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Abstract This article is concerned with the study of frictionless contact between a rigid punch and an elastic
layer having piezoelectric properties. The rigid punch is assumed to be axially symmetric and is supposed to
be pressing the elastic layer through an applied load on it. The layer is resting on a rigid base and is assumed
to be sufficiently thick in comparison with the amount of indentation by the rigid punch. The relationship
between the applied load and the contact area is obtained by solving the mathematically formulated problem
through the use of Hankel transform of different orders. Variations of stresses and electric displacements on
the surface of the layer and the piezoelectric effects on the load contact area relationship as well as normal
stress have been numerically evaluated and shown graphically.

1 Introduction

In the study of various properties of solid materials, a class of materials has attracted the attention of the
scientists, known as piezoelectric materials. The piezoelectric effect was discovered in 1880 by Jacques and
Pierre Curie. It consists of the apparition of electric charges on the surfaces of some crystals after their
deformation. The reverse effect was also outlined in 1881: where there occurs generation of stress and strain in
crystals under the action of electric field on the boundary. These materials turn out to be very useful with very
specific and unusual properties. In fact, these materials have the ability to produce electrical energy through
the use of mechanical loadings. Piezoelectric materials, particularly piezoelectric ceramics, have been widely
used for applications such as sensors, filters, ultrasonic generators, actuators, laser, supersonics, microwave,
navigation and biology. Piezoelectric composite materials are also in use in hydrophone application and
transducers for medical imaging. Considering the huge applicability of these materials in various fields, solid
mechanics problems are being studied using elastic solids with piezoelectric properties.

The determination of the state of stress in the media when two solids are in contact has been the subject of
study in literature for many years and the problems are usually called as contact problems. Contact problems
are well known in solid mechanics and have been investigated thoroughly since their initial appearance in
literature through the investigation by Hertz in 1882. A systematic analysis may be found in the book by
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Galin [1]. The importance of contact problems lies in the fact that whenever a solid is subjected to mechanical
loading, it is done through contact between these bodies. Depending upon the characteristics of the materials
of the two bodies, deformation occurs in one or both the bodies and the area of contact between the two bodies,
called the contact area, may or may not change. There is some kind of relationship between this area and
the loading process. This relationship is important from engineering point of view. In particular, the contact
problem of electro-elasticity is very interesting from the point of view of application. Due to the application of
load, the area of contact may increase, decrease or even remain stationary. Accordingly, contact problems are
classified as advancing, receding or stationary. There are quite a good number of contact problems investigated
in which the frictional forces at the contact surface have been ignored. Among several works done, we may
mention a few: Shvets et al. [2], Chaudhuri and Ray [3,4], Comez et al. [5], Barik et al. [6,7], El-Borgi et
al. [8] and Fabrikant [9]. Various types of contact problems are discussed in books and journals by Johnson
[10], Gladwell [11], Hills et al. [12], Raous et al. [13], Rogowski [14], Giannakopoulos and Suresh [15],
Giannakopoulos and Parmaklis [16], Chen et al. [17], Fan et al. [18], Rogowski and Kalinski [19], Sofonea
and Essoufi [20], Karapetian et al. [21], Kirilyuk and Levehuk [22], Li and Wang [23], Ding et al. [24], etc.
Owing to their applications in a great variety of structural systems, such as foundations, pavements in roads
and runways, automotive disk brake systems and many other technological applications, considerable progress
has been made with the analysis of contact problems in the theory of elasticity.

It has been noted that piezoelectric materials, although behaves like usual solids, have some additional
properties in respect of generating electric field in the medium with the application of load. This additional
property is expected to produce some kind of information due to electrical effects in addition to those produced
bymechanical loadings. Such expectations demand reinvestigationof solidmechanics problems inpiezoelectric
media. In literature, several studies of contact problems in piezoelectric medium have been reported. Among
thesewemaymention theworks of Chen [25,26], Ramirez andHeylinger [27] and Zhou and Lee [28] assuming
that there is no frictional forces acting at the contact surface. Frictionless contact problem for a piezoelectric
layered half plane has also been investigated byWang et al. [29]. Taking into consideration of sliding frictional
force, the problems were investigated by Hao [30], Makagon et al. [31] and in relatively recently by Zhou and
Lee [32] and Ma et al. [33]. Among the most recently published works on contact problems in piezoelectric
media we may mention the works of Su et al. [34–36]. The investigations are on fretting contact problems in
piezoelectric half space, taking into account of frictional force. Papers have been nicely presented and are very
informative.

The present investigation aims to find the solution of an axially symmetric frictionless contact between a
piezoelectro-elastic layer and a rigid cylindrical, spherical or conical indenter which is loaded by a concentrated
force P . Using the operator theory, we derive a general solution that is expressed in terms of the three potentials.
These functions satisfy differential equations of the second order and are quasi-harmonic in nature.Making use
of these fundamental solutions, the punch problem in the aforesaid three cases, is investigated. The solution
of the problem has been reduced to the solution of two Fredholm-type integral equations of second kind
which require numerical treatment. The numerical results are discussed and presented graphically to show the
influence of piezoelectricity of the layer on various subjects of interest. The novelty of this discussion lies in
the nature of the problem and the way to find its solution. The problem considered here is a contact problem
in an elastic layer having piezoelectric properties. Usually handling of such problems with two boundaries
turns out to be more difficult compared with similar problems in a half space. The Method of solution here
demands application of the Hankel transform of different orders followed by a special method as applied in
[37]. In contrast with the closed-form solution available for the half space problem in piezoelectric medium
as discussed in [37], no closed-form solution can be possible for our present problem. The solution available
here is in the form of two integral equations, which are to be solved by numerical methods. For comparison’s
sake we have computed the variations of the applied load P with contact radius for different values of h in
ascending order. It is observed that as the thickness of the layer increases, the value of the applied load P is
approaching the corresponding value for a half space as considered in [37].

2 Formulation of the problem

We consider an elastic layer of thickness H lying on a rigid base. The material of the layer is elastically
transversely isotropic, having piezoelectric properties. An axisymmetric rigid punch is placed on the free
surface of the layer and is pressed toward the layer by an applied concentrated force P (Fig. 1). The axis of
symmetry of the punch is along the normal to the free surface of the layer. It is assumed that the thickness of
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Fig. 1 a Geometry of the problem for flat-ended cylindrical punch. b Geometry of the problem for spherical punch. c Geometry
of the problem for conical punch

the layer is much larger than the indented depth h caused by the punch. We shall use a cylindrical coordinate
system (r, θ, z) with origin at the undeformed free surface of the layer and z-axis along the inward normal to
the free surface. We shall also make the following additional assumptions:

(a) The force of gravity is ignored,
(b) The axis of symmetry of the transversely isotropic material is along the z-axis,
(c) The axis of polarization of the indented piezoelectric material coincides with the z-axis,
(d) Strains and displacements are small so as to apply linear theory.

Because of the axisymmetric structure of the indenter, the displacement vector −→u will have its cross-radial
component uθ = 0, i.e., −→u = (ur , 0, uz) and all the physical quantities are independent of θ . The solution
of the frictionless contact problem demands a relation between the applied load and the contact area. The
mathematical formulation of the problem consists of

(i) Equilibrium equations

C11£1ur + C44D
2ur + (C13 + C44)D

∂uz
∂r

+ (e31 + e15)D
∂φ

∂r
= 0,

C44£0uz + C33D
2uz + (C13 + C44)D

∂[rur ]
r∂r

+ e15£0φ + e33D
2φ = 0,

(e31 + e15)D
∂[rur ]
r∂r

+ e15£0uz + e33D
2uz − ε11£0φ − ε33D

2φ = 0, (1)

where £k = ∂2

∂r2
+ 1

r
∂
∂r − k

r2
, k = 0, 1, D = ∂

∂z ,
and

(ii) The boundary conditions

uz(r, 0) = δ(r), 0 ≤ r ≤ a, (2)

uz(r, H) = 0, r ≥ 0, (3)

σr z(r, 0) = 0, r ≥ 0, (4)

σzz(r, 0) = 0, r > a, (5)

σr z(r, H) = 0, r ≥ 0, (6)

Dz(r, 0) = 0, r > a, (7)
∂φ

∂r
(r, 0) = 0, 0 < r < a, (8)

φ(r, H) = φ0, r ≥ 0. (9)

The parameters Ci j appearing in (1) are the elastic coefficients, whereas ekl and εkl are the piezoelectric and
dielectric constants, respectively, of the material. In addition to the boundary conditions, the displacement
components and the potential function φ should satisfy the regularity condition ur , uz, φ → 0 as

√
r2 + z2 →
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∞. At the surface of contact of the material with the indenter 0 ≤ r ≤ a, the boundary condition will depend
on the shape of the indenter. If h is the indented depth of the solid into the material, then
(a) for a cylindrical indenter the condition will be

uz(r, 0) = δ(r) = h; (10a)

(b) for a conical indenter having α as the semi-vertical angle, the condition is

uz(r, 0) = δ(r) = h − (a − r) cot α; (10b)

(c) for a spherical indenter having radius R, the condition is

uz(r, 0) = δ(r) = h − r2

2R
. (10c)

3 Method of solution

Solution of the partial differential equations (1) requires the Hankel transform technique of different orders.We
shall outline the method adopted by Dyka and Rogowski [37] for the first part of the discussion and thereafter
apply those results in our considered problem.

ûr (ξ, z) = H1[ur (r, z); r → ξ ] =
∫ ∞

0
ur (r, z)r J1(rξ)dr,

{ûz(ξ, z),̂φ(ξ, z)} = H0[uz(r, z), φ(r, z); r → ξ ] =
∫ ∞

0
{uz(r, z), φ(r, z)}r J0(rξ)dr (11)

are applied, where J0 and J1 are the Bessel functions of the first kind and of order one or zero, respectively,
and ξ is the transform parameter. We use the following properties of Hankel transforms:

Hν[£ν f (r, z); r → ξ ] = −ξ2 ̂fν(ξ, z),

H1

[

∂ f (r, z)

∂r
; r → ξ

]

= −ξ ̂f0(ξ, z),

H0

[

∂[r f (r, z)]
r∂r

; r → ξ

]

= ξ ̂f1(ξ, z). (12)

Applying the Hankel transformations (11) to Eq. (1) we get three coupled ordinary differential equations,
which may be written in the form

A

⎡

⎣

ûr
ûz
̂φ

⎤

⎦ =
⎡

⎣

0
0
0

⎤

⎦ , (13)

where A is the following operator matrix

A =
⎡

⎢

⎣

−C11ξ
2 + C44D2 −ξ(C13 + C44)D −ξ(e31 + e15)D

ξ(C13 + C44)D −C44ξ
2 + C33D2 −e15ξ2 + e33D2

ξ(e31 + e15)D −e15ξ2 + e33D2 ε11ξ
2 − ε33D2

⎤

⎥

⎦ . (14)

We have

|A| = −a0(D
2 − λ21ξ

2)(D2 − λ22ξ
2)(D2 − λ23ξ

2), (15)

where λ2i (i = 1, 2, 3) are the roots of the following cubic algebraic equation:

a0λ
6 + b0λ

4 + c0λ
2 + d0 = 0 (16)
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with the coefficients defined by

a0 = C44
(

C33ε33 + e233
)

,

b0 = (e31 + e15)[2C13e33 − C33(e31 + e15)] + 2C44e33e31 − C11e
2
33,

−ε11C33C44 − ε33c
2,

c0 = 2e15[C11e33 − C13(e31 + e15)] + C44e
2
31 + ε33C11C44 + ε11c

2,

d0 = −C11(C44ε11 + e215),

c2 = C11C33 − C13(C13 + 2C44). (17)

Using the operator theory, we obtain the general solution to Eq. (1) as

ûr (ξ, z) = Ai1̂F(ξ, z),

ûz(ξ, z) = Ai2̂F(ξ, z),
̂φ(ξ, z) = Ai3̂F(ξ, z), (18)

where Ai j are the algebraic cominors of the matrix operator and ̂F(ξ, z) is the zero-order Hankel transform
of the general solution F(r, z), satisfying the equations

|A|̂F(ξ, z) = 0,
(

D2 + λ21�
) (

D2 + λ22�
) (

D2 + λ23�
)

F(r, z) = 0. (19)

Here, � = ∂2

∂r2
+ 1

r
∂
∂r and D2 = ∂2

∂z2
.

Taking i = 3 and writing down the expression for A3 j , we obtain

ûr (ξ, z) = (

a1D
2 + b1ξ

2) ξD̂F(ξ, z),

ûz(ξ, z) = − (

a2D
4 + b2ξ

2D2 + c2ξ
4)
̂F(ξ, z),

̂φ(ξ, z) = (

a3D
4 + b3ξ

2D2 + c3ξ
4)
̂F(ξ, z), (20)

where

a1 = C33(e31 + e15) − (C13 + C44)e33, b1 = C13e15 − C44e31,
a2 = C44e33, b2 = (C13 + C44)e31 + C13e15 − C11e33,
c2 = C11e15, a3 = C44C33,

b3 = C2
13 + 2C13C44 − C11C33, c3 = C11C44.

(21)

Using the inverse Hankel transforms the Eq. (20), the original solution for the displacements and electric
potential is obtained as:

ur (r, z) = − (

a1D
2 − b1�

) ∂2

∂r∂z
F(r, z),

uz(r, z) = − (

a2D
4 − b2�D2 + c2�

2) F(r, z),

φ(r, z) = (

a3D
4 − b3�D2 + c3�

2) F(r, z). (22)

Using the generalized Almansi’s theorem [38], the function F(r, z), which satisfies Eq. (19)2, can be expressed
in terms of three quasi-harmonic functions

F =
⎧

⎨

⎩

F1 + F2 + F3 for distinct λi ,
F1 + F2 + zF3 for λ1 �= λ2 = λ3,

F1 + zF2 + z2F3 for λ1 = λ2 = λ3,

(23)

where Fi (r, z) satisfies, respectively
(

� + 1

λ2i D
2

)

Fi (r, z) = 0, i = 1, 2, 3. (24)
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As we shall see later, at the roots of Eq. (16) are all distinct in our considered problem, so we shall consider
only the first solution in Eq. (23).

Using

�Fi = − 1

λ2i
D2Fi

and summing in Eq. (22), we obtain

ur (r, z) = −
3
∑

i=1

αi1
∂4Fi
∂r∂z3

,

uz(r, z) = −
3
∑

i=1

αi2
∂4Fi
∂z4

,

φ(r, z) =
3
∑

i=1

αi3
∂4Fi
∂z4

. (25)

The coefficients αi j are

αi j = a j + b j

λ2i
+ c j

λ4i
,

where a j , b j and c j are defined by Eq. (21) and c1 = 0. It is now assumed that

αi2
∂3

∂z3
Fi (r, z) = − 1

λi
ϕi (r, z),

then Eq. (25) can be further simplified to

ur (r, z) =
3
∑

i=1

ai1λi
∂ϕi

∂r
,

uz(r, z) =
3
∑

i=1

1

λi

∂ϕi

∂z
,

φ(r, z) = −
3
∑

i=1

ai3
λi

∂ϕi

∂z
, (26)

where

ai1 = αi1

αi2

1

λ2i
= a1λ2i + b1

a2λ4i + b2λ2i + c22
,

ai3 = αi3

αi2
= a3λ4i + b3λ2i + c3

a2λ4i + b2λ2i + c2
= C13 + C44

e31 + e15
− C11 − C44λ

2
i

e31 + e15
ai1, (27)

and for the quasi-harmonic function ϕi (r, z)

(

� + 1
λ2i

∂2

∂z2

)

ϕi (r, z) = 0. (28)



Frictionless contact of a rigid punch indenting an elastic layer 373

The relations between stress, displacement and electric potential for a transversely isotropic piezoelectric
medium (the so-called Duhamel–Neumann relation), in the case of axial symmetry, are

⎡

⎢

⎣

σrr
σθθ

σzz
σzr

⎤

⎥

⎦ =
⎡

⎢

⎣

C11 C12 0 0 C13 0 e31
C12 C11 0 0 C13 0 e31
C13 C13 0 0 C33 0 e33
0 0 C44 C44 0 e15 0

⎤

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ur,r
ur
r

ur,z
uz,r
uz,z
φr
φz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (29)

Substituting Eq. (26) into Eq. (29), we obtain

σrr (r, z) = −
3
∑

i=1

ai4
λi

∂2ϕi

∂z2
− (C11 − C12)

ur
r

, σzz(r, z) =
3
∑

i=1

ai4
λ3i

∂2ϕi

∂z2
,

σθθ (r, z) = −
3
∑

i=1

ai4
λ2i

∂2ϕi

∂z2
− (C11 − C12)

∂ur
∂r

, σzr (r, z) =
3
∑

i=1

ai4
λi

∂2ϕi

∂r∂z
, (30)

where

ai4 = e31C44λ
2
i + e15C11

e31 + e15
ai1 + C44e31 − C13e15

e31 + e15
, (31)

The components of the electric field vector Er and Ez are obtained from the relations

Er = −∂φ

∂r
=

3
∑

i=1

ai3
λi

∂2ϕi

∂r∂z
,

Ez = −∂φ

∂z
=

3
∑

i=1

ai3
λi

∂2ϕi

∂z2
. (32)

The electric displacements are defined by the equations

[

Dr
Dz

]

=
[

0 0 e15 e15 0 ε11 0
e31 e31 0 0 e33 0 ε33

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ur,r
ur
r

ur,z
uz,r
uz,z
Er
Ez

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (33)

In terms of ϕi ,

Dr =
3
∑

i=1

ai5λi
∂2ϕi

∂r∂z
,

Dz =
3
∑

i=1

ai5
λi

∂2ϕi

∂z2
, (34)

where

ai5 = e33ε11 − e15ε33
ε11 − ε33λ

2
i

− e31ε11 − e15ε33λ2i
ε11 − ε33λ

2
i

ai1. (35)

It can be easily verified that Gauss’ law [39]

∂Dr

∂r
+ Dr

r
+ ∂Dz

∂z
= 0 (36)
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and the equilibrium equations for stresses [40]

∂σrr

∂r
+ ∂σr z

∂z
+ σrr − σθθ

r
= 0,

∂σzr

∂r
+ ∂σzz

∂z
+ σzr

r
= 0 (37)

are satisfied.
In the vacuum, the constitutive equations (33) and the governing equations (36) become

Dr = ε0Er , Dz = ε0Ez,

∂2φ

∂r2
+ 1

r

∂φ

∂r
+ ∂2φ

∂z2
= 0, (38)

where ε0 is the electric permittivity of the vacuum.
For axially symmetric problems, the general solution of the differential equation (28) may be written as

ϕi (r, z) =
∫ ∞

0

[

Ai (ξ)e−λi ξ z + Bi (ξ)eλi ξ z
]

J0(rξ)dξ, (39)

where Ai (ξ), Bi (ξ)(i = 1, 2, 3) are arbitrary functions of the transformparameter ξ ,which are to bedetermined
from the boundary conditions Eqs. (2–9), and λi are the roots of Eq. (16).

Assuming φ0 = 0 and using Eqs. (39), (26) and (30) in the boundary conditions (2–9), we obtain

3
∑

i=1

ai4 [Ai (ξ) − Bi (ξ)] = 0, r ≥ 0, (40)

3
∑

i=1

ai4
[

Ai (ξ)e−λi ξH − Bi (ξ)eλi ξH
]

= 0, r ≥ 0, (41)

3
∑

i=1

[

Ai (ξ)e−λi ξH − Bi (ξ)eλi ξH
]

= 0, r ≥ 0, (42)

3
∑

i=1

ai3
[

Ai (ξ)e−λi ξH − Bi (ξ)eλi ξH
]

= 0, r ≥ 0, (43)

3
∑

i=1

∫ ∞

0
[−Ai (ξ) + Bi (ξ)] ξ J0(rξ)dξ = δ(r), 0 ≤ r ≤ a, (44)

3
∑

i=1

∫ ∞

0

ai4
λi

[Ai (ξ) + Bi (ξ)] ξ2 J0(rξ)dξ = 0, r > a, (45)

3
∑

i=1

∫ ∞

0
ai3 [−Ai (ξ) + Bi (ξ)] ξ2 J1(rξ)dξ = 0, 0 ≤ r ≤ a, (46)

3
∑

i=1

λi ai5

∫ ∞

0
[Ai (ξ) + Bi (ξ)] ξ2 J0(rξ)dξ = 0, r > a. (47)
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Equations (40–43) yield

Bi (ξ) = Ai (ξ)e−2λi ξH (i = 1, 2, 3) (48)

and

A1(ξ) = χ1(ξ)A2(ξ) + χ2(ξ)A3(ξ), (49)

where

χ1(ξ) = −a24
a14

1 − e−2λ2ξH

1 − e−2λ1ξH
,

χ2(ξ) = −a34
a14

1 − e−2λ3ξH

1 − e−2λ1ξH
. (50)

Using Eq. (48) in Eqs. (44) and (45) we get, respectively,

∫ ∞

0

[{

−(1 − e−2λ1ξH )χ1(ξ) − (1 − e−2λ2ξH )
}

A2(ξ) + {−(1 − e−2λ1ξH )χ2(ξ)

−(1 − e−2λ3ξH )}A3(ξ)
]

ξ J0(rξ)dξ = δ(r), 0 ≤ r ≤ a, (51)
∫ ∞

0
{χ3(ξ)A2(ξ) + χ4(ξ)A3(ξ)}ξ2 J0(rξ)dξ = 0, r > a, (52)

where

χ3(ξ) = a14
λ1

(1 + e−2λ1ξH )χ1(ξ) + a24
λ2

(1 + e−2λ2ξH ),

χ4(ξ) = a14
λ1

(1 + e−2λ1ξH )χ2(ξ) + a34
λ3

(1 + e−2λ3ξH ). (53)

Now we assume that

{χ3(ξ)A2(ξ) + χ4(ξ)A3(ξ)} ξ =
√

2

π

∫ a

0
φ1(x) cos(ξ x)dx . (54)

Then Eq. (52) is automatically satisfied. Substituting Eq. (48) into (46) and (47) leads to

∫ ∞

0

[{

−(1 − e−2λ1ξH )χ1(ξ) − (1 − e−2λ2ξH )
}

A2(ξ) +
{

−(1 − e−2λ1ξH )χ2(ξ)

−(1 − e−2λ3ξH )
}

A3(ξ)
]

ξ2 J1(rξ)dξ = 0, 0 ≤ r ≤ a (55)

and

∫ ∞

0
{χ5(ξ)A2(ξ) + χ6(ξ)A3(ξ)} ξ2 J0(rξ)dξ = 0, r > a, (56)

where

χ5(ξ) = λ1a15(1 + e−2λ1ξH )χ1(ξ) + λ2a25(1 + e−2λ2ξH ),

χ6(ξ) = λ1a15(1 + e−2λ1ξH )χ2(ξ) + λ3a35(1 + e−2λ3ξH ). (57)
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Now we assume that

{χ5(ξ)A2(ξ) + χ6(ξ)A3(ξ)}ξ =
√

2

π

∫ a

0
φ2(x) cos(ξ x)dx . (58)

Then Eq. (56) is automatically satisfied. Solving Eqs. (54) and (58) we get

A2(ξ) = β1(ξ)

√

2

π

∫ a

0
φ1(x) cos(ξ x)dx + β2(ξ)

√

2

π

∫ a

0
φ2(x) cos(ξ x)dx (59)

and

A3(ξ) = β3(ξ)

√

2

π

∫ a

0
φ1(x) cos(ξ x)dx + β4(ξ)

√

2

π

∫ a

0
φ2(x) cos(ξ x)dx, (60)

where

β1(ξ) = χ6(ξ)

{χ3(ξ)χ6(ξ) − χ4(ξ)χ5(ξ)}ξ , β2(ξ) = − χ4(ξ)

{χ3(ξ)χ6(ξ) − χ4(ξ)χ5(ξ)}ξ ,

β3(ξ) = χ5(ξ)

{χ4(ξ)χ5(ξ) − χ3(ξ)χ6(ξ)}ξ , β4(ξ) = − χ3(ξ)

{χ4(ξ)χ5(ξ) − χ3(ξ)χ6(ξ)}ξ . (61)

From Eqs. (51) and (59)–(61) we get

∫ a

0
φ1(x)k11(r, x)dx +

∫ a

0
φ2(x)k12(r, x)dx = δ(r), 0 ≤ r ≤ a, (62)

where

k1i (r, x) =
∫ ∞

0
Gi (ξ)ξ J0(ξr) cos(ξ x)dξ, (i = 1, 2), (63)

G1(ξ) =
√

2

π

[

β1(ξ)
{

−(1 − e−2λ1ξH )χ1(ξ) − (1 − e−2λ2ξH )
}

+ β3(ξ)
{

−(1 − e−2λ1ξH )χ2(ξ) − (1 − e−2λ3ξH )
}]

, (64)

G2(ξ) =
√

2

π

[

β2(ξ)
{

−(1 − e−2λ1ξH )χ1(ξ) − (1 − e−2λ2ξH )
}

+ β4(ξ)
{

−(1 − e−2λ1ξH )χ2(ξ) − (1 − e−2λ3ξH )
}]

. (65)

Again from Eq. (55) we get

∫ a

0
φ1(x)k21(r, x)dx +

∫ a

0
φ2(x)k22(r, x)dx = 0, 0 ≤ r ≤ a, (66)

where

k2i (r, x) =
∫ ∞

0
Gi (ξ)ξ2 J1(ξr) cos(ξ x)dξ = − d

dr
k1i (r, x), (i = 1, 2). (67)
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Now Eq. (62) can be written as

∫ r

0

dx√
x2 − r2

[

φ1(x) +
∫ a

0
φ1(u)L1(u, x)du

]

= f1(r), (68)

which is an Abel-type integral equation, where

f1(r) = δ(r) −
∫ a

0
φ2(u)k12(r, u)du. (69)

After some work, we get the integral equation in φ1 as

φ1(x) +
∫ a

0
φ1(u)L1(u, x)du +

∫ a

0
φ2(u)L2(u, x)du = 2

π
f (x), 0 ≤ x ≤ a, (70)

where

f (x) = d

dx

∫ x

0

rδ(r)√
x2 − r2

dr = h, for cylindrical indenter,

= h +
(π

2
x − a

)

cot α, for conical indenter,

= h − 2x2

R
, for spherical indenter,

L1(u, x) = 2

π

∫ ∞

0
Ω1(ξ) cos(ξu) cos(ξ x)dξ, (71)

L2(u, x) = 2

π

∫ ∞

0
G2(ξ) cos(ξu) cos(ξ x)ξdξ, (72)

Ω1(ξ) = G1(ξ)ξ − 1. (73)

Again Eq. (66) can be written as

∫ r

0

dx√
x2 − r2

[

φ2(x) +
∫ a

0
φ2(u)L3(u, x)du

]

= f2(r), (74)

which is an Abel-type integral equation, where

f2(r) =
∫ a

0
{φ1(u)k11(0, u) − φ1(u)k11(r, u) + φ2(u)k12(0, u)} du. (75)

We get the integral equation in φ2 as

φ2(x) +
∫ a

0
φ2(u)

{

L3(u, x) − 2

π
k12(0, u)

}

du

+
∫ a

0
φ1(u)

{

L4(u, x) − 2

π
k11(0, u)

}

du = 0, 0 ≤ x ≤ a, (76)

where

L3(u, x) = 2

π

∫ ∞

0
Ω2(ξ) cos(ξu) cos(ξ x)dξ, (77)

L4(u, x) = 2

π

∫ ∞

0
G1(ξ)J0(ξu) cos(ξ x)ξdξ, (78)

Ω2(ξ) = G2(ξ)ξ − 1. (79)
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Before proceeding further, it will be convenient to introduce non-dimensional variables u′, x ′ and r ′ by
rescaling by the length scale a:

u′ = u

a
, x ′ = x

a
, r ′ = r

a
. (80)

For notational convenience, we shall use only dimensionless variables and shall ignore the dashes on the
transformed non-dimensional variables, and then the integral equations (70) and (76) become

φ1(x) +
∫ 1

0
φ1(u)L1(u, x)du +

∫ 1

0
φ2(u)L2(u, x)du = 2

π
f (x), 0 ≤ x ≤ 1, (81)

φ2(x) +
∫ 1

0
φ2(u)

{

L3(u, x) − 2

π
k12(0, u)

}

du+
∫ 1

0
φ1(u)

{

L4(u, x) − 2

π
k11(0, u)

}

du = 0, 0 ≤ x ≤ 1.

(82)

These equations determine the functions φ1 and φ2.

Now the equilibrium condition demands

P +
∫ a∗

0
2πrdrσzz(r, 0) = 0

⇒ P + 2π
∫ ∞

0
M(ω)

[

∫ a∗

0
J0(ωr)rdr

]

dω = 0, (83)

where

M(ω) =
√

2

π
ω2

[

{β1(ω)χ3(ω) + β3(ω)χ4(ω)}
∫ 1

0
φ1(x) cos(ωx)dx

+ {β2(ω)χ3(ω) + β4(ω)χ4(ω)}
∫ 1

0
φ2(x) cos(ωx)dx

]

(84)

and

a∗ = a

h
, ω = ξh.

Equation (83) is the relationship between the applied load P and the radius of the contact area.

4 Numerical results and discussion

The present study aims at investigating a frictionless contact problem in a finite piezo-electric layer. The
main objective of the present discussion is to study the effects of indentation on normal stress and electric
displacement. Stresses and displacements have been computed numerically through Eqs. (81) and (82) and are
shown graphically. In our numerical computation the piezoelectric materials considered are PZT-4 and PZT-5
with the following nonzero constitutive coefficients [41]:

C11 C12 C13 C33 C44 e15 e31 e33 ε11 ε33
PZT-4 13.90 7.78 7.43 11.30 2.56 13.44 −6.98 13.84 60.00 54.70
PZT-5 12.60 5.50 5.30 11.70 3.53 17.00 −6.50 23.30 151.00 130.00

The actual C-values are the values in the table multiplied by 1010 in N/m2 and the e-values in C/m2, and
the ε-values are the values in the table multiplied by 1010 in C/Vm.

Our numerical study will cover three different types of rigid indenter, namely cylindrical shaped, spherical
shaped and conical shaped. The numerical results based on the values in the table above are displayed in
Figs. 2 and 3 for a cylindrical indenter, in Figs. 4 and 5 for a spherical indenter and in Figs. 6 and 7 for
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Fig. 2 a Effect of indentation h on σzz(r, 0) for flat-ended cylindrical punch. b Variation of σzz(r, 0) for various piezoelectric
ceramics with fixed indentation of the flat-ended cylindrical punch (h = 0.012)

-2

1

4

7

10

13

16

0 0.25 0.5 0.75 1

h=0.012

h=0.014

h=0.016

Dz(r,0)

r -2

1

4

7

10

13

0 0.25 0.5 0.75 1

PZT-4 PZT-5

r

Dz(r,0)

(a) (b)

Fig. 3 a Effect of indentation h on Dz(r, 0) for the flat-ended cylindrical punch. b Variation of Dz(r, 0) for various piezoelectric
ceramics with fixed indentation of the flat-ended cylindrical punch (h = 0.012)
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Fig. 4 a Effect of indentation h on σzz(r, 0) for the spherical punch (R = 20). b Variation of σzz(r, 0) for various piezoelectric
ceramics with fixed indentation of the spherical punch (h = 0.012, R = 20)
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Fig. 5 a Effect of indentation h on Dz(r, 0) for the spherical punch (R = 20). b Variation of Dz(r, 0) for various piezoelectric
ceramics with fixed indentation h of the spherical punch (h = 0.012, R = 20)
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Fig. 6 a Effect of indentation h on σzz(r, 0) for the conical punch (α = π/4). b Variation of σzz(r, 0) for various piezoelectric
ceramics with fixed indentation of the conical punch (h = 0.012, α = π/4). c Variation of σzz(r, 0) for different α of the conical
punch (h = .014). d Variation of σzz(r, 0) for semi-vertical angle α → π/2 of the conical punch (h = 0.014)
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Fig. 7 a Effect of indentation h on Dz(r, 0) for the conical punch (α = π/4). b Variation of Dz(r, 0) for fixed indentation h
of the conical punch (h = 0.014, α = π/4). c Effect of semi-vertical angle α on Dz(r, 0) of the conical punch (h = 0.014). d
Variation of Dz(r, 0) for semi-vertical angle α → π/2 of the conical punch (h = 0.014)

a conical indenter. Figures 2a, 4a and 6a represent the effects of indentation h on σzz(r, 0) for flat-ended
cylindrical punch (case 1), spherical punch (case 2) and conical punch (case 3), respectively. The normal
stress σzz(r, 0) is seen to be increasing with h in cases 1 and 2, and the increase is very significant near the
center of the punch, while the effects are almost negligible near the end of the punch. In case 3 the numerical
values of σzz(r, 0) are seen to be decreasing with increasing h, but the decrease is not as significant as in cases
1 and 2. Figures 2b, 4b and 6b show the behavior of σzz(r, 0) for the two types of piezoelectric materials
considered here for a fixed value of h. The results indicate that the normal stress at the boundary surface
z = 0 is numerically greater for PZT-5 compared to PZT-4. The variations of electrical surface displacement
Dz(r, 0) with r are displayed for different h in Fig. 3a and for different piezoelectric materials with fixed
value of h in case 1, while the corresponding results for the other cases are shown in Figs. 5a, b and 7a–c,
respectively. Here it is found that in cases 1 and 2 the distribution of electric displacement increases with
the increase in indentation and the displacement has its maximum at r = 0; then, it gradually decreases as
r increases up to approximately r = 0.5, after which the displacement becomes constant. The variations of
Dz(r, 0) for various piezoelectric ceramics in these two cases are almost similar. In the case of conical punch
(case 3) some kinds of dissimilarities from the other two punches are observed. The behavior of the electric
displacement is quite different from that for the cylindrical and spherical punches. From Fig. 7 it is clear
that for α = π

4 the electric displacement gradually diminishes with r and becomes zero at r = 1, a result
which is totally different from the other two cases. Also, the displacement decreases with an increase in h.
Figures 7c, d depict the behavior of the electric displacement with changing r , when the semi-vertical angle
varies. Figure 8 shows that the applied load P for a particular contact radius is greater for a transversely
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Fig. 8 aVariation of applied load P with contact radius for the flat-ended cylindrical punch. bVariation of allied load with contact
radius for the spherical punch (R = 20). c Variation of applied load P with contact radius for the conical punch (α = π/3)

isotropic medium with piezoelectric property for all kinds of considered punches than the corresponding
results for a transversely isotropic medium with no piezoelectric property. Figure 9 indicates that the normal
stress is greater in a transversely isotropic medium with piezoelectric property. Figures 8 and 9 agree with
the result obtained in [7] for a transversely isotropic layer. Finally, as a rough check on our results we have
computed the values of the applied load P for different values of h and displayed them in Fig. 10. It is
observed that as h increases, the value of P approaches the value of P for a half space as predicted by
Dyka [37].
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40. Nowacki, W.: Teoria Sprȩżystości. PWN, Warszawa (1973)
41. Park, S.B., Sun, C.T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 78, 1475–1480 (1995)


	Frictionless contact of a rigid punch indenting an elastic layer having piezoelectric properties
	Abstract
	1 Introduction
	2 Formulation of the problem
	3 Method of solution
	4 Numerical results and discussion
	Acknowledgements
	References




