]
e−kλ4ζ2 ,

A78 = [(c′
13ikX2 − c′

33ikY2λ5
)− ζ ′

2

(
c′
44ikY2 − c′

44ikX1λ5
)]
e−kλ5ζ2 ,

A84 = [(c44λ1 + dc44 + d ′e15
)
ik − ζ ′

2

(
ikc11 + ikλ1dc13 + e31d

′)] eikλ1ζ2 ,
A85 = [(c44λ2 + ec44 + e′e15

)
ik − ζ ′

2

(
ikc11 + ikλ2ec13 + e31e

′)] eikλ2ζ2 ,
A86 = [(c44λ3 + f c44 + f ′e15

)
ik − ζ ′

2

(
ikc11 + ikλ3 f c13 + e31 f

′)] eikλ3ζ2 ,
A87 = [(c′

44ikY1 − c′
44ikX1λ4

)− ζ ′
2

((
c′
11 + P

)
ikX1 − (c′

13 + P
)
ikY1λ4

)]
e−ikλ4ζ2 ,

A88 = [(c′
44ikY2 − c′

44ikX2λ5
)− ζ ′

2

((
c′
13 + P

)
ikX2 − (c′

13 + P
)
ikY2λ5

)]
e−ikλ5ζ2 .

Equation (61) gives the frequency equation for Rayleigh waves propagating in the corrugated piezoelectric
layer with initial stress, rotation over-lying a gravitational orthotropic half-space with corrugated boundary,
initial stress and rotation for the electrically open case.

5.2 Frequency equation for electrically short case

By eliminating the constants from Eqs. (52), (53), (54) and (56)–(60), we obtain the frequency equation for
the electrically the short case as ∣∣Ai j

∣∣
8×8 = 0. (62)

Equation (62) gives the frequency equation for Rayleigh waves propagating in the corrugated piezoelectric
layer with initial stress and rotation over-lying a gravitational orthotropic half-space with corrugated boundary,
initial stress and rotation for the electrically short case. Here

A41 = a′e−ikλ1(ζ1−H), A42=b′e−ikλ2(ζ1−H), A43 = c′e−ikλ3(ζ1−H), A44 = d ′eikλ1(ζ1−H), A45 = e′eikλ2(ζ1−H),

A46 = f ′eikλ3(ζ1−H)

and all other entries remain same as in Eq. (61).

6 Particular cases

6.1 Particular case for electrically open case

Case 1
When the upper layer has a plane surface z = −H , i.e. ζ1 = 0, and the intermediate surface has a periodic
corrugated delineation by ζ2 = a cos (bx), then Eq. (61) becomes
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∣∣Bi j
∣∣
8×8 = 0. (63)

Values of all Bi j are given in Appendix 1.
Equation (63) gives the frequency equation for Rayleigh waves in a piezoelectric layer with free surface

lying over a corrugated boundary of orthotropic half-space with initial stress and rotation for the electrically
open case.

Case 2
When the upper piezoelectric layer is bounded by a corrugated surface ζ1 = a cos (bx) and the common
interface between layer and half-space is planar, i.e. ζ2 = 0, so ζ ′

1 = −ab sin (bx) and ζ ′
2 = 0, then Eq. (61)

yields ∣∣Di j
∣∣
8×8 = 0. (64)

Values of all Di j are given in Appendix 2.
Equation (64) gives the frequency equation for the propagation of Rayleigh waves in a corrugated piezo-

electric layer lying over an orthotropic half-space with initial stress and rotation for the electrically open
case.

Case 3
When the corrugated boundary of the piezoelectric layer and the common interface are continuous and periodic
in nature, with ζ1 = a1 cos (bx) , ζ2 = a2 cos (bx) , ζ ′

2 = −a2b sin (bx) , ζ ′
1 = −a1b sin (bx) , then Eq. (61)

becomes ∣∣Ei j
∣∣
8×8 = 0. (65)

Values of all Ei j are given in Appendix 3.
Equation (65) gives the frequency equation for propagation of Rayleigh waves in corrugated piezoelectric

layer bounded by corrugated surfaces, lying over an orthotropic half-space for electrically open case.

Case 4
When the medium is consists of a half-space only (H = 0) with plane boundary, i.e. ζ2 = 0, then Eq. (65)
becomes ∣∣∣∣

(
c′
13ikX1 − c′

33ikY1λ4
) (

c′
13ikX2 − c′

33ikY2λ5
)

(
c′
44ikY1 − c′

44ikX1λ4
) (

c′
44ikY2 − c′

44ikX2λ5
)
∣∣∣∣ = 0. (66)

Equation (66) gives the frequency equation for Rayleigh wave propagation in an orthotropic half-space with
initial stress, rotation and gravity given by Abd-Alla et al. [16].

Case 5
When the medium consists of a half-space only (H = 0) with plane boundary, i.e. ζ2 = 0, and the half-space
is free of rotation, i.e. Ω2 = 0, then Eq. (61) reduces to

∣∣∣∣

(
c′
13ikX

′
1 − c′

33ikY
′
1λ

′
4

) (
c′
13ikX

′
2 − c′

33ikY
′
2λ

′
5

)
(
c′
44ikY

′
1 − c′

44ikX
′
1λ

′
4

) (
c′
44ikY2 − c′

44ikX
′
2λ

′
5

)
∣∣∣∣ = 0, (67)

where

λ′2
4 + λ′2

5 = β2
2 + β2

3 and λ′2
4 λ′2

5 = β2
2β

2
3 −
[√

2α1α2ρ2k

α1β

]2
,

β2 = c2ρ2k2

α2 − k2, β3 = 2ρ0c2k2 + (c′
13 + P

)
k2 − c′

11k
2

β2 , α1 = g,

α2 = g, α = c11 + P, β2 = 2c′
33 − (c′

11 − c′
13 − P

)
.

Equation (67) gives the frequency equation for Rayleigh wave propagation in an orthotropic half-space
with initial stress and gravity given by Abd-Alla et al. [15].

Case 6
When the medium consists of a half-space only (H = 0) with plane boundary, i.e. ζ2 = 0, it is rotation free
half-space, i.e. Ω2 = 0, and the half-space is isotropic, i.e. g

c2k
<< 1, then Eq. (61) becomes

(
2 − c2

σ 2
2

)2
− 4

[(
c2

σ 2
1

− 1

)(
c2

σ 2
2

− 1

)] 1
2
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+ 4g

c2(σ 2
1 − σ 2

2 )k

⎡

⎣
(
1 − c2

σ 2
2

) 1
2 (

σ 2
1 + σ 2

2 − c2
)−
(
1 − c2

σ 2
1

) 1
2
{
(
σ 2
1 + σ 2

2

)− σ 2
1 c

2

σ 2
2

}⎤

⎦ = 0, (68)

where

σ 2
1 = λ + 2μ + P

ρ2
, σ 2

2 = μ − P
2

ρ2
.

Equation (68) represents that the Rayleigh surface waves in isotropic medium under the influence of initial
stress and gravity.

Case 7
When the medium is consists of half-space only (H = 0) with plane boundary, i.e. ζ2 = 0, such that the half-

space is rotation free, i.e. Ω2 = 0, isotropic
(

g
c2k

<< 1
)
and without initial stress and gravity, then Eq. (61)

reduces to (
2 − c2

γ 2
2

)2
= 4

√√√√
[(

c2

γ 2
1

− 1

)(
c2

γ 2
2

− 1

)]
, (69)

where

γ 2
1 = λ + 2μ

ρ
and γ 2

2 = μ

ρ
.

Equation (69) is the classical Rayleigh wave equation given by Rayleigh [24].

6.2 Particular case for electrically short case

Case 1

When the upper layer is bounded by a plane surface z = −H , i.e. ζ1 = 0, and the intermediate surface is
corrugated (periodic nature) by ζ2 = a cos (bx), ζ ′

1 = 0 and ζ ′
2 = −ab sin (bx), then Eq. (62) becomes

∣∣Bi j
∣∣
8×8 = 0. (70)

Equation (70) gives the frequency equation for the propagation of Rayleigh waves in a piezoelectric layer
lying over a corrugated orthotropic half-space with initial stress and rotation in the electrically short case,
where all the terms are same as in Eq. (63) except the following terms:

B41 = a′eikλ1H , B42 = b′eikλ2H , B43 = c′eikλ3H , B44 = d ′e−ikλ1H ,

B45 = e′e−ikλ2H , B46 = f ′e−ikλ3H .

Case 2

When the corrugation of the upper piezoelectric layer is given by ζ1 = a cos (bx) and the common interface
between the layer and the half-space is planar, i.e. ζ2 = 0, then Eq. (62) yields

∣∣Di j
∣∣
8×8 = 0. (71)

Equation (71) gives the frequency equation for the propagation of Rayleigh wave in a corrugated piezo-
electric layer lying over an orthotropic half-space with initial stress and rotation for the electrically short case,
where all the terms are the same as in Eq. (64) except the following terms:

D41 = a′e−ikλ1(a cos(bx)−H), D42 = b′e−ikλ2(a cos(bx)−H), D43 = c′e−ikλ3(a cos(bx)−H),

D44 = d ′eikλ1(a cos(bx)−H), D45 = e′eikλ2(a cos(bx)−H), D46 = f ′eikλ3(a cos(bx)−H).

Case 3

When the corrugated boundary of piezoelectric layer and common interface of layer and half-space are con-
tinuous and periodic in nature, then we have

ζ1 = a1 cos (bx) , ζ2 = a2 cos (bx) , ζ ′
2 = −a2b sin (bx) , ζ ′

1 = −a1b sin (bx) ,
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Table 1 Piezoelectric and elastic constants for piezoelectric layer and orthotropic substrate

Parameters Piezoelectric layer (PZT-5H) Orthotropic elastic half-space

c11
(
1010N/m2

)
12.1 2.694

c33
(
1010N/m2

)
11.7 2.363

c44
(
1010N/m2

)
2.34 –

c13
(
1010N/m2

)
8.41 0.661

e33
(
c/m2

)
23.3 –

e13
(
c/m2

) −6.5 –
e15
(
c/m2

)
17 –

ε33 3400 –
ε11 3100 –
ρ
(
103kg/m3

)
7.7 2.7

and Eq. (62) becomes ∣∣Ei j
∣∣
8×8 = 0, (72)

where all the terms remain the same as in Eq. (65) except the terms

E41 = a′e−ikλ1(a1 cos(bx)−H), E42 = b′e−ikλ2(a1 cos(bx)−H), E43 = c′e−ikλ3(a1 cos(bx)−H),

E44 = d ′eikλ1(a1 cos(bx)−H), E45 = e′eikλ2(a1 cos(bx)−H), E46 = f ′eikλ3(a1 cos(bx)−H).

Equation (72) is the required frequency equation for the propagation of Rayleigh wave in a corrugated
piezoelectric layer bounded by periodic surfaces, lying over an orthotropic half-space in the electrically short
case.

7 Numerical example and discussion

An analytical solution for the propagation of Rayleigh waves in an initially stressed piezoelectric layer with
rotation and gravitational orthotropic elastic substrate with initial stress and rotation has been obtained. The
obtained analytical solution ismatchedwith the solution using the finite elementmethod (FEM) and is discussed
separately. Furthermore, to show the effect of elastic parameters (viz. initial stress, rotation and corrugation)
on the frequency equation of Rayleigh waves, we have considered the structure made up of a PZT-5H ceramic
layer over the orthotropic elastic substrate. The elastic and piezoelectric constants of the PZT-5H ceramic layer
and orthotropic substrate are taken as given in Table 1 [23,25].

7.1 Effect of undulation parameter on frequency equation of Rayleigh Wave

The effect of the undulation parameter on the Rayleigh wave velocity is taken into account. Figures 2 and 3
represent the dispersion curves of Rayleigh waves for different values of undulation parameters for electri-
cally open and short cases, respectively. The graphs indicate that the Rayleigh wave velocity decreases with
increasing values of the undulation parameter for both the electrically open and short case.

7.2 Effect of position parameter on frequency equation

To show the effect of the position parameter on the Rayleigh wave velocity in electrically open and short
cases, Figs. 4 and 5 are plotted. The obtained curves indicate that the Rayleigh wave velocity decreases as we
increases the values of the position parameter for both the electrically open and short case.

7.3 Effect of corrugation of upper boundary surface

Figures 6, 7, 8 and 9 represent the effect of corrugation on the Rayleigh wave velocity. Figures 6 and 7 are
plotted for the casewhen the interface of the layer is planar but the upper surface has corrugation, for electrically



Analytic model for Rayleigh wave propagation 509

Fig. 2 Variation of Rayleigh wave velocity c with respect to wave number k for different values of undulation parameter bH for
electrically open condition

Fig. 3 Variation of Rayleigh wave velocity c with respect to wave number k for different values of undulation parameter (bH)
for electrically short condition

open and short case, respectively. Figures 8 and 9 show the variation of Rayleigh wave velocity with wave
number when both the upper surface and intermediate boundary are of corrugated type. It is observed that
the Rayleigh wave velocity is significantly influenced by corrugation of boundary surface. In particular, the
Rayleigh wave velocity increases with increasing values of ζ1 for both the electrically open and short case.
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Fig. 4 Variation of Rayleigh wave velocity c with respect to wave number k for different values of position parameter x
H for

electrically open case

Fig. 5 Variation of Rayleigh wave velocity c with respect to wave number k for different values of position parameter
( x
H

)
for

electrically short case

7.4 Effect of corrugation of interface on frequency equation

Figures 10 and 11 depict the prominent influence of corrugation of the common interface on the dispersion
curves when the upper boundary surface of the layer is planar. It is conveyed from Figs. 10 and 11 that an
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Fig. 6 Variation of Rayleigh wave velocity c with respect to wave number k for different values of corrugation ζ1 of upper
boundary surface when ζ2 = 0 for electrically open condition

Fig. 7 Variation of Rayleigh wave velocity c with respect to wave number k for different values of corrugation (ζ1) of upper
boundary surface when ζ2 = 0 for electrically short condition

increment in the value of corrugation of the interface decreases the Rayleigh wave velocity in the electrically
open case but increase the Rayleigh wave velocity in the electrically short case.

Furthermore, the substantial impact of the corrugated boundary of the common interface between
layer and substrate on the frequency curves has been obtained and shown in Figs. 12 and 13. It is
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Fig. 8 Variation of Rayleigh wave velocity c with respect to wave number k for different values of corrugation ζ1 of upper
boundary surface when ζ2 �= 0 for electrically open condition

Fig. 9 Variation of Rayleigh wave velocity c with respect to wave number k for different values of corrugation (ζ1) of upper
boundary surface when ζ2 �= 0 for electrically short condition

noticed that the Rayleigh wave velocity decreases with increasing value of corrugation of the com-
mon interface when the upper surface is corrugated, for both the electrically open and short
case.
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Fig. 10 Variation of Rayleigh wave velocity c with respect to wave number k for different values of corrugation ζ2 of the interface
when ζ1 = 0 for electrically open condition

Fig. 11 Variation of Rayleigh wave velocity c with respect to wave number k for different values of corrugation (ζ2) of interface
when ζ1 = 0 for electrically short condition

7.5 Effect of rotation parameters on frequency equation

The substantial effect of the rotation parameters of the piezoelectric layer and orthotropic substrate on the
frequency curves is demonstrated through Figs. 14, 15, 16 and 17. Figures 14 and 15 distinctly reveal the
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Fig. 12 Variation of Rayleigh wave velocity c with respect to wave number k for different values of corrugation ζ2 of interface
when ζ1 �= 0 for electrically open condition

Fig. 13 Variation of Rayleigh wave velocity c with respect to wave number k for different values of corrugation ζ2 of interface
when ζ1 �= 0 for electrically short condition

effect of the rotation parameter of the piezoelectric layer for the electrically open and short case, respectively.
Moreover, Figs. 16 and 17 represents the effect of the rotation parameter of the orthotropic substrate for the
electrically open and short case, respectively. These four figures establish that the rotation parameter of either
medium decreases the Rayleigh wave velocity remarkably.
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Fig. 14 Variation of Rayleigh wave velocity c with respect to wave number k for different values of rotation parameter of
corrugated piezoelectric layer for electrically open condition

Fig. 15 Variation of Rayleigh wave velocity c with respect to wave number k for different values of rotation parameter for
corrugated piezoelectric layer for electrically short condition

7.6 Effect of initial stress on frequency equation

Figures 18, 19, 20 and 21manifest that profound effect of initial stress of both piezoelectric layer and orthotropic
half-space on the frequency curves. The effect of initial stress of the corrugated piezoelectric layer is represented
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Fig. 16 Variation of Rayleigh wave velocity c with respect to wave number k for different values of rotation parameter of
corrugated substrate for electrically open condition

Fig. 17 Variation of Rayleigh wave velocity c with respect to wave number k for different values of rotation parameter of
corrugated substrate for electrically short condition

through Figs. 18 and 19 for the electrically open and short case, respectively. Both Figs. 18 and 19 reveal
that the Rayleigh wave velocity decreases with an increase in the value of initial stress. Figures 20 and
21 distinctly study the effect of initial stress of the orthotropic substrate on the frequency curves for the
electrically open and short case, respectively. It is established that for the electrically open case the Rayleigh
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Fig. 18 Variation of Rayleigh wave velocity c with respect to wave number k for different values of initial stress of corrugated
substrate for electrically open condition

Fig. 19 Variation of Rayleigh wave velocity c with respect to wave number k for different values of initial stress of the corrugated
substrate for electrically short condition

wave velocity decreases with increasing value of initial stress, but it has a reverse effect in the electrically short
case.
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Fig. 20 Variation of Rayleigh wave velocity c with respect to wave number k for different values of initial stress of corrugated
piezoelectric layer for electrically open condition

Fig. 21 Variation of Rayleigh wave velocity c with respect to wave number k for different values of initial stress
(
σ 1
11

)
of the

corrugated layer for electrically short condition
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Fig. 22 Variation of Rayleigh wave velocity c with respect to wave number k for different values of piezoelectric constant (e15)
of the corrugated piezoelectric layer for electrically open condition

Fig. 23 Variation of Rayleigh wave velocity c with respect to wave number k for different values of piezoelectric constant (e15)
of the corrugated layer for electrically short condition

7.7 Effect of piezoelectricity on frequency equation

To exhibit the effect of piezoelectricity on the Rayleigh wave velocity, Figs. 22 and 23 have been plotted for
the electricity open and short case, respectively. These graphs indicate that an increase in the value of the
piezoelectric constant decreases the Rayleigh wave velocity in both the electric open and short conditions.
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Fig. 24 Variation of Rayleigh wave velocity c with respect to wave number k for different values of density (ρ1) of corrugated
piezoelectric layer for electrically open condition

7.8 Effect of density on frequency equation

Figures 24, 25, 26 and 27 are plotted to display the effect of the density parameter of the piezoelectric layer
and orthotropic substrate for both the electrically open and short case. The effect of the density parameter of
the piezoelectric layer on the frequency curve is represented in Figs. 24 and 25 for electrically open and short
case, respectively. It is seen from Figs. 24 and 25 that as the density of the layer increases, the Rayleigh wave
velocity increases. Moreover, Figs. 26 and 27 represent the effect of substrate density for the electrically open
and short case, respectively. It is concluded that an increase in the density has a reverse effect on the Rayleigh
wave velocity in both the electrically open and short case.

7.9 Validation of analytical solution through finite element method (FEM)

To validate the analytical solution, we have applied the Finite Element Method and the comparison has been
shown by graph. In the finite element method, the problem domain is discrietized into smaller regions called
elements which are connected at specific points called nodes (Fig. 28). The detailed theory about FEM can be
found in Bathe [26]. The elements of the domain are usually polygons with three or four corners, but elements
with curved sides can be introduced in order to follow curved domain boundaries [27]. There is always a node
at each corner of the element, and often one or more nodes equally spaced along the sides. In this paper a
triangular element is used with element size 0.08 cm approx with three degrees of freedom per node (i.e., two
components of displacement and the electric potential). The values of the field variables at any other arbitrary
position on the element are given by a linear combination of polynomial interpolation functions with nodal
point values of the quantities as the coefficients [28]. The choice of shape functions or interpolation functions
determines or approximates how the field varies across a single-element domain. Normally, a polynomial
function is chosen as a shape function and the number of nodes assigned to a particular element defines the
order of the polynomial. For each of the three nodes in the considered element, a shape function (Ni ) will be
defined, such that it is unity at node i and is zero at all other nodes as well as at outside of the element. Also, the
sum of all the shape functions will be at unity anywhere within an element. The displacements in each element
is assumed to be a function of displacement in the n nodes of the element where interpolation functions N1
and N2 take care of the mapping from the displacement in the nodal point to the displacement at an arbitrary
point in an element. Thus, in the finite element method, the displacement (u) and electric potential (φ) can be
expressed in terms of the corresponding nodal values of the element {ue} and {φe} as
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Fig. 25 Variation of Rayleigh wave velocity c with respect to wave number k for different values of density (ρ1) of corrugated
piezoelectric layer for electrically short condition

Fig. 26 Variation of Rayleigh wave velocity c with respect to wave number k for different values of density (ρ2) of corrugated
half-space for electrically open condition

{u} = [Ne
1 ]
{
ue
}

and {φ} = {Ne
2

}T {
φe} , (73)

where

[
Ne
1

] =
[
N1 0 N2 0 . . . Nq 0
0 N1 0 N2 . . . 0 Nq

]
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Fig. 27 Variation of Rayleigh wave velocity c with respect to wave number k for different values of density (ρ2) of corrugated
half-space for electrically short condition

Fig. 28 Discretization of the problem domain in FEM. aMesh, b Nodal placements in a triangular element

and
{
Ne
2

}T = {N1 N2 . . . Nq
}
,

where q denotes the number of nodes in the grid and the polynomial degree of the shape functions is one. We
know that the electric potential is scalar, so their shape functions are the same.

Now, let us rewrite Eq. (3) in vector form as

{σ } = [c] {ε} − [e] {E} ,

{D} = [e]T {ε} + [p] {E} . (74)

According to the following geometrical equations

εkl = 1

2

(
ui, j + u j,i

)
and Em = −φ,m, (75)
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we can have

{ε} = [S1]
{
ue
}
and {E} = [S2]

{
φe} , (76)

where S1 is the strain matrix.
The coordinates are considered in x and z direction, so [S1] and [S2] have the following form:

[S1] =
⎡

⎢⎣

∂N1
∂x 0 ∂N2

∂x 0 . . . ∂Nn
∂x 0

0 ∂N1
∂z 0 ∂N2

∂z . . . 0 ∂Nn
∂z

∂N1
∂z

∂N1
∂x

∂N2
∂z

∂N2
∂x . . . ∂Nn

∂z
∂Nn
∂x

⎤

⎥⎦ ,

[S2] =
[

∂N1
∂x

∂N2
∂x . . . ∂Nn

∂x
∂N1
∂z

∂N2
∂z . . . ∂Nn

∂z

]
.

The variational form of Eq. (76) can be written as

δ (ε) = [S1] δ
(
ue
)
, δ (E) = − [S2] δ

(
φe) . (77)

Considering the body force { f }, the virtual displacement principle can be written as
∫

Ω

[
δ (ε)T {σ } − δ (E)T {D}

]
dΩ =

∫

Ω

[
δ (u)T ({ f } − ρ {ü})

]
dΩ

+
∫

Aσ

[
δ (u)T

{
T̄
}]
dA +

∫

Aw

δφw̄dA, (78)

where T̄ denotes the components of the traction vector.
With the help of Eqs. (74) and (78), we get

∫

Ω

δ {ε}T {σ } dΩ = δ
{
ue
}T
∫

Ω

[S1]
T ([C] [S1]

{
ue
}− [e]

(− [S2]
{
φe}))dΩ

= δ
{
ue
}T ([

Ke
mm

] {
ue
}+ [Ke

me

] {
φe}) , (79)

∫

Ω

−δ {E}T {D} dΩ = δ
{
φe}T

∫

Ω

[S2]
T
(
[e]T [S1]

{
ue
}+ [p]

(− [S2]
{
φe}))dΩ

= δ
{
φe}T ([Ke

em

] {
ue
}− [Ke

ee

] {
φe}) , (80)

∫

Ω

δ {u}T ({ f } − ρ {ü}) dΩ = δ
{
ue
}T
∫

Ω

[
Ne
1

]T ({ f } − ρ {ü} [Ne
1

])
dΩ

= δ
{
ue
}T ({

f em
}− [Me

mm

] {
üe
})

, (81)
∫

Aw

δφw̄dA = δ
{
φe}T

∫

Aw

[
Ne
2

]T
w̄dA = δ

{
φe}T {T e

e

}
, (82)

∫

Aσ

δ {u}T {T̄ } dA = δ
{
ue
}T
∫

Aσ

[
Ne
1

]T {
T̄
}
dA = δ

{
ue
}T {

T e
m

}
. (83)

From Eqs. (79) to (83), we conclude

[Mmm] ü + [Cmm] u̇ + [Kmm] u + [Kme]φ = F

and
[Kme]

t u + [Kee]φ = Q,

where u, F, φ, Q are global field quantities and M,C, K are the global matrices and all the values are given
in Appendix 3.
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The above equations can be written in matrix form as
[
Mmm 0
0 0

] [
ü
φ̈

]
+
[
Cmm 0
0 0

] [
u̇
φ̇

]
+
[
Kmm K t

me
Kme Kee

] [
u
φ

]
=
(
F
Q

)
, (84)

where the subscript m denotes the displacement vector whereas φ refers to the electric potential vector. Cmm
is the structural damping matrix, Kmm is the structural stiffness matrix, Kme is the finite element equivalent of
the material piezoelectric matrix e and Kee is the finite element equivalent of the capacitance matrix ε.

Equation (84) can be written as

[M] {ü} + [C] {u̇} + [K ] {u} = {L} , (85)

where

M =
[
Mmm 0
0 0

]
, C =

[
Cmm 0
0 0

]
, K =

[
Kmm K t

me
Kme Kee

]
and L =

(
F
Q

)
.

Equation (85) is the set of ordinary differential equations whose solution provides the values at each node
in the finite element mesh. Equation (85) is solved directly in time domain by direct integration method, the
Newmarkmethod. Direct integrationmeans that Eq. (85) is directly integrated through a numerical step-by-step
procedure without transforming the equations to other forms. Though the integration methods which follow
work equally well for non uniform intervals, but we assume that the intervals are uniform and are equal to �t.
The algorithms are to determine the solutions at �t, 2�t, . . . , t − �t, t, t + �t, . . . , N�t. The solutions at
t +�t = (i + 1)�t are based on those, obtained for previous steps up to t = i�t. Furthermore, the boundary
condition for the displacement and electric potential are applied by directly inserting the prescribed values in
the vectors u and φ [29]. Similarly we can set up the formulation for the orthotropic elastic substrate following
the same procedure as done for the piezoelectric layer. On the interface the boundary conditions are given by
continuity of the traction vector and the displacement vector ui (Reinen and Berg [30]).
The Newmark method

To derive the algorithm of the Newmark method, we start with the Taylor series expansion of the displace-
ment and its time derivative keeping terms up to the third-order derivative,

ut+�t = ut + u̇t�t + 1

2
üt�t2 + 1

6
(üt+�t − u̇t )�t2, (86)

u̇t+�t = u̇t + üt�t + 1

2
(üt+�t − u̇t )�t, (87)

where the third time derivative has been replaced with the difference of the second time derivatives under the
assumption of linear acceleration. The Newmark integration scheme extends the above equations by changing
the numerical coefficients 1/6 in Eq. (86) and 1/2 in Eq. (87), to somewhat arbitrary parameters ξ and χ ,
respectively, where we can chose ξ and χ accordingly:

ut+�t = ut + u̇t�t +
[(

1

2
− ξ

)
üt + ξ üt+�t

]
�t2, (88)

u̇t+�t = u̇t + üt�t + [(1 − χ) üt + χ üt+�t
]
�t. (89)

From Eq. (88), we have

üt+�t = 1

ξ�t2
(ut+�t − ut ) + 1

ξ�t
u̇t +

(
1 − 1

2ξ

)
üt . (90)

Introducing Eq. (90) in Eq. (89), we get

u̇t+�t = χ

ξ�t
(ut+�t − ut ) +

(
1 − χ

ξ

)
u̇t +

(
1 − 1

2ξ

)
üt�t. (91)

At t + �t the system equations have the following form:

Müt+�t + Cu̇t+�t + Kut+�t = Lt+�t . (92)
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Fig. 29 Comparison between analytical solution and result by finite element method

Substituting Eqs. (90) and (91) in Eq. (92), we obtain
(

1

ξ�t2
M + χ

ξ�t
C + K

)
ut+�t = Lt+�t +

(
1

ξ�t2
M + χ

ξ�t
C

)
ut +

[
1

ξ�t
M +

(
1 − χ

ξ

)
C

]
u̇t

+
[(

1

2ξ
− 1

)
M −

(
1 − χ

2ξ

)
C�t

]
üt . (93)

It is seen that the Newmark integration scheme is a single step implicit method. No starting procedure is
needed for the time stepping. It can be shown that this method is unconditionally stable for suitably chosen
ξ and χ . This means that a larger time step can be used if desired. Appearance of the term involving K on
the left side of Eq. (93) requires the computationally intensive matrix inversion procedure. In the used finite
element method, the region under consideration is Ω = {(x, z) : 0 < x < l, 0 < z < h} . Also we consider
l = h = 1m and the Newmark parameters have been taken as ξ = 0.5 and χ = 0.25. The displacement
variation along the x-axis at t = 1s has been shown in Fig. 29.

The above graph displays thematching of the obtained analytical solutionwith that of the numericalmethod
(FEM). It is pretty clear that the analytical solution is in high agreement with the numerical results, which
validates the present study.

8 Conclusions

An analytical approach is used to investigate the Rayleigh wave propagation in rotating, pre-stressed piezo-
electric layer overlying a gravitational orthotropic substratum with initial stress and rotation. Upper boundary
surface of the piezoelectric layer and interface between layer and substrate both are taken with corrugation.
Frequency equations have been obtained in determinant form for electrically open and short cases. The obtained
results are validated by matching the findings with the classical Rayleigh wave equation and other existing
results. Also the analytical solution is matched with numerical solution using finite element method (FEM).
It is noticed that the Rayleigh wave velocity is affected significantly by different parameters (corrugation,
piezoelectric, undulation, position parameter, rotation, initial stress etc.). The results may be used to improve
the efficiency and life of certain seismic devices. Finally, we may conclude with the following points:

1. For the electrically open case, the Rayleigh wave velocity decreases with an increment in the undulation
parameter and initial stress whereas it has a reverse effect for the electrically short case.

2. The Rayleigh wave velocity increases with increasing value of the position parameter for the electrically
open case and it shows the reverse effect for the electrically short case.
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3. For the electrically open case, the Rayleighwave velocity decreaseswith increasing value of the corrugation
parameter of the interface between layer and half-space whereas it has a reverse effect for the electrically
short case.

4. The Rayleigh wave velocity decreases for increasing values of the rotation parameter (of either of the two
media) for both electrically open and short case.

5. The obtained results are found in agreement with the results established by Abd-Alla et al. [16], Abd-Alla
[15] and Rayleigh [24].

6. The obtained analytical results are compared with the results obtained by the finite element method (FEM)
and are found to be in good agreement.

7. The obtained results may be helpful in further experimental works related to surface wave propagation in
piezoelectricmaterials andmay also be used for filters, resonators, oscillators, sensors and signal processing
elements. This can be achieved by obtaining the desired propagation of Rayleigh wave by selecting the
appropriate material, elastic constants and other boundary conditions. This work may be relevant to the
analysis and design of various acoustic surface wave devices constructed from piezoelectric materials
combined with elastic substrates.
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Appendix 1

B11 = (−c44ikλ1 + aikc44 + a′ike15
)
eikλ1H , B12 = (−c44ikλ2 + bikc44 + b′ike15

)
eikλ2H ,

B13 = (−c44ikλ3 + cikc44 + c′ike15
)
eikλ3H , B14 = (c44ikλ1 + dikc44 + d ′ike15

)
e−ikλ1H ,

B15 = (c44ikλ2 + eikc44 + e′ike15
)
e−ikλ2H , B16 = (c44ikλ3 + f ikc44 + f ′ike15

)
e−ikλ3H , B17 = 0 = A18.

B21 = [(C13ik − λ1aikC33 − a′ikλ1e33
)]
eikλ1H , B22 = [(C13ik − λ2bikC33 − b′ikλ2e33

)]
eikλ2H ,

B23 = [(C13ik − λ3cikC33 − c′ikλ3e33
)]
eikλ3H , B24 = [(C13ik + dikλ1C33 + d ′ikλ1e33

)]
e−ikλ1H ,

B25 = [(C13ik + eikλ2C33 + e′ikλ2e33
)]
e−ikλ2H B26 = [(C13ik + f ikλ3C33 + f ′ikλ3e33

)]
e−ikλ3H ,

B27 = 0 = A28, A31 = [e15 (−ikλ1 + ika) + ika′ε11
]
eikλ1H , B32 = [e15 (−ikλ2 + ikb) + ikb′ε11

]
eikλ2H ,

B33 = [e15 (−ikλ3 + ikc) + ikc′ε11
]
eikλ3H , B34 = [e15 (ikλ1 + ikd) + ikd ′ε11

]
e−ikλ1H ,

B35 = [e15 (ikλ2 + ike) + ike′ε11
]
e−ikλ2H , B35 = F

[
e15 (ikλ3 + ik f ) + ik f ′ε11

]
e−ikλ3H .

B41 = e−ikλ1ζ2 , B42 = e−ikλ2ζ2 , B43 = Ce−ikλ3ζ2 , B44 = Deikλ1ζ2 , B45 = Eeikλ2ζ2 , B46 = Feikλ3ζ2

B47 = X1e
−ikλ4ζ2 , B48 = X2e

−ikλ5ζ2

B51 = ae−ikλ1a cos(bx), B52 = be−ikλ2a cos(bx), B53 = ce−ikλ3a cos(bx), B54 = deikλ1a cos(bx),

B55 = eeikλ2a cos(bx),

B56 = f eikλ3a cos(bx), B57 = Y1e
−ikλ4a cos(bx), B58 = Y2e

−ikλ5a cos(bx), B61 = a′e−ikλ1a cos(bx),

B62 = b′e−ikλ2a cos(bx),

B63 = c′e−ikλ3a cos(bx), B64 = d ′eikλ1a cos(bx), B65 = e′eikλ2a cos(bx), B66 = f ′eikλ3a cos(bx)

B71 = [(c13ik − ikλ1ac33 − ikλ1a
′e33
)+ ab sin (bx)

(−c44ikλ1 + ikac44 + a′ike15
)]
e−ikλ1a cos(bx),

B72 = [(c13ik − ikλ2bc33 − ikλ2b
′e33
)+ ab sin (bx)

(−c44ikλ2 + ikbc44 + b′ike15
)]
e−ikλ2a cos(bx),

B73 = [(c13ik − ikλ3cc33 − ikλ3c
′e33
)+ ab sin (bx)

(−c44ikλ3 + ikcc44 + c′ike15
)]
e−ikλ3a cos(bx),

B75 = [(c13ik + ikλ2ec33 + ikλ2e
′e33
)+ ab sin (bx)

(
c44ikλ2 + ikec44 + e′ike15

)]
eikλ2a cos(bx),

B76 = [(c13ik + ikλ3 f c33 + ikλ3 f
′e33
)+ ab sin (bx)

(
c44ikλ3 + ik f c44 + f ′ike15

)]
eikλ3a cos(bx),

B77 = [(c′
13ikX1 − c′

33ikY1λ4
)+ ab sin (bx)

(
c′
44ikY1 − c′

44ikX1λ4
)]
e−kλ4a cos(bx),

B78 = [(c′
13ikX2 − c′

33ikY2λ5
)+ ab sin (bx)

(
c′
44ikY2 − c′

44ikX1λ5
)]
e−kλ5a cos(bx),
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B81 = [(−c44λ1 + ac44 + a′e15
)
ik + ab sin (bx)

(
ikc11 − ikλ1ac13 + e31a

′)] e−ikλ1a cos(bx),

B82 = [(−c44λ2 + bc44 + b′e15
)
ik + ab sin (bx)

(
ikc11 − ikλ2bc13 + e31b

′)] e−ikλ2a cos(bx),

B83 = [(−c44λ3 + cc44 + c′e15
)
ik + ab sin (bx)

(
ikc11 − ikλ3cc13 + e31c

′)] e−ikλ3a cos(bx),

B84 = [(c44λ1 + dc44 + d ′e15
)
ik + ab sin (bx)

(
ikc11 + ikλ1dc13 + e31d

′)] eikλ1a cos(bx),
B85 = [(c44λ2 + ec44 + e′e15

)
ik + ab sin (bx)

(
ikc11 + ikλ2ec13 + e31e

′)] eikλ2a cos(bx),
B86 = [(c44λ3 + f c44 + f ′e15

)
ik + ab sin (bx)

(
ikc11 + ikλ3 f c13 + e31 f

′)] eikλ3a cos(bx),
B87 = [(c′

44ikY1 − c′
44ikX1λ4

)+ ab sin (bx)
((
c′
11 + P

)
ikX1 − (c′

13 + P
)
ikY1λ4

)]
e−ikλ4a cos(bx),

B88 = [(c′
44ikY2 − c′

44ikX2λ5
)+ ab sin (bx)

((
c′
11 + P

)
ikX2 − (c′

13 + P
)
ikY2λ5

)]
e−ikλ5a cos(bx).

Appendix 2

D11 = [(−c44ikλ1 + aikc44 + a′ike15
)+ ab sin (bx)

(
ikc11 − ikλ1ac13 + a′e31

)]
e−ikλ1(a cos(bx)−H),

D12 = [(−c44ikλ2 + bikc44 + b′ike15
)+ ab sin (bx)

(
ikc11 − ikλ2bc13 + b′e31

)]
e−ikλ2(a cos(bx)−H),

D13 = [(−c44ikλ3 + cikc44 + c′ike15
)+ ab sin (bx)

(
ikc11 − ikλ3cc13 + c′e31

)]
e−ikλ3(a cos(bx)−H),

D14 = [(c44ikλ1 + dikc44 + d ′ike15
)+ ab sin (bx)

(
ikC11 + ikλ1dc13 + d ′e31

)]
eikλ1(a cos(bx)−H),

D15 = [(c44ikλ2 + eikc44 + e′ike15
)+ ab sin (bx)

(
ikc11 + ikλ2ec13 + e′e31

)]
eikλ2(a cos(bx)−H),

D16 = [(c44ikλ3 + f ikc44 + f ′ike15
)+ ab sin (bx)

(
ikc11 + ikλ3 f c13 + f ′e31

)]
eikλ3(a cos(bx)−H),

D17 = 0 = D18, D41 = 1 = D42 = D43 = D44 = D45 = D46, D47 = X1, A48 = X2,

D51 = a, D52 = b, D53 = c, D54 = d, D55 = e, D56 = f, D57 = Y1, D58 = Y2, D61 = a′, D62 = b′,
D63 = c′, D64 = d ′, D65 = e′, D66 = f ′,
D71 = [(c13ik − ikλ1ac33 − ikλ1a

′e33
)]

, D72 = [(c13ik − ikλ2bc33 − ikλ2b
′e33
)]

,

D73 = [(c13ik − ikλ3cc33 − ikλ3c
′e33
)]

, A74 = [(c13ik + ikλ1dc33 + ikλ1d
′e33
)]

,

A75 = [(c13ik + ikλ2ec33 + ikλ2e
′e33
)]

, A76 = [(c13ik + ikλ3 f c33 + ikλ3 f
′e33
)]

,

A77 = [(c′
13ikX1 − c′

33ikY1λ4
)]

, A78 = [(c′
13ikX2 − c′

33ikY2λ5
)]

,

D21 = [(C13ik − λ1aikC33 − a′ikλ1e33
)+ ab sin (bx)

(
aikC44 − ikλ1C44 + a′ike15

)]
e−ikλ1(a cos(bx)−H),

D22 = [(C13ik − λ2bikC33 − b′ikλ2e33
)+ ab sin (bx)

(
bikC44 − ikλ2C44 + b′ike15

)]
e−ikλ2(a cos(bx)−H),

D23 = [(C13ik − λ3cikC33 − c′ikλ3e33
)+ ab sin (bx)

(
cikC44 − ikλ3C44 + c′ike15

)]
e−ikλ3(a cos(bx)−H),

D24 = [(C13ik + dikλ1C33 + d ′ikλ1e33
)+ ab sin (bx)

(
ikC44λ1 + ikdC44 + d ′ike15

)]
eikλ1(a cos(bx)−H),

D25 = [(C13ik + eikλ2C33 + e′ikλ2e33
)+ ab sin (bx)

(
ikC44λ2 + ikeC44 + e′ike15

)]
eikλ2(a cos(bx)−H)

D26 = [(C13ik + f ikλ3C33 + f ′ikλ3e33
)+ ab sin (bx)

(
ikC44λ3 + ik f C44 + f ′ike15

)]
eikλ3(a cos(bx)−H),

D81 = [(−c44λ1 + ac44 + a′e15
)
ik
]
, D82 = [(−c44λ2 + bc44 + b′e15

)
ik
]
,

D83 = [(−c44λ3 + cc44 + c′e15
)
ik
]
, D84 = [(c44λ1 + dc44 + d ′e15

)
ik
]
,

D85 = [(c44λ2 + ec44 + e′e15
)
ik
]
, D86 = [(c44λ3 + f c44 + f ′e15

)
ik
]
,

D87 = [(c′
44ikY1 − c′

44ikX1λ4
)]

, D88 = [(c′
44ikY2 − c′

44ikX2λ5
)]

,

D27 = 0 = A28, A31 = [e15 (−ikλ1 + ika) + ika′ε11
]
e−ikλ1(a cos(bx)−H),

D32 = [e15 (−ikλ2 + ikb) + ikb′ε11
]
e−ikλ2(a cos(bx)−H),

D33 = [e15 (−ikλ3 + ikc) + ikc′ε11
]
e−ikλ3(a cos(bx)−H),

D34 = [e15 (ikλ1 + ikd) + ikd ′ε11
]
eikλ1(a cos(bx)−H), D35 = [e15 (ikλ2 + ike) + ike′ε11

]
eikλ2(a cos(bx)−H),

D35 = F
[
e15 (ikλ3 + ik f ) + ik f ′ε11

]
eikλ3(a cos(bx)−H).
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Appendix 3

E11 = [(−c44ikλ1 + aikc44 + a′ike15
)+ a1b sin (bx)

(
ikc11 − ikλ1ac13 + a′e31

)]
e−ikλ1(a1 cos(bx)−H),

E12 = [(−c44ikλ2 + bikc44 + b′ike15
)+ a1b sin (bx)

(
ikc11 − ikλ2bc13 + b′e31

)]
e−ikλ2(a1 cos(bx)−H),

E13 = [(−c44ikλ3 + cikc44 + c′ike15
)+ a1b sin (bx)

(
ikc11 − ikλ3cc13 + c′e31

)]
e−ikλ3(a1 cos(bx)−H),

E14 = [(c44ikλ1 + dikc44 + d ′ike15
)+ a1b sin (bx)

(
ikC11 + ikλ1dc13 + d ′e31

)]
eikλ1(a1 cos(bx)−H),

E21 = [(C13ik − λ1aikC33 − a′ikλ1e33
)+ a1b sin (bx)

(
aikC44 − ikλ1C44 + a′ike15

)]
e−ikλ1(a1 cos(bx)−H),

E22 = [(C13ik − λ2bikC33 − b′ikλ2e33
)+ a1b sin (bx)

(
bikC44 − ikλ2C44 + b′ike15

)]
e−ikλ2(a1 cos(bx)−H),

E23 = [(C13ik − λ3cikC33 − c′ikλ3e33
)+ a1b sin (bx)

(
cikC44 − ikλ3C44 + c′ike15

)]
e−ikλ3(a1 cos(bx)−H),

E24 = [(C13ik + dikλ1C33 + d ′ikλ1e33
)+ a1b sin (bx)

(
ikC44λ1 + ikdC44 + d ′ike15

)]
eikλ1(a1 cos(bx)−H),

E15 = [(c44ikλ2 + eikc44 + e′ike15
)+ a1b sin (bx)

(
ikc11 + ikλ2ec13 + e′e31

)]
eikλ2(a1 cos(bx)−H),

E16 = [(c44ikλ3 + f ikc44 + f ′ike15
)+ a1b sin (bx)

(
ikc11 + ikλ3 f c13 + f ′e31

)]
eikλ3(a1 cos(bx)−H),

E17 = 0 = E18.

E25 = [(C13ik + eikλ2C33 + e′ikλ2e33
)+ a1b sin (bx)

(
ikC44λ2 + ikeC44 + e′ike15

)]
eikλ2(a1 cos(bx)−H)

E26 = [(C13ik + f ikλ3C33 + f ′ikλ3e33
)+ a1b sin (bx)

(
ikC44λ3 + ik f C44 + f ′ike15

)]
eikλ3(a1 cos(bx)−H),

E27 = 0 = A28, A31 = [e15 (−ikλ1 + ika) + ika′ε11
]
e−ikλ1(a1 cos(bx)−H),

E32 = [e15 (−ikλ2 + ikb) + ikb′ε11
]
e−ikλ2(a1 cos(bx)−H),

E33 = [e15 (−ikλ3 + ikc) + ikc′ε11
]
e−ikλ3(a1 cos(bx)−H), E34 = [e15 (ikλ1 + ikd) + ikd ′ε11

]
eikλ1(a1 cos(bx)−H),

E35 = [e15 (ikλ2 + ike) + ike′ε11
]
eikλ2(a1 cos(bx)−H), E36 = F

[
e15 (ikλ3 + ik f ) + ik f ′ε11

]
eikλ3(a1 cos(bx)−H),

E37 = 0 = E38.

E41 = e−ikλ1a2 cos(bx), E42 = e−ikλ2a2 cos(bx), E43 = Ce−ikλ3a2 cos(bx), E44 = Deikλ1a2 cos(bx),

E45 = Eeikλ2a2 cos(bx), E46 = Feikλ3a2 cos(bx), E47 = X1e
−ikλ4a2 cos(bx), E48 = X2e

−ikλ5a2 cos(bx)

E51 = ae−ikλ1a2 cos(bx), E52 = be−ikλ2a2 cos(bx), E53 = ce−ikλ3a2 cos(bx), E54 = deikλ1a2 cos(bx),

E55 = eeikλ2a2 cos(bx), E56 = f eikλ3a2 cos(bx), E57 = Y1e
−ikλ4a2 cos(bx),

E58 = Y2e
−ikλ5a2 cos(bx), E61 = a′e−ikλ1a2 cos(bx), E62 = b′e−ikλ2a2 cos(bx),

E63 = c′e−ikλ3a2 cos(bx), E64=d ′eikλ1a2 cos(bx), E65=e′eikλ2a2 cos(bx), E66= f ′eikλ3a2 cos(bx), E67 = 0 = E68.

E71 = [(c13ik − ikλ1ac33 − ikλ1a
′e33
)+ a2b sin (bx)

(−c44ikλ1 + ikac44 + a′ike15
)]
e−ikλ1a2 cos(bx),

E72 = [(c13ik − ikλ2bc33 − ikλ2b
′e33
)+ a2b sin (bx)

(−c44ikλ2 + ikbc44 + b′ike15
)]
e−ikλ2a2 cos(bx),

E73 = [(c13ik − ikλ3cc33 − ikλ3c
′e33
)+ a2b sin (bx)

(−c44ikλ3 + ikcc44 + c′ike15
)]
e−ikλ3a2 cos(bx),

E74 = [(c13ik + ikλ1dc33 + ikλ1d
′e33
)+ a2b sin (bx)

(
c44ikλ1 + ikdc44 + d ′ike15

)]
eikλ1a2b cos(bx),

E81 = [(−c44λ1 + ac44 + a′e15
)
ik + a2b sin (bx)

(
ikc11 − ikλ1ac13 + e31a

′)] e−ikλ1a2 cos(bx),

E82 = [(−c44λ2 + bc44 + b′e15
)
ik + a2b sin (bx)

(
ikc11 − ikλ2bc13 + e31b

′)] e−ikλ2a2 cos(bx),

E83 = [(−c44λ3 + cc44 + c′e15
)
ik + a2b sin (bx)

(
ikc11 − ikλ3cc13 + e31c

′)] e−ikλ3a2 cos(bx),

E75 = [(c13ik + ikλ2ec33 + ikλ2e
′e33
)+ a2b sin (bx)

(
c44ikλ2 + ikec44 + e′ike15

)]
eikλ2a2 cos(bx),

E76 = [(c13ik + ikλ3 f c33 + ikλ3 f
′e33
)+ a2b sin (bx)

(
c44ikλ3 + ik f c44 + f ′ike15

)]
eikλ3a2 cos(bx),

E77 = [(c′
13ikX1 − c′

33ikY1λ4
)+ a2b sin (bx)

(
c′
44ikY1 − c′

44ikX1λ4
)]
e−kλ4a2 cos(bx),

E78 = [(c′
13ikX2 − c′

33ikY2λ5
)+ a2b sin (bx)

(
c′
44ikY2 − c′

44ikX1λ5
)]
e−kλ5a2 cos(bx),

E84 = [(c44λ1 + dc44 + d ′e15
)
ik + a2b sin (bx)

(
ikc11 + ikλ1dc13 + e31d

′)] eikλ1a2b cos(bx),
E85 = [(c44λ2 + ec44 + e′e15

)
ik + a2b sin (bx)

(
ikc11 + ikλ2ec13 + e31e

′)] eikλ2a2b cos(bx),
E86 = [(c44λ3 + f c44 + f ′e15

)
ik + a2b sin (bx)

(
ikc11 + ikλ3 f c13 + e31 f

′)] eikλ3a2b cos(bx),
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E87 = [(c′
44ikY1 − c′

44ikX1λ4
)+ a2b sin (bx)

((
c′
11 + P

)
ikX1 − (c′

13 + P
)
ikY1λ4

)]
e−ikλ4a2b cos(bx),

E88 = [(c′
44ikY2 − c′

44ikX2λ5
)+ a2b sin (bx)

((
c′
11 + P

)
ikX2 − (c′

13 + P
)
ikY2λ5

)]
e−ikλ5a2b cos(bx).

Mmm =
∫

Ω

[
Ne
1

]T
ρ
[
Ne
1

]
dΩ, Kmm =

∫

Ω

[S1]
T [C] [S1] dΩ, Kme =

∫

Ω

[S2]
T [e] [S1] dΩ,

Kee =
∫

Ω

[S2]
T [p] [S2] dΩ, F =

∫

Aσ

[
Ne
1

]T {T }dAσ ,

Q =
∫

Aw

[
Ne
2

]
�dAw, F =

∫

Ω

[
Ne
1

]T { f } dΩ, Q =
∫

Aw

[
Ne
2

]T
w̄dA.
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