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Abstract The most popular isotropic yield conditions, verified for many ductile metals, were proposed by
Tresca in 1864 (maximum shearing stresses theory) and von Mises in 1913. The von Mises yield theory (von
Mises in Mathematisch-physikalische Klasse 582–592, 1913), also known as maximum distortion energy cri-
terion, finds considerable experimental support, especially for very ductile materials and plane stress (Banabic
et al. in Int. J. Mater. Form. 3:165–189, 2010). For this reason, and for its simplicity, it is common in design.
During 100 years, this theory has been developed and improved systematically byHosford, Christensen, Tsai-
Hill, etc. The modified von Mises hypothesis combines the theories of maximum strain energy and maximum
distortion energy, and it involves the Poisson ratio. It ensures a smooth transition from the von Mises to the
Beltrami criterion. The results obtained by this new yield hypothesis are compared with those obtained both by
the classic von Mises criterion and by experiments on different metallic materials. A quite good concordance
is observed between these results.

1 Introduction

Equations for predicting the conditions at which plastic yielding begins when a material is subjected to a
compound state of stress are very important in the field of plasticity. In order to obtain these equations, usually
it is expected that yielding under combined stress can be related to some particular combination of principal
stresses. Unfortunately, there is no yet a theoretical way to correlate yielding for triaxial or biaxial state of stress
with yielding for uniaxial tension test. In these circumstances, the yielding criteria are essentially empirical
relationships, but which must be consistent with experiments, “the chief of which is that pure hydrostatic
pressure does not cause yielding in continuous solid” [3]. The special state of stress, uniform in all directions,
is created by equi-triaxial compression or tension, when the principal stresses are identical in magnitude and
sign, andMohr’s circle is a point. Experiments have shown thatmaterials canbehydrostatically compressedwell
beyond their ultimate strength in uniaxial compression without failure, and very large amounts of strain energy
can be stored in material. The equi-triaxial tension or compression reduces only the volume of specimens,
without changing its shape. The uniform stress in all directions causes no distortions and thus no shear stress.
It is much more difficult to create equi-triaxial tension than compression, and therefore, only few reliable
experiments for this state of stress are reported.
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Many metallic materials have shown a transition from ductile to brittle type of failure, which depends on
the loading conditions. The main factors that influence this transition are [4] the following: state of stress,
loading speed and temperature.

Generally, the complex states of stress, high loading speed and low temperatures favour the brittle failure
of the materials. According to Christensen [14], the failure in equi-triaxial tension is always brittle.

The yield theories (Tresca, von Mises, etc.) can be used for ductile materials, but not for brittle materials.
For brittle materials, other failure theories are used (Rankine, etc.). For example, for the transition domain
ductile–brittle, it is impossible to know with exact precision when to replace the von Mises criterion with the
Rankine criterion.

Unfortunately, some of the most popular yield theories cannot be used for equi-triaxial tension or com-
pression. For this particular state of stress, the theories build on the assumption that yielding depends only
on deviatoric stress and the volumetric component of stress has no role in material yielding, leading to the
conclusion: no shear stress = no distortion = no failure.

As a result, some adaptations of classical theories or new theories would be necessary in order to be used
for equi-triaxial tension or compression.

Unfortunately, there is no universal yield theory. The success of one or other theory depends to a large
degree on the material with which it is associated.

2 Energy-based theories

Historically, several energy-based theories have been formulated in order to explain the yield under static
loading.

In 1885, Italian scientist F. Beltrami proposed the yield theory of maximum strain energy (total strain
energy of deformation per volume unit). Because it was not well confirmed by experiments, today this theory
is not used any more in plasticity and engineering and it has only a historical importance. However, it formed
the foundation for new energetic theories and for some particulars states of stress and for some materials;
Beltrami theory can give more accurate results regarding the experimental data compared to the von Mises
theory [5].

It is known that the yielding mechanism is due to relative sliding of atoms within their network. The sliding
is produced by shear stress, which causes distortion of the shape. Because the plastic deformation takes place
practically without change in volume, M. T. Huber in 1904 (paper written in Polish) [7,8] proposed another
energetic theory, which considers only a part of the total energy, respective distortion energy. His work was first
cited byHencky, 20 years after [9], andH. Hencky in 1924 [43]. However, the first scientist to have formulated
this hypothesis was J. Maxwell who in a letter addressed to W. Thomson states: “I have strong reasons for
believing that when [the strain energy of distortion] reaches a certain limit then the element will begin to give
way” [10]. The classicalMaxwell–Huber–Hencky–vonMises theory does not depend on any material constant.

According to energetic theories, yielding occurs when the strain energy per unit volume in a state of
combined stress, or a part of them (distortion energy, for example), reaches the same energy for yield as in
uniaxial tension. According to Robert Norton [31], “it appears that distortion is the culprit in tensile failure
too.”

It is known that the total strain energy per unit volumeU1 can be split into two parts: the distortion energy
U1D and the volumetric component U1V:

U1 = U1D +U1V , (1)

where

U1 = I 21 − 2 (1 + μ) I2
2E

; U1D = (1 + μ)
(
I 21 − 3I2

)

3E
; U1V = (1 − 2μ) I 21

6E
, (2)

and I1, I2 are stress invariants and μ is the Poisson ratio.
Mathematically, these yield theories are expressed as following:

• Total strain energy

I 21 − 2 (1 + μ) I2 ≤ σ 2
yp (3)

• Distortion energy (von Mises)

I 21 − 3I2 ≤ σ 2
yp (4)
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• Energy due to change in volume (volumetric component)

I1 ≤ σyp, (5)

where σyp is the uniaxial yield point stress of the material.
The maximum distortion energy criterion, also known as von Mises yield theory (or criterion), finds
considerable experimental support, especially for very ductile materials and plane stress. For this reason,
and for its simplicity, it is common in design, although it has some important disadvantages:

• It does not give good results for all isotropic and ductile materials. Hershey in 1954 and Hosford in 1972
presented a yield criterion for isotropic polycrystalline materials [2,6,11], which is a generalization of the
von Mises criterion:

1

2

[|σ1 − σ2|m + |σ2 − σ3|m + |σ3 − σ1|m
] = σm

yp, (6)

where m is a material-dependent exponent.
A series of yield criteria can be given when m goes from 1 to infinity. This yield surface lies inside the von
Mises yield criterion and outside the Tresca yield criterion. When m = 2 and when m = 4, the Hershey–
Hosford criterion reduces to the von Mises yield criterion. When m = 1 and as m → ∞, it becomes the
Tresca yield criterion;

• It does not give good results for non-isotropic materials. Hill proposed in 1948 a widely used yield theory
for metals, as an extension of the von Mises criterion. The Tsai-Hill failure criterion is an extension of the
von Mises yield criterion to orthotropic materials.

The generalized Hill criterion has the form [6]

F |σ2 − σ3|m + G |σ3 − σ1|m + H |σ1 − σ2|m + L |2σ1 − σ2 − σ3|m +
M |2σ2 − σ1 − σ3|m + N |2σ3 − σ1 − σ2|m = σm

yp,
(7)

where:

– σi are the principal stresses, aligned with the directions of anisotropy;
– F, G, H, L,M and N are parameters characterizing the anisotropy;
– m≥1 to ensure convexity of the yield surface.

For the isotropic materials, F=G=H and L=M=N and it becomes a three parameter criterion.
For an isotropic material, the Tsai-Hill failure criterion is identical to the von Mises criterion [11,15];

• The Drucker–Prager criterion [16] is an extension of the von Mises criterion for pressure-dependent
materials [6]. It is often used for modelling of rock and soil materials. This yield function is rarely used
for metal plasticity [17];

• Apparently, the von Mises criterion does not depend on the material, because it does not include some
material characteristics. This theory is consistent with experiments for very ductile polycrystalline metals
(von Mises materials). Though experimental curves for torsion-tensile shaft show small differences even
among very ductile materials (mild steel, aluminium and copper), it looks like the von Mises criterion fits
better with data obtained for aluminium and copper than those for mild steel [18,19], etc.

Christensen proposed a criterion that can be applied to brittle materials and for ductile materials as well
[12–14]. The mathematical modelling of this theory is:

(σc − σt ) (σ1 + σ2 + σ3) + 1

2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] = σtσc, (8)

where σt and σc are the tensile and compressive strengths of the isotropic material, respectively. For ductile
materials, σt = σc and the Christensen criterion is essentially the von Mises criterion.

About the number of material parameters, according to Richard M. Christensen: “All existing failure forms
with three or more parameters appear to be of empirical origin.”

The von Mises criterion is often used to estimate the yield of very ductile materials, with the same yield
strength in tension and in compression. Because of its simplicity, the von Mises yield condition is used
sometimes by engineers as failure condition in cases where no macroscopic flow is involved.

The hypothesis of maximum energy due to change in volume does not agree well with most experiments
and is not used any more.
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Table 1 Metals classification according to ratio of shear yield stress to tensile yield stress [6]

τyp/σyp Yield criterion agreed

0.31–0.41 No yield criterion agreed
0.48–0.53 Single shear theory (Tresca)
0.54–0.62 Tri-shear theory (von Mises)
0.67–0.71 Twin-shear theory (Yu et al.)

Kishkin and Ratner divided the metals in four categories (see Table 1), according the ratio of shear yield
stress to tensile yield stress [6,20].

The twin-shear yield criterion was introduced and developed successively by Yu and Yu et al. [21,22]. It
assumes that yielding begins when the sum of the two larger shear stresses reaches a critical magnitude. The
shear stresses related to principal normal stresses are

τi j = σi − σ j

2
; σi j = σi + σ j

2
; i, j = 1, 2, 3. (9)

It is noted that only two shear stresses τij are independent, because:

τ13 = τ12 + τ23. (10)

The twin-shear yield criterion, proposed by Yu [6] in 1962, is
{

τ13 + τ12 = σ1 − σ2+σ3
2 ≤ σyp; σ2 ≤ σ1+σ3

2 ,

τ13 + τ23 = σ1+σ2
2 − σ3 ≤ σyp; σ2 ≥ σ1+σ3

2 .
(11)

The mathematical expression of von Mises’s criterion can be written as

(σ1 − σ2)
2 + (σ2 − σ3)

2 (σ3 − σ1)
2 = 2σ 2

yp (12)

or
3J2 = σ 2

yp, (13)

where J2 is the second invariant of the deviatoric stress tensor.
For a biaxial state of stress (σ3 = 0), Eq. (12) becomes

σ 2
1 + σ 2

2 − σ1σ2 = σ 2
yp. (14)

3 Modified von Mises hypothesis

The goal of this paper is to modify the vonMises hypothesis, presented above, so the criteria built on it (revised
von Mises) be used for both yielding and brittle failure.

In order to do this, a correction factor kw is proposed for the classical von Mises criterion, such that Eq. (4)
becomes

I 21 − (2 + kw) I2 ≤ σ 2
yp, (15)

where kw is calculated as ratio of energies:

kw = U1D + 2μU1V

U1
(16)

or

kw = 2

3

[

1 + 2μ (1 − μ) I 21 − (1 + μ) I2
I 21 − 2 (1 + μ) I2

]

. (17)

It is observed that
kw ∈ [2μ, 1] . (18)

In engineering practice, we can distinguish completely ductile fracture (gold, for example); ductile fracture
(mild steel); brittle fracture (steel with high percentage of C), etc. Very ductile fracture occurs only due to
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sliding of atoms and involves distortion energy. Completely brittle fracture occurs only due to separation of
atomic planes and involves volumetric component of energy. The ductile fracture involves both sliding of
atoms (in some zones of the cross section) and separation of atomic planes (in the rest of the cross section), and
consequently, both components of energy. The hypothesis proposed in this paper suggests just that: to consider
both components of energy, in different percentages (ranging between 0 and 100%) in function of the state
of stress. Coefficient kw itself allows a combined yield and strength hypothesis. As shown below, when it has
extreme values, only distortion energy (von Mises hypothesis) and, respectively, only volumetric component
of energy are considered. When it has intermediate values, the two components of energy are considered by
different percentages. This would correspond to transition from ductile to brittle fracture.

For isotropic materials, classical elasticity predicts μ to be between −1 and 0.5 [23]. For most usual
materials, μ ∈ (0, 0.5), where the 0.5 value corresponds to incompressible materials (ideal fluids). Anyway, μ
is just about 0.5 for rubber and zero for cork. However, some special composite materials (cellular materials,
or unidirectional reinforced plies with some particular stacking sequences) can exhibit negative or greater than
0.5 Poisson ratios [24]. Only materials with Poisson ratio between 0.2 and 0.5 are considered in this paper.

When there is no change in volume (there is only distortion), it results that kw = 1, because

U1V = 0 and U1D = U1 (19)

or

μ = 1

2
, (20)

and Eq. (15) becomes identical to Eq. (4).
When there is only change in volume, we have

U1D = 0 and U1V = U1 (21)

and kw = 2μ. In this case, Eq. (15) becomes identical with Eq.(3).
For other values of kw, results between those obtained by Eqs. (4) and (3) are expected.
Other forms of Eq. (15) are the following:

σ 2
x + σ 2

y + σ 2
z − kw

(
σxσy + σyσz + σzσx

) + (2 + kw)
(
τ 2xy + τ 2yz + τ 2zx

)
≤ σ 2

yp, (22)

σ 2
1 + σ 2

2 + σ 2
3 − kw (σ1σ2 + σ2σ3 + σ3σ1) ≤ σ 2

yp. (23)

The corresponding expressions of kw are:

kw = 2

3

⎡

⎣1 +
2μ (1 − μ)

(
σx + σy + σz

)2 − (1 + μ)
(
σxσy + σyσz + σzσx − τ 2xy − τ 2yz − τ 2zx

)

σ 2
x + σ 2

y + σ 2
z − 2μ

(
σxσy + σyσz + σzσx

) + 2 (1 + μ)
(
τ 2xy + τ 2yz + τ 2zx

)

⎤

⎦ , (24)

kw = 2

3

[

1 + 2μ (1 − μ) (σ1 + σ2 + σ3)
2 − (1 + μ) (σ1σ2 + σ2σ3 + σ3σ1)

σ 2
1 + σ 2

2 + σ 2
3 − 2μ (σ1σ2 + σ2σ3 + σ3σ1)

]

. (25)

For the plane state of stress, Eqs. (22) and (23) become, respectively,

σ 2
x + σ 2

y − kwσxσy + (2 + kw) τ 2xy ≤ σ 2
yp, (26)

σ 2
1 + σ 2

2 − kwσ1σ2 ≤ σ 2
yp. (27)

For torsion-tensile, Eq. (26) becomes
σ 2
x + (2 + kw) τ 2xy ≤ σ 2

yp (28)
with

kw = 2

3

[

1 + 2μ (1 − μ) σ 2
x + (1 + μ) τ 2xy

σ 2
x + 2 (1 + μ) τ 2xy

]

. (29)

Equation (28) can be used for shaft design, for example. For kw = 1, the classic vonMises criterion is obtained.
Nevertheless, some empirical equations, used in machine design, have a coefficient of shear stress less than 3
[25].

Using Eq.(25), coefficient kw for the plane state of stress can be written. In Fig. 1, coefficient kw versus
Poisson ratio μ, for different values of main stresses ratio s = σ1/σ2, is presented. It is observed that kw
coefficient decreases with μ. kw = 1 for μ = 0.5, when it does not depend on s, and for s = −1, when it does
not depend on μ.
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Fig. 1 Coefficient kw representation: a versus Poisson’s ratio μ, for different values of main stress ratio s = σ1/σ2 and b versus
μ and s

3.1 Particular cases

3.1.1 Pure shear

For pure shear state of stress σ1 = τyp, σ2 = −τyp, and from Eq. (27) follows

τyp = σyp√
2 + kw

. (30)

In Table 2, the yielding shear stress value predicted by Eq. (30) for different values of kw is presented. For
kw = 1, there are only distortion energy (U1v = 0) and the same value of τyp is predicted by both the classic
and the revised von Mises hypothesis.
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Table 2 Yielding shear stress τyp predicted by revised and classic von Mises hypothesis, Eq. (30)

Revised von Mises hypothesis Classic von Mises hypothesis

kw τyp τyp
1 τyp = σyp/

√
3 ≈ 0.5773σyp τyp = σyp/

√
3

0.8 τyp = σyp/
√
2.8 ≈ 0.5976σyp

0.6 τyp = σyp/
√
2.6 ≈ 0.6202σyp

Table 3 Points of yield curves for torsion-tension shaft (x = σx/σyp; y = τxy/σyp, yM = classic von Mises)

x 0 0.1 0.2 0.3 0.4

yM 0.57735 0.57445 0.56568 0.55075 0.52915
y0.29 0.57735 0.57452 0.56594 0.55131 0.53009
y0.32 0.57735 0.57450 0.56587 0.55115 0.52982

x 0.5 0.6 0.7 0.8 0.9 1

yM 0.5 0.46188 0.41231 0.34641 0.25166 0
y0.29 0.50136 0.46367 0.41444 0.34871 0.25373 0
y0.32 0.50098 0.46317 0.41386 0.34808 0.25317 0

A comparison between data presented in Tables 1 and 2 shows that the both the classic and revised von
Mises hypothesis aim at the same field: some materials with τyp/σyp ∈ [0.54-0.62]. Nevertheless, the value of
shear yield stress predicted by the classic von Mises criterion is constant (the same for all materials), while the
one that is predicted by the revised hypothesis depends on the Poisson ratio.

3.1.2 Equi-triaxial tension/compression

In this case σ1 = σ2 = σ3 = σ , kw = 2μ and Eq. (23) becomes

σ = σyp√
3 (1 − 2μ)

. (31)

From Eq. (31), σ = σyp is obtained for μ = 1/3. For μ = 0.3, the value predicted by the revised von Mises
hypothesis is σ ≈ 0.913σyp. This value is 8.7% lower than the one predicted by the maximum principal
stress failure theory (Lamé G. and Rankine J.M.) used for brittle materials, σ = σyp, respectively. The revised
hypothesis fails only for μ = 0.5, when it is identical with the classic von Mises hypothesis.

3.1.3 Torsion and tension

By removing of the factor kw from Eqs. (28) and (29), the following equation is obtained:

18 (1 + μ) z2 + 2
[(
7 + 5μ − 2μ2) x2 − 3 (1 + μ)

]
z + 3x2

(
x2 − 1

) = 0, (32)

where
z = y2; y = τxy

σyp
; x = σx

σyp
. (33)

Only one solution of Eq. (32) has a physical significance:

z = 3 (1 + μ) − (
7 + 5μ − 2μ2

)
x2 +

√[(
7 + 5μ − 2μ2

)
x2 − 3 (1 + μ)

]2 − 54 (1 + μ) x2
(
x2 − 1

)

18 (1 + μ)
.

(34)
Using the solution (34), data from Table 3 was calculated for mild steel (μ = 0.29) and aluminium (μ = 0.32)
and the yield curves have been drawn in Fig. 2.

Experiments show that the von Mises curve is positioned between the yield curves of aluminium (below)
and those of mild steel (above) [18,19]. According to these experiments and Fig. 2b, it is observed that the
von Mises yield curve fits better with aluminium, and the revised von Mises curves with mild steel.
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Fig. 2 Yield curves for torsion-tension shaft: a von Mises(yM), revised von Mises for mild steel (y0.29) and aluminium (y0.32)
curves, superposed at a small scale; b the detail A, presented at a bigger scale. Legend: x = σx /σyp; y = τxy/σyp
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3.2 Some mathematical aspects

For the plane state of stress, the von Mises criterion can be rewritten as
(

σ1

σyp

)2

+
(

σ2

σyp

)2

− σ1σ2

σ 2
yp

= 1. (35)

This is an oblique ellipse, oriented at 45◦, with semi-axis
√
2σyp and

√
2/3σyp, respectively.

Then again, Eq. (27) can be rewritten as
(

σ1

σyp

)2

+
(

σ2

σyp

)2

− kw

σ1σ2

σ 2
yp

= 1. (36)

This is also an ellipse oriented at 45◦, but having the different semi-axis
√

2

2 − kw

· σyp;
√

2

2 + kw

· σyp. (37)

When kw = 1, the two ellipses are superposed. For kw < 1, the classic von Mises ellipse has a bigger major
semi-axis and a smaller minor semi-axis than revised one.

In Fig. 3, it can be observed that the big diameter of ellipse decreases and the small diameter increases with
decrease in kw coefficient. The revised ellipse is more accurate with experimental points obtained by Dowling
[26] for Ni–Cr–Mo steel than the classic von Mises ellipse.

Fig. 3 Ellipses obtained for different values of kw coefficient (for kw = 1, both classic and revised von Mises ellipses are
superposed)
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4 Testing the hypothesis with experiments

In order to have a comparison between the two theories (classic and revised von Mises), on the one hand,
experimental results [27] obtained for some metallic and nonmetallic materials are presented. A Poisson’s
ratio μ = 0.33 has been considered for aluminium alloy data obtained by the revised von Mises hypothesis.
The two hypotheses give quite similar results for materials and states of stress presented in Tables 4 and 5.
The kw coefficient was calculated with Eq. (25).

It is known, for example, that the vonMiseshypothesis fits betterwith the experimental results for aluminium
and copper than for mild steel [18]. To get a better fit with the experimental results, it is proposed to amend
the coefficient kw as follows:

kw = U1D + 2mμU1V

U1
, (38)

where m is a coefficient which depends on the material.
For biaxial state of stress, it becomes

kw = 2

3

[

1 + μ (1 + m − 2mμ) (σ1 + σ2)
2 − (1 + μ) σ1σ2

σ 2
1 + σ 2

2 − 2μσ1σ2

]

. (39)

For

m = 1

2μ
, (40)

it follows that kw = 1 and the classic von Mises criterion is obtained.
On the other hand, for aluminium wrought alloy AA6016, Hill’90 [28] and Yld2000-2D [29] yield criteria

are in good agreement with experimental values [30].
The classical von Mises criterion is widely used in design. It is especially incorporated in finite element

analysis software. A major deficiency in this case is the fact that the classical hypothesis cannot be used for
equi-triaxial tension or near equi-triaxial tension. For these state of stress in ductile materials, the classic von
Mises yielding theory cannot be applied, as well as the Tresca, Hosford or Christensen theories. It assumed
that there are not only two points (with main stress ratio 1/1/1 or −1/−1/−1), but two regions around these
points, where the classic von Mises hypothesis, as well as other theories build on this foundation, cannot be
applied. On the other hand, the revised von Mises hypothesis can be used for ductile isotropic materials under
equi-triaxial tension. For equi-triaxial state of stress, the revised hypothesis fails only at μ = 0.5, when it is
identical with the classic von Mises hypothesis. Unfortunately, there are very few reliable tests with materials
subjected to equi-triaxial tension, presented in an adequate form, able to be used for verification of the revised

Table 4 Prediction of failure stress and relative error for different metallic materials, for triaxial tests

No. Material μ σyp σ1 σ2 σ3 kw Predicted stress [MPa] Relative error [%] References

σvM σvM−revised evM evM−revised

1 Grey cast iron 0.21 253 176 38 −100 0.97 239.02 238.10 −5.52 −5.89 [42]
0.21 253 136 −32 −200 0.99 290.98 290.35 15.01 14.76
0.21 253 82 −109 −300 0.89 330.82 330.68 30.76 30.70
0.21 253 130 130 −100 0.94 230.00 228.80 −9.09 −9.56
0.21 253 97 97 −200 1.00 297.00 297.00 17.39 17.39
0.21 253 106 −100 −306 0.92 356.80 355.33 41.03 40.45
0.21 253 176 38 −100 0.97 239.02 238.10 −5.52 −5.89
0.21 253 136 −32 −200 0.99 290.98 290.35 15.01 14.76
0.21 253 82 −109 −300 0.89 330.82 330.68 30.76 30.70
0.21 253 10 −195 −400 0.77 355.07 377.55 40.34 49.23
0.21 253 106 −100 −306 0.92 356.80 355.33 41.03 40.45
0.21 253 40 −200 −440 0.81 415.69 429.95 64.31 69.94

2 Magnesium alloy 0.28 181 126 −100 −100 0.99 226.00 225.73 24.86 24.71 [42]
0.28 181 59 −200 −200 0.90 259.00 262.18 43.09 44.85
0.28 181 120 10 −133 1.00 219.72 219.72 21.39 21.39
0.28 181 56 −72 −238 0.94 255.32 255.29 41.06 41.04
0.28 181 95 95 −129 0.99 224.00 223.81 23.76 23.65
0.28 181 20 20 −233 0.96 253.00 252.29 39.78 39.39
0.28 181 −48 −48 −338 0.88 290.00 297.24 60.22 64.22
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Table 5 Prediction of yield stress and relative error for different materials, for biaxial tests

No. Material μ σyp σ1 σ3 kw Predicted stress [MPa] Relative error [%] References

σvM σvM−revised evM evM−revised

Aluminium alloys
1 Al6061_T6 0.35 290 213.00 −112.00 1.00 285.95 285.78 −1.40 −1.45 [27]

0.35 290 317.00 112.00 0.94 278.44 282.40 −3.99 −2.62
0.35 290 172.00 −168.00 1.00 294.46 294.46 1.54 1.54
0.35 290 109.00 −212.00 1.00 282.72 282.55 −2.51 −2.57
0.35 290 −141.00 −347.00 0.93 302.26 307.67 4.23 6.09

2 Al 6016-T4 0.34 385.4 398.85 −11.21 0.97 404.57 404.39 4.97 4.93 [34]
0.34 385.4 407.57 109.41 0.94 365.37 369.12 −5.20 −4.23
0.34 385.4 423.02 235.04 0.91 367.10 378.93 −4.75 −1.68
0.34 385.4 391.45 327.29 0.90 363.64 381.15 −5.65 −1.10
0.34 385.4 347.93 347.53 0.90 347.73 365.27 −9.77 −5.22
0.34 385.4 240.90 428.27 0.91 371.86 384.03 −3.51 −0.35
0.34 385.4 116.89 431.98 0.94 387.01 391.03 0.42 1.46
0.34 385.4 −10.55 408.89 0.97 414.26 414.10 7.49 7.45

3 AA6016 0.3 125 125.32 0.65 0.95 125.00 125.02 0.00 0.01 [35]
0.3 125 119.04 121.44 0.85 120.26 129.09 −3.79 3.27
0.3 125 −0.25 118.17 0.95 118.30 118.29 −5.36 −5.37

4 Al 2.5%wtMg 0.33 350 363.37 105.73 0.93 323.72 327.96 −7.51 −6.30 [37]
0.33 350 326.91 328.13 0.88 327.52 345.84 −6.42 −1.19
0.33 350 216.32 390.10 0.90 338.51 350.62 −3.28 0.18
0.33 350 103.30 390.10 0.93 350.08 354.02 0.02 1.15
0.33 350 −3.65 353.65 0.96 355.48 355.42 1.57 1.55
0.33 350 327.72 329.67 0.88 328.70 347.09 −6.09 −0.83 [38]
0.33 350 210.91 390.67 0.90 338.69 350.37 −3.23 0.11
0.33 350 103.18 391.97 0.93 351.91 355.83 0.55 1.67
0.33 350 −5.84 349.13 0.96 352.09 351.98 0.60 0.57

5 Ni3Al−based
alloy IC10

0.26 825 866.99 109.09 0.90 817.92 823.82 −0.86 −0.14 [41]

0.26 825 855.50 522.49 0.81 746.92 801.42 −9.46 −2.86
0.26 825 752.15 717.70 0.79 735.53 808.06 −10.84 −2.05
0.26 825 212.44 775.12 0.87 693.74 709.43 −15.91 −14.01

Magnesium alloy
6 Mg alloy 0.28 181 174 87 0.85 150.69 158.03 −16.75 −12.69 [42]

0.28 181 150 150 0.82 150.00 162.89 −17.13 −10.01
Steel
7 EN14301 0.29 322 231.00 −132.00 0.99 318.24 317.93 −1.17 −1.26 [32]

0.29 322 242.00 −142.00 0.99 336.29 335.99 4.44 4.34
0.29 322 370.00 88.00 0.90 334.79 339.53 3.97 5.44
0.29 322 123.00 −233.00 0.99 313.17 312.79 −2.74 −2.86

8 EN14462 0.25 665 502.00 −351.00 1.00 742.57 742.08 11.66 11.59
0.25 665 681.00 322.00 0.82 590.05 623.15 −11.27 −6.29
0.25 665 −316.00 −644.00 0.81 557.75 590.72 −16.13 −11.17

9 TRIP 0.31 198 130.00 −128.00 1.00 223.44 223.44 12.85 12.85 [36]
0.31 198 152.00 35.00 0.92 137.87 139.41 −30.37 −29.59
0.31 198 292.00 71.00 0.92 263.77 266.97 33.22 34.83
0.31 198 76.00 256.00 0.91 227.72 231.51 15.01 16.93

Mettallic glass
10 Metallic glass*

Zr52.5Cu17.9Ni14.6
Al10Ti5MG20

0.35 2231 2000.00 640.00 0.94 1769.07 1790.47 −20.71 −19.75 [33]

0.35 2231 1752.30 932.20 0.92 1518.57 1559.60 −31.93 −30.09
0.35 2231 1706.20 1188.20 0.91 1515.13 1571.97 −32.09 −29.54
0.35 2231 1472.30 1330.40 0.91 1406.73 1469.26 −36.95 −34.14
0.35 2231 1280.60 1458.40 0.91 1378.13 1438.80 −38.23 −35.51
0.35 2231 958.50 1572.40 0.92 1372.60 1417.04 −38.48 −36.48
0.35 2231 613.40 1700.40 0.94 1491.51 1513.48 −33.15 −32.16
0.35 2231 306.70 1687.80 0.95 1557.27 1564.94 −30.20 −29.85

PVC
11 PVC 0.38 55 58.46 2.28 0.98 57.36 57.38 4.28 4.33 [39]

0.38 55 50.30 49.72 0.94 50.01 51.54 −9.07 −6.29
0.38 55 −2.10 55.63 0.98 56.72 56.70 3.12 3.09
0.38 55 29.36 −49.35 1.00 68.90 68.88 25.27 25.23 [40]
0.38 55 44.08 −27.62 1.00 62.64 62.62 13.88 13.86
0.38 55 47.10 52.43 0.94 49.98 51.47 −9.13 −6.41
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von Mises hypothesis. Nevertheless, for 6061-T6 aluminium, the value predicted by the revised the von Mises
hypothesis is only 1% lower than that predicted by the maximum principal stress failure theory for equi-triaxial
tension (Rankine).

Although the Rankine and reviewed von Mises theories give close results for equi-triaxial tension, the
second one presents several advantages:

(1) Unfortunately, we do not know a clear demarcation of areas of triaxial stresses that one of the theories pre-
sented above can shape in a better way the experimental determinations. Consequently, near the hydrostatic
axis we cannot surely say when the von Mises criterion must be replaced by the Rankine criterion;

(2) In finite element analysis it is preferable to work with a single function instead of two (classical von Mises
or Rankine, respectively).

5 Conclusions

The revised von Mises yield hypothesis, presented in this paper, combines the theories of maximum distortion
energy (von Mises) and maximum strain energy (Beltrami), ensuring a smooth transition from the von Mises
to the Beltrami criterion. It can be used for ductile isotropic materials and different states of stress, including
those generated by equi-triaxial tension or compression, when some of the most popular yield theories such
as Tresca, von Mises, etc. cannot be used. Because the equi-triaxial tension is by no means accompanied by
macroscopic yielding, in this case the proposed “yielding condition” is in fact a “failure condition.”

All theories build on the assumption that yielding depends only on deviatoric stress and volumetric compo-
nent of stress has no role in material yielding, inevitably cannot be applied in the case of equi-triaxial tension
or compression.

In order to address the situationwhere it is possible to have (near) equi-triaxial stress states, it was necessary
to rewrite the classical von Mises hypothesis. However, like other classic criteria, the mathematical model
presented in this article cannot distinguish between hydrostatic tension and hydrostatic pressure (compression)
and this is a notable disadvantage.

Unfortunately, there is very few reliable experimental data for materials subjected to equi-triaxial tension,
adequately disclosed, and therefore, the revised von Mises hypothesis could not be verified for this particular
state of stress, within this paper. Nevertheless, the value predicted by revised yield hypothesis is lower than
that predicted by the maximum principal stress failure criterion for equi-triaxial tension. In order to validate
the new yield hypothesis, some theoretical and experimental results have been presented. For available data,
both theories (classic and revised von Mises) give quite similar results. Nevertheless, for most of them the
revised von Mises criterion gives smaller errors.

To get a better fit with the experimental results, a modified coefficient kw has been proposed. It includes a
coefficient which depends on the material.

The classic von Mises criterion predicts the same yield loci (ellipses) for all isotropic and ductile materials.
The revised von Mises hypothesis contains the Poisson ratio and, for this reason, the ellipses for aluminium
and mild steel, for example, are not exactly the same, as it is confirmed experimentally. However, for a given
Poisson ratio, kw coefficient should be determined, and therefore, it needs some extra calculus when evaluating
the failure condition.

The classic von Mises criterion is used for finite elements analysis by a significant number of software
programs. Unfortunately, near hydrostatic axis we cannot surely say when the von Mises criterion must be
replaced by the Rankine criterion. On the other hand, in finite element analysis it is preferable to work with a
single function instead of two (classical von Mises or Rankine, respectively).

The criterion based on the revised von Mises hypothesis ensures a smooth transition from the von Mises to
the Beltrami criterion.

Sometimes, finite element analysis of a structure (for example a metallic shell) may indicate (even within
a single point) a von Mises stress whose value is zero, although in fact at that point there could be a dangerous
(near) equi-triaxial state of stress. Even if such cases would be rare, they pose a major risk which cannot be
ignored.

The new model presented in this paper proposes an extension of the classical yield hypothesis. It can be
used for isotropic materials subjected to equi-triaxial tension. The key strengths that it possesses include the
possibility of its use for equi-triaxial or near equi-triaxial state of stress and can be used for some metallic
materials. The revised von Mises hypothesis can be also used in order to extend the Hosford or Christensen
theories.
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Hence, every yielding hypothesis needs a very careful examination and must be agreed with many exper-
iments, made for different materials. In fact, every yielding criterion must be associated with some materials
and achieving this involves a huge amount of work.
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