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Abstract Electrostatically actuated circularmicro-/nanoplates are commonly used inmicro-/nanoswitches and
pumps. This paper models the thermal and size effects on the nonlinear vibration behavior of electrostatically
actuated circular micro-/nanoplates. Surface elasticity and modified couple stress theories are simultaneously
applied to the modeling. A reduced-order model incorporating temperature change is derived and solved
numerically. Results show that the material length scale, surface energy, negative temperature change, and
geometry nonlinear strain increase frequency and pull-in voltage of the plate. However, Casimir force and
positive temperature change reduce the frequency of the plate. Moreover, the effects of surface energy, material
length scale and temperature change on frequency become more obvious for thinner plates. The influence of
the geometrically nonlinear strain on the frequency is significant for large initial gap to thickness ratio of the
plate.

1 Introduction

Electrostatically actuated micro-/nanodevices are used as transistors, switches, pressure sensors, and pumps.
An electrostatically actuated switch is generally comprised of a conductive deformation electrode and a rigid
grounded electrode [1]. Applied direct current (DC) voltage between the two electrodes leads to bending of
the deformable electrode. Once the superimposition of an alternating current (AC) and DC voltage is applied
across the two electrodes, harmonic motions of the system will occur, and the system can be used as resonant
devices. The natural frequency of the system is affected by the deflection of the deformable electrode. Such
devices have wide applications in signal filtering [2], pressure sensors [3], pumps [4], and chemical and mass
sensing [5].

With continuing reduction in size, the molecular interaction forces between the two electrodes, such as
Casimir force and van der Waals force, become increasingly significant and should be considered. At micro-
/nanoscales, themolecular interaction forces between the two electrodes lead the deformable electrode deflects,
and affect the frequency of the deformable electrode. When the gap between the two electrodes is smaller than
the plasma wavelength (typically below 20 nm), molecular interaction is generally described by van der Waals
force. On the other hand, for a larger gap (typically larger than 20 nm), the Casimir force is commonly used to

K. F. Wang (B) · B. Wang
Graduate School at Shenzhen, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
E-mail: wangkaifa@126.com

C. Zhang
School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, People’s Republic of China

B. Wang · C. Zhang
Institute for Infrastructure Engineering, Western Sydney University, Penrith, NSW 2751, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-016-1701-7&domain=pdf


130 K. F. Wang et al.

describe the molecular interactions between the two electrodes [6]. Ramezani et al. [6] investigated the pull-in
instability of cantilever switches subjected to intermolecular and electrostatic forces. Jia et al. [7,8]studied the
pull-in instability and free vibration of geometrically nonlinear microswitches under electrostatic and Casimir
force. Batra et al. [9–11] investigated the influence of the molecular interactions on the pull-in instability
and frequencies of clamped rectangular, circular, and elliptic plates. Wang et al. [12] investigated the pull-in
instability and the vibration for a prestressed circular electrostatically actuated plate with consideration of the
Casimir force. However, those studies [6–12] did not consider the size-dependent behavior of micro-/nanoscale
structures.

Atmicro-/nanoscale, the properties ofmicro-/nanomaterials are size dependent, due to the effects of surface
energy and material length scale. In practice, the surface energy effect can be described by surface elasticity
theory provided by Gurtin and Murdoch [13]. Using this theory, some researchers have found that surface
energy plays an important role in the frequencies of nanostructures [14–16]. For example, Fu and Zhang [14]
studied the influence of the surface energies on the static and dynamic responses of nanoswitches. On the other
hand, the modified couple stress theory provided by Yang et al. [17] can accurately describe the effects of
material length scale constants and was widely used to investigate the size-dependent behavior of microbeams
[18,19] and microplates [20].

Since surface elasticity theory describes the surface property and modified couple stress theory describes
the effect of material length scale in the bulk, it is natural to combine both of them in investigating mechanical
behaviors of micro-/nanostructures. For example, the combined effects of surface energy and material length
scale on static and dynamic behaviors of nanobeams [21,22] and nanoplates [23] are studied. Unfortunately,
there are few reports on the combined effects of surface energy and the material length scale on the mechanical
behaviors of electrostatically actuated micro-/nanoplates. Wang et al. [24]investigated the combined effects
of surface energy and the material length scale on the pull-in voltage of a rectangular micro-/nanoplate.
However, they did not consider a thermal effect. In fact, micro-/nanodevices can be subjected to temperature
changes during device packaging and sensing operation [25]. Some researchers have discussed the influence
of temperature changes on the pull-in instability and vibration of electrostatically actuated beams [26,27] and
plates [10,28]. In these studies, it is found that with a moderate temperature increase devices may premature
fail.

Circular plates are commonly electrostatically actuated in many MEMS/NEMS devices, such as switches
[29,30] andpumps [4].Moreover, surface energy,material length scale, and temperature changehave significant
effect on the performance of electrostatically actuated MEMS/NEMS. Therefore, in this paper, the nonlinear
dynamical behaviors of electrostatically actuated circular micro-/nanoplates incorporating thermal and surface
energy effects are studied by using modified couple stress theory. The paper is organized as follows: Sect. 2
derives the nonlinearmotion equations of a circular plate, based on themodified coupled stress theory. Section 3
derives the reduced-order models for the circular plate. Section 4 gives numerical results and discusses some
important factors, such as surface energy, material length scale, geometrically nonlinear deformation, Casimir
force and temperature change, which may affect the fundamental frequency of the circular plate. Conclusions
are drawn in Sect. 5.

2 Derivation of the nonlinear motion equations

As shown in Fig. 1, an electrostatically actuated micro-/nanodevice including a pair of parallel circular plates
is considered. The upper circular electrode is treated as a deformable elastic circular plate with radius R and
thickness h. The other one is a rigid and grounded plate. The initial gap between the twoplates is g0.At the center
of the mid-plane of the upper plate, a cylindrical coordinate system (r, ϕ, z) is introduced, whereas the r axis,
ϕ axis and z axis are, respectively, taken along the radius, the tangential, and the depth (thickness) directions
of the plate. The upper and lower surfaces of the deformable plate are, respectively, denoted by S+(z = h/2)
and S−(z = −h/2). For an axisymmetric problem, the displacement components are independent of ϕ and
can be written as

ur = u0r − z
∂w

∂r
, uϕ = 0 andw = w(r) (1)

where ur , uϕ andw are the displacements along the r axis, ϕ axis and z axis, respectively. u0r is the displacement
along the r axis at mid-plane (z = 0). Taking the van Kármán strain into consideration, the strains can be
expressed as

εr = ur,r + 1

2
w2

,r and εϕ = ur
r

. (2)
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Fig. 1 Sketch of the electrostatically actuated circular micro-/nanoplate

The symmetric curvature tensors of the circular plate are

θθ = −∂w

∂r
, χrθ = 1

2

(
1

r

∂w

∂r
− ∂2w

∂r2

)
. (3)

Taking the temperature change �T into consideration, the stress can be expressed as

σr = E

1 + ν

(
εrr + ν

1 − ν
(εrr + εϕϕ)

)
− EαT�T

1 − ν
, (4)

σϕ = E

1 + ν

(
εϕϕ + ν

1 − ν
(εrr + εϕϕ)

)
− αT�T

1 − ν
, (5)

mrϕ = 2
El2c

2(1 + ν)
χrϕ (6)

where E and ν are the Young’s module and Poisson’s ratio, respectively, lc denotes the material length scale
in the context of modified coupled stress theory, αT is thermal coefficient of the plate. Based on the modified
couple stress theory, the strain energy in the bulk of the micro-/nanoplate is

Ub = 1

2

∫ ∫ ∫
(σrεr + σϕεϕ + 2mrϕχrϕ)rdrdϕdz. (7)

For a different surface element with length dr and width dϕ, its area after deformation is given by

ds =
[
1 + ∂u

∂r
+ 1

2

(
∂w

∂r

)2
] [

1 + ur
r

]
rdrdϕ. (8)

Assuming that the properties of the upper and lower surfaces are isotropic, the surface energy can be expressed
as [31]

γ = γ0 + 1

2

[
λs

(
εsαα

)2 + 2μs

(
εsαβεsαβ

)]
(9)

where γ0 is the initial surface energy (or the residual surface stress), λs and μs are two Láme constants of the
surface layer, and εsαβ denotes the strain tensor of the surface layer.

The total surface energy can be calculated by Us = ∫
s
γ ds. Using Eqs. (8) and (9), and neglecting the

higher term, the total energy of upper and lower surface layers can be obtained,

Us = 2
∫ ∫

γ0

[
1 + ∂u0r

∂r
+ u0r

r
+ 1

2

(
∂w

∂r

)2
]
rdrdϕ +

∫ ∫
1

2

(
σ s+

αβ εs
+

αβ + σ s−
αβ εs

−
αβ

)
rdrdϕ, (10)
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where σ s+
αβ and εs

+
αβ are the surface stress and surface strain of the surface layer S+, and σ s−

αβ , and εs
−

αβ are the
surface stress and surface strain of the surface layer S−.

When an applied voltage V is applied cross the two plates, by neglecting fringing fields, the electrostatic
force can be expressed as [1]

Fe = ε0V 2

2(g0 − w)2
(11)

where ε0 is the dielectric constant of vacuum.
In this Section, the interaction molecule force between the two plates is described by Casimir force and

can be expressed as [32,33]

FC = h̄cπ2

240(g0 − w)4
(12)

where c is the speed of light in vacuum and h̄ is Planck’s constant. Therefore, the potential energy due to
electrostatic and Casimir force is

Wq = −
∫ ∫ ∫ w

0
qdwrdrdϕ (13)

where q = Fe + FC . The kinetic energy of the plate can be expressed as

T = ρh

2

∫ t1

t0

∫ ∫ [(
∂w

∂t

)2

+
(

∂u

∂t

)2
]
rdrdϕdt (14)

whereρ is themass density of the plate. The rule ofHamilton’s principle requires δ
∫ t1
t0

(Ub +Us + Wq − T ) =
0, hence one obtains

1

r

[
∂(r N∗

rr )

∂r
− N∗

ϕϕ

]
− I ü0r = 0 (15.1)

1

r

∂2(rM∗
rr )

∂r2
− ∂M∗

ϕϕ

∂r
+ 2γ0

∂

∂r

(
r
∂w

∂r

)
+ ∂

∂r

(
r N∗

rr
∂w

∂r

)
+ q − I ẅ = 0. (15.2)

In Eq. (15), N∗
rr = Nrr + Ns

rr , N∗
ϕϕ = Nϕϕ + Ns

ϕϕ , M∗
rr = Mrr + Ms

rr + Yrϕ , M∗
ϕϕ = Mϕϕ + Ms

ϕϕ − Yrϕ ,
where

Nrr =
∫ h/2

−h/2
σrrdz = Eh

1 − ν2

[
∂u0r
∂r

+ 1

2

(
∂w

∂r

)2

+ νu0r
r

]
− EhαT�T

1 − ν
, (16.1)

Nϕϕ =
∫ h/2

−h/2
σϕϕdz = Eh

1 − ν2

[
ν

(
∂u0r
∂r

+ 1

2

(
∂w

∂r

)2
)

+ u0r
r

]
− EhαT�T

1 − ν
, (16.2)

Mrr =
∫ h/2

−h/2
σrr zdz = −D

(
∂2w

∂r2
+ υ

r

∂w

∂r

)
, (16.3)

Mϕϕ =
∫ h/2

−h/2
Mϕϕdz = −D

(
1

r

∂w

∂r
+ υ

∂2w

∂r2

)
, (16.4)

Ns
rr = σ s+

rr + σ s−
rr = 2Es

1 − ν2

[
∂u0r
∂r

+ 1

2

(
∂w

∂r

)2

+ νu0r
r

]
− EsαT�T

1 − ν
, (16.5)

Ns
ϕϕ = σ s+

ϕϕ + σ s−
ϕϕ = 2Es

1 − ν2

[
ν

(
∂u0r
∂r

+ 1

2

(
∂w

∂r

)2
)

+ u0r
r

]
− EsαT�T

1 − ν
, (16.6)

Ms
rr = h

2
σ s+
rr − h

2
σ s−
rr = − Esh2

2(1 − ν2)

(
∂2w

∂r2
+ ν

r

∂w

∂r

)
, (16.7)

Ms
ϕϕ = h

2
σ s+

ϕϕ − h

2
σ s−

ϕϕ = − Esh2

2(1 − ν2)

(
1

r

∂w

∂r
+ ν

∂2w

∂r2

)
, (16.8)

Yrϕ = − El2c h

2(1 + ν)

(
∂2w

∂r2
− 1

r

∂w

∂r

)
(16.9)
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where Es is Young’s modulus of surface, D = Eh3/12(1− ν2). Accordingly, the boundary conditions are:

(N∗
rr + 2γ0)rδur |R0 = 0, (17.1)(
M∗

rr rδ
∂w

∂r

)
|R0 = 0, (17.2)

{
∂

∂r
(M∗

rr r) − M∗
ϕϕ −

[
(N∗

rr + 2γ0)
∂w

∂r
r

]}
δw|R0 = 0. (17.3)

Using Eqs. (15) and (16), the following equations can be obtained:

D∗∇4w −
(
2γ0 + (Eh+2Es )αT�T

1−ν

)
∇2w + ρh ∂2w

∂t2
− q

− E∗h
1−ν2

{(
∂2w
∂r2

+ 1
r

∂w
∂r

)
L(w, ur ) + ∂w

∂r
∂
∂r L(w, ur )

}
= 0,

(18.1)

E∗h
1 − ν2

[
∂2u0r
∂r2

+ 1

r

∂u0r
∂r

− u0r
r2

+ ∂w

∂r

∂2w

∂r2
+ 1 − ν

2r

(
∂w

∂r

)2
]

= ρh
∂2u0r
∂t2

(18.2)

where D∗ = Eh3

12(1−ν2)
+ Esh2

2(1−ν2)
+ (Eh+2Es )l2c

2(1+ν)
, L(w, ur ) =

(
∂u0r
∂r + 1

2 (
∂w
∂r )2 + ν

u0r
r

)
and E∗ = E + 2Es

h .

By introducing the following dimensionless parameters: r̄ = r
R , w̄ = w

g0
, α = g20

h2
, βs = 2γ0R2

D , λ = ε0V 2R4

2Dg30
,

μ = h̄cπ2R4

240Dg50
, τ 2 = ρhR4

D , t̄ = t
τ

ū0r = u0r R
g20

, ϑ = h2

6R2 , χ = Es
Eh , l̄c = (1 − ν)( lch )2, and βT = 12(1 + ν)(1 +

2χ)( Rh )2αT�T , Eq. (18) can be expressed in another form:

¨̄w + (1 + 6χ + l̄c)∇4w̄ − (βs − βT )∇2w̄ − 12α(1 + 2χ)

×
{(

∂2w̄
∂ r̄2

+ 1
r̄

∂w̄
∂ r̄

)
L(w̄, ū0r ) + ∂w̄

∂ r̄
∂
∂ r̄ L(w̄, ū0r )

}
− λ

(1−w̄)2
− μ

(1−w̄)4
= 0,

(19.1)

ϑ

1 + 2χ

∂2ū0r
∂τ 2

−
[

∂2ū0r
∂ r̄2

+ 1

r̄

∂ ū0r
∂ r̄

− ū0r
r̄2

+ ∂w̄

∂ r̄

∂2w̄

∂ r̄2
+ 1 − ν

2r̄

(
∂w̄

∂ r̄

)2
]

= 0 (19.2)

where L(w̄, ū0r ) =
(

∂ ū0r
∂ r̄ + 1

2 (
∂w̄
∂ r̄ )2 + ν

ū0r
r̄

)
. In this Section, only the vibration of the z-axis is considered.

Neglecting the inertial term in Eq. (19.2), one obtains

∂2ū0r
∂ r̄2

+ 1

r̄

∂ ū0r
∂ r̄

− ū0r
r̄2

+ ∂w̄

∂ r̄

∂2w̄

∂ r̄2
+ 1 − ν

2r̄

(
∂w̄

∂ r̄

)2

= 0. (20)

The boundary conditions for a clamped circular micro-/nanoplate are

ū0r = 0 and w̄ = ∂w̄

∂ r̄
= 0. (21)

3 Reduced-order model

It is difficult to find a closed-form solution of the nonlinear equations. Therefore, approximate solutions of the
displacements w̄ and ū0r are constructed as

w̄(r̄ , t̄) =
N∑

n=1

w̃n(r̄)An(t̄) = WTA(t), (22)

ū0r (r̄ , t̄) =
N∑

m=1

ũmr (r̄)Bm(t̄) = UTB(t) (23)



134 K. F. Wang et al.

where w̃n and ũm are, respectively, orthogonal basis functions for the transverse and in-plane displacements,
and An and Bm are amplitude parameters.

The basis function for the in-plane displacement can be determined by the linear eigenvalue problem
associated with Eq. (20). Firstly, for the linear eigenvalue problem, the dimensionless vibration equation of the

r axis can be written as ∂2ū0r
∂τ 2

− [ ∂2ū0r
∂ r̄2

+ 1
r̄

∂ ū0r
∂ r̄ − ū0r

r̄2
] = 0. Secondly, it is assumed that ū0r = ū0r e

ikτ , where k is

the wave number. Finally, substituting ū0r = ū0r e
ikτ into ∂2ū0r

∂τ 2
− [ ∂2ū0r

∂ r̄2
+ 1

r̄
∂ ū0r
∂ r̄ − ū0r

r̄2
] = 0, the linear eigenvalue

problem can be obtained as

∂2ū0r
∂ r̄2

+ 1

r̄

∂ ū0r
∂ r̄

− ū0r
r̄2

+ k2ū0r = 0. (24)

The solution of Eq. (24) is

ūmr = Bm J1(kmr̄) (25)

where J1 is a Bessel function of first kind, and the value of km can be determined by J1(km) = 0.
For the transverse displacement, the same base function for transverse displacement as Meirovitch [34] is

used in this Section (referring [34] for more details), which can be expressed as

w̄n(r̄) = An

[
J0(�nr̄)

J0(�n)
− I0(�nr̄)

I0(�n)

]
(26)

where Iα(x) = i−α Jα(i x), and the�n are determined as roots of the equation J0(�)I1(�)+ J1(�)I0(�) = 0.
The relationship between B andA can be obtained by the following: (i) substituting Eqs. (22) and (23) into

Eq. (20), (ii) taking the inner product of the resulting equation with the basis function for in-plane displacement
ūmr , and using the boundary conditions. As a result, the relationship between B and A is found to be

Bp = AT ([E]p/�)A (27)

where

[E]p = −
∫ 2π

0

∫ 1

0
ū p
r

(
∂W
∂ r̄

∂2WT

∂ r̄2
+ 1 − ν

2r̄

∂W
∂ r̄

∂WT

∂ r̄

)
rdrdϕ, (28.1)

� =
∫ 2π

0

∫ 1

0

(
∂2ū p

r

∂ r̄2
+ 1

r̄

∂ ū p
r

∂ r̄
− ū p

r

r̄2

)
ū p
r rdrdϕ. (28.2)

Multiplying Eq. (19.1) withW, and substituting for w̄ and ū0r from Eqs. (22) and (23), integrating the resulting
equation over the domain, the reduced-order model is obtained as

∫
WWT Ärdrdϕ + (

1 + 6χ + l̄c
) ∫

W∇4WTArdrdϕ

+12α(1 + 2χ)
∫ (

ε̄ + 1
2A

T ∂W
∂ r̄

∂WT

∂ r̄ A + ν ϒ
r̄

) (
∂W
∂ r̄

∂WT

∂ r̄

)
r̄dr

− ∫
(βs − βT )W∇2WTArdrdϕ − λ

∫ W
(1−WTA)2

rdrdϕ − μ
∫ W

(1−WTA)4
rdrdϕ = 0

(29)

where ε̄ = ∑P
p=1A

T ([E]p/�)A ∂ ū p
r

∂ r̄ and ϒ = ∑P
p=1 A

T ([E]p/�)Aū p
r .

Using the divergence theorem and imposing boundary conditions, it was obtained

mÄ + [(1 + 6χ + l̄c)k1 + (βs − βT )k2 + α(1 + 2χ)k3(A)]A − λfe − μfc = 0 (30)



Vibration of circular micro-/nanoplates 135

where

m = 2π
∫ 1

0
WWT r̄dr̄ , (31.1)

k1 = 2π
∫ 1

0

(
1

r̄

∂W
∂ r̄

∂WT

∂ r̄
+ r

∂2W
∂ r̄2

∂2WT

∂ r̄2

)
dr̄ , (31.2)

k2 = 2π
∫ 1

0

∂W
∂ r̄

∂WT

∂ r̄
r̄dr̄ , (31.3)

k3 = 24π
∫ (

ε̄ + 1

2
AT ∂W

∂ r̄

∂WT

∂ r̄
A + ν

ϒ

r̄

)(
∂W
∂ r̄

∂WT

∂ r̄

)
r̄dr, (31.4)

fe(A) = 2π
∫ 1

0

W
(1 − WTA)2

r̄dr̄ , (31.5)

fc(A) = 2π
∫ 1

0

W
(1 − WTA)4

r̄dr̄ . (31.6)

In Eq. (30), k1 is the linear stiffness matrix, βsk2 and βTk2 are the stiffness matrices contributed by surface
energy and temperature change, k3(A) represents the nonlinear stiffness matrix contributed by geometrically
nonlinear deformation. It is noted that when α approaches zero, the nonlinear stiffness k3(A) approaches zero
and can be neglected. At this situation, Eq. (30) can be reduced tomÄ+[(1+ 6χ + l̄c)k1 + (βs −βT )k2]A−
λfe − μfc = 0, which is the motion equation of linear plates.

The natural frequencies of the deflected circular plate at a given situation (A, χ, βs, βT , λ, μ, l̄c) can be
determined by the following procedure [9]. We perturb the equilibrium state A with a harmonic term eiwt as
A + Āeiwt , where A is a constant such that | Ā| << |A| and i = √−1. Substituting A + Āeiwt into Eq. (30)
and retaining terms linear in A, one obtains the following relation for the natural frequency:

det(K(A, χ, βs, βT , λ, μ, l̄c) − ω2m) = 0 (32)

where

K(A, χ, βs, βT , λ, μ, l̄c) = [(1 + 6χ + l̄c)k1 + (βs − βT )k2 + 3α(1 + 2χ)k3(A)]
−λ

dfe(A)

dA
− μ

dfc(A)

dA
. (33)

Since det[K(A, χ, βs, βT , λ, μ, l̄c)] = 0 at pull-in, it follows that at least one natural frequency of the switch is
zero, when pull-in occurs. This also provides a useful way to find the pull-in parameters of the electrostatically
actuated plate.

4 Numerical results and discussion

Figure 2 shows the convergence of the presented model. It is found that the convergence results can be obtained
by using the 21×21 Gauss quadrature rule. Therefore, the integrals appearing in this paper are evaluated using
the 21 × 21 Gauss quadrature rule. In the following Figures, ω0 is the fundamental frequency of a clamped
circular plate with V = 0, lc = 0, Es = 0, and γ0 = 0. The value of ω0 obtained by the present model with
n = 3 and m = 4 is 10.2 which matches well with the values reported by Batra et al. [9].

The material properties of silver are E = 76 Gpa, ν = 0.3, Es = 1.22 N/m and γ0 = 0.89 N/m [35,36].
Figure 3 shows the variation of the normalized frequencies of the circularmicro-/nanoplatewith applied voltage
for different material length scale parameters. It can be seen that the classical theory (without consideration
of the effect of material length scale) makes a lower prediction of the frequency. The normalized frequency
increases with increasingmaterial length scale. This phenomenon can be explained by Eq. (26), which suggests
that the material length scale increases the stiffness matrix. The influence of the material length scale on the
normalized frequency increases with decreasing thickness h. Equation l̄c = 6(1 − ν)(lc/h)2 can be used to
explain this phenomenon. Keeping lc as a constant, decreasing the thickness h increases the parameter l̄c and
then increases the stiffness matrix. It is also found that the normalized frequencies rapidly decrease to zeros,
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Fig. 3 Variation of the normalized frequency of the circular micro-/nanoplate with the applied voltage for different material length
scale parameters l̄c(h = 500 nm, R = 100 h, g0 = 2 h and �T = −100 K)

when the applied voltage (λ) comes close to a critical value, which is defined as the pull-in voltage, denoted
by λPI. In addition, the material length scale also increases the pull-in voltage of the circular plate.

The variation of normalized frequencies of the circular micro-/nanoplate with applied voltage for different
thickneses is plotted in Fig. 4. Comparing the results with and without surface energy, it is found that surface
energy increases the normalized frequencies of the circular plate. The influence of surface energy on the
normalized frequencies becomes significant if the thickness of the plate decreases. The reason for this is
that the surface energy enhances the plate stiffness, and the ratio of surface energy to bulk energy increases
with decreasing plate thickness. The difference between the presented model with and without surface energy
becomes large when the applied voltage increases. It is also found that the surface energy increases the pull-in
voltage of the circular micro-/nanoplate.
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Figure 5 plots the normalized frequency of the circular micro-/nanoplate for different initial gaps g0. It is
found that Casimir forces enlarge the force matrix, and decrease the frequencies and pull-in voltages of the
plate. The influence of Casimir force on frequencies decreases with increasing initial gap g0. The relationship
μ = h̄cπ2h(l/h)4(1 − υ2)/(20Eg50) can explain this phenomenon. From this relation, it can be found that
increasing the initial gap g0 decreases the value of μ. If the initial gap g0 reaches a certain value, the value of
μ will approach to zero. At this situation, the effect of Casimir force can be neglected.

Figure 6 makes comparisons of the results based on linear and nonlinear theories. It can be seen that the
frequencies predicted by the nonlinear theory are higher than those predicted by the linear theory. The fact is
that the effect of strain hardening increases the stiffness matrix. The effect of geometrically nonlinear strain
on the frequencies rapidly increases with increasing parameter α = (g0/h)2, due to the fact that the nonlinear
stiffness matrix α(1 + 2χ)k3 increases with increasing parameter α. The geometrically nonlinear strain also
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increases the pull-in voltages. Once again, the difference between the nonlinear and linear results becomes
large when the applied voltage increases.

Figure 7 shows the variation of the normalized frequency of the circular micro-/nanoplate with the applied
voltage for different temperature changes. In Fig. 7, we just assumed a temperature change to investigate
the effect of the temperature variation. Both positive and negative temperature variation can be emerged in
real applications, for example, nanodevices may be subjected to positive temperature changes during sensing
operation and negative temperature changes during device packaging. When the temperature change is pos-
itive, the normalized frequency is smaller than that without temperature change. If the temperature change
is negative, the normalized frequency is larger than that without temperature change. The reason for this is
that a positive temperature change induces an additional compressive force, which makes the plate softer.
A negative temperature change induces an additional tensile force which makes the plate stiffer. From the
relationshipβT = 12(1+ ν)(1+ 2χ)(R/h)2αT�T , it can be seen that the effect of the temperature change on
the normalized frequency increases with increasing radius to thickness ratio. It is also observed that a positive
temperature change decreases the pull-in voltages, a negative temperature change increases pull-in voltages.
Moreover, the trend of the curves corresponding to positive temperatures (�T in the range of 0K to 137K, as
shown in Fig. 7b) is nonmonotonic due to the combined effect of the stiffening effect introduced by mid-plane
stretching and surface energy, and the softening effect introduced by positive temperature change, electric,
and Casimir forces. It is noted that in absence of an applied voltage the buckling temperature of the circular
nanoplate is �T = 137K . The frequency of the circular plate corresponding to the buckling temperature is
zero. The monotonic trend of curves implies that the softening effect is always lager than the stiffening effect.

5 Conclusions

The effects of surface energy, Casimir forces and temperature change on the nonlinear resonant behavior of
electrostatically actuated circular micro-/nanoplates are studied, based on the modified couple stress theory.
The nonlinear motion equation of an electrostatically actuated circular micro-/nanoplate is derived by using
Hamilton’s principle. The reduced-ordermodel incorporating thematerial length scale, geometrically nonlinear
strain, surface energy, and temperature change is derived and solved numerically. Results show that material
length scale, surface energy, negative temperature change, and geometry nonlinear strain increase frequency
and pull-in voltage of the circular micro-/nanoplate. However, Casimir force reduces the frequency of the
micro-/nanoplate. The effects of surface energy and material length scale on frequency become more obvious
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for a thinner plate. The influence of the geometrically nonlinear strain on frequencies is more significant for a
large initial gap to thickness ratio of the plate.
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