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Abstract Westudy the generalized plane strain deformations of an elastically isotropic circular inhomogeneity
partially bonded to an unbounded generally anisotropic elastic matrix. The two-phase composite is subjected
to a uniform loading at infinity, and meanwhile a line force and a line dislocation are applied both in the
inhomogeneity and in thematrix.An elegant closed-form solution is obtained by reducing the original boundary
value problem to a non-homogeneous Riemann–Hilbert problem of vector form which can be analytically
solved by using a decoupling method and evaluating the Cauchy integrals. Surface traction on the bonded
part of the interface, displacement jump across the debonded part of the interface, and the complex and real
stress intensity factors at the crack tips are explicitly derived when the composite is only subjected to a remote
uniform loading.

1 Introduction

Problems involving interfacial cracks between two dissimilar isotropic or anisotropic elastic materials are
fascinating and have attracted considerable interest from theoreticians in the field of solid mechanics [1–
13]. The plane strain and anti-plane shear problems of circular arc-shaped cracks lying along the interface
between a circular elastic inhomogeneity and an infinite matrix have also been discussed in detail in [14–19]
by using Muskhelishvili’s complex variable method [20]. In [14–19], both the circular inhomogeneity and
the surrounding matrix were taken to be elastically isotropic. The problem of an interfacial arc-shaped crack
becomes rather complicated when the matrix is elastically anisotropic because Muskhelishvili’s formulation
does not apply to anisotropicmaterials. In a recent study [21], the present author derived an exact solution to the
problemof an infinite anisotropicmatrix containing a perfectly bonded isotropic elastic circular inhomogeneity.
An Eshelby inclusion of arbitrary shape or a line dislocation exists inside the circular inhomogeneity.

In this study, we endeavor to attack the challenging and interesting two-dimensional problem of an isotropic
elastic circular inhomogeneity partially bonded to an infinite anisotropic elastic matrix. The practical impor-
tance of the considered problem lies in that examples of an elastically anisotropicmatrix are abundant [10]. The
elegant and powerful Stroh’s sextic formalism [22] is employed to handle the two-dimensional (or generalized
plane strain) deformations of the anisotropic matrix, whereas Muskhelishvili’s formulation is used to address
the plane strain and anti-plane shear deformations of the isotropic circular inhomogeneity. The considered
loadings in the present discussion include uniform in-plane and anti-plane stresses at infinity, and an isolated
singularity due to a line force and a line dislocation located anywhere in the two-phase composite. A concise
and elegant closed-form solution is derived to the aforementioned problem. Fracture parameters such as stress
intensity factors and energy release rate can then be extracted from the obtained complete solution.
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2 Complex variable formulations

In this Section, the Stroh’s sextic formalism for anisotropic elasticity and Muskhelishvili’s formulation for
isotropic elasticity will be briefly reviewed.

2.1 Stroh’s sextic formalism for anisotropic elastic materials

In a fixed rectangular coordinate system xi (i = 1, 2, 3) let σi j and ui be the stresses and displacements in an
anisotropic elastic material. The equations of equilibrium and the stress–strain law are given by

σi j, j = 0, σi j = Ci jkluk,l (1)

where Ci jkl are the elastic stiffnesses.
For the generalized plane strain problems in which all the physical quantities depend only on the plane

coordinates x1 and x2, the general solution can be expressed as [22]

u = [
u1 u2 u3

]T = Af(z) + Af(z),

ϕ = [
ϕ1 ϕ2 ϕ3

]T = Bf(z) + Bf(z) (2)

where

A = [
a1 a2 a3

]
,B = [

b1 b2 b3
]
,

f(z) = [
f1(z1) f2(z2) f3(z3)

]T
,

zi = x1 + pi x2, Im {pi } > 0, (i = 1, 2, 3), (3)

with
[
N1 N2
N3 NT

1

] [
ai
bi

]
= pi

[
ai
bi

]
, (i = 1, 2, 3) (4)

N1 = −T−1RT,N2 = T−1,N3 = RT−1RT − Q, (5)

and
Qik = Ci1k1, Rik = Ci1k2, Tik = Ci2k2. (6)

The stress function vector ϕ is defined, in terms of the stresses, as follows:

σi1 = −ϕi,2, σi2 = ϕi,1, (i = 1, 2, 3). (7)

It is stressed that the general solution in Eq. (2) is valid when the 6× 6 fundamental elastic matrixN is simple,
i.e., p1 �= p2 �= p3 or semisimple [22]. Due to the fact that the two matrices A and B satisfy the following
orthogonality relations [22]:

BTA + ATB = I = B
T
A + A

T
B,

BTA + ATB = 0 = B
T
A + A

T
B,

(8)

the following three real Barnett–Lothe tensors S, H and L can then be introduced [22]:

S = i(2ABT − I),H = 2iAAT,L = −2iBBT. (9)

Furthermore, the two matrices H and L are symmetric and positive definite, while SH,LS,H−1S,SL−1 are
anti-symmetric. The following identities are also valid [22]

2A〈pα〉BT = N1 + i(N2L − N1S),

2A〈pα〉AT = N2 − i(N1H + N2ST),

2B〈pα〉BT = N3 + i(NT
1L − N3S),

2B〈pα〉AT = NT
1 − i(N3H + NT

1S
T)

(10)

where 〈∗〉 is a 3 × 3 diagonal matrix in which each component is varied according to the Greek index α.
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Fig. 1 An isotropic elastic circular inhomogeneity partially bonded to an anisotropic elastic matrix

2.2 Muskhelishvili’s formulation for isotropic elastic materials

For plane strain deformation of an isotropic elastic material, the relevant stresses, displacements, and stress
functions can be expressed in terms of two analytic functions φ(z) and ψ(z) of the complex variable z =
x1 + ix2 = r exp(iθ) as [20]

σ11 + σ22 = 2
[
φ′(z) + φ′(z)

]
,

σ22 − σ11 + 2iσ12 = 2
[
zφ′′(z) + ψ ′(z)

]
,

(11)

2μ(u1 + iu2) = κφ(z) − zφ′(z) − ψ(z),

ϕ1 + iϕ2 = i
[
φ(z) + zφ′(z) + ψ(z)

] (12)

where κ = 3 − 4ν; μ and ν, where μ > 0 and 0 ≤ ν ≤ 0.5, are the shear modulus and Poisson’s ratio,
respectively.

For the anti-plane shear deformation of an isotropic elastic material, the shear stresses, out-of-plane dis-
placement, and stress function ϕ3 can be expressed in terms of a single analytic function η(z) of the complex
variable z = x1 + ix2 as [20]

σ32 + iσ31 = η′(z), ϕ3 + iμu3 = η(z). (13)

3 The complete solution

Let a generally anisotropic infinite matrix contain a partially bonded isotropic elastic circular inhomogeneity,
as shown in Fig. 1. The center of the circular inhomogeneity of radius R is at origin, and an interfacial arc
crack, whose surface is traction free, is made along the arc Lc of the interface while along the remaining arc Lb
the inhomogeneity is still perfectly bonded to the matrix. Let the center of the arc Lb lie on the positive x1-axis
and the central angle subtended by the arc Lb be 2θ0. a = R eiθ0 and a = R e−iθ0 are the positions of the two
crack tips. We represent the matrix by the domain S2 and assume that the circular inhomogeneity occupies
the region S1. The two-phase composite is subjected to remote uniform stresses (σ∞

11 , σ∞
12 , σ∞

22 , σ∞
31 , σ∞

32 ). In
addition, let a line force q1 and a line dislocation with Burgers vector b1 be applied at z = z0 in the isotropic
inhomogeneity, and meanwhile let a line force q2 and a line dislocation with Burgers vector b2 be applied at
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(x1, x2) = (x̂1, x̂2) in the anisotropic matrix. In what follows, the subscripts 1 and 2 refer to the regions S1
and S2, respectively.

Consider the following mapping functions for the anisotropic matrix:

zα = x1 + pαx2 = ωα(ξα) = 1

2
(1 − ipα)ξα + R2

2
(1 + ipα)

1

ξα

, (α = 1, 2, 3). (14)

By using the above mapping functions, the exterior of an elliptical region in the zα-plane is mapped onto the
exterior of the circle |ξα| > R in the ξα-plane (the circular interface |z| = R is mapped to the boundary of the
elliptical region in the zα-plane, where zα = xα

1 + ixα
2 = x1 + p′

αx2 + ip′′
αx2 with p′

α and p′′
α being the real and

imaginary parts of pα). By considering the fact that ξ1 = ξ2 = ξ3 = z on |z| = R [23], we can first replace ξα

by the common variable z. When the analysis is finished, the complex variable z shall be changed back to the
corresponding complex variables ξα . As a result, we can write fα(z) = fα(ξα) = fα(ωα(ξα)) = fα(zα), and
f2(z) can be temporarily interpreted as an analytic function vector of the complex variable z.

Now, we introduce the following analytic function vector f1(z) for the isotropic circular inhomogeneity:

f1(z) =
⎡

⎣
φ(z)

ψ(z) + R2

z φ′(z)
η(z)

⎤

⎦ , z ∈ S1. (15)

Consequently the displacement and stress function vectors along the circular interface |z| = R on the inho-
mogeneity side can be expressed in terms of f1(z) as follows:

u1 = A1f1(z) + A1f1(z), ϕ1 = B1f1(z) + B1f1(z), |z| = R (16)

where

A1 =
⎡

⎢
⎣

κ
4μ − 1

4μ 0

− iκ
4μ − i

4μ 0

0 0 − i
2μ

⎤

⎥
⎦ ,B1 =

⎡

⎣
i
2 − i

2 0
1
2

1
2 0

0 0 1
2

⎤

⎦ . (17)

It can be easily verified that instead of Eq. (8) the two matrices A1 and B1 satisfy the following orthogonality
relations:

BT
1A1 + AT

1B1 = −B
T
1A1 − A

T
1B1 = − i

4μ

⎡

⎣
0 κ + 1 0

κ + 1 0 0
0 0 2

⎤

⎦ ,

BT
1A1 + AT

1B1 = B
T
1A1 + A

T
1B1 = 0.

The continuity condition of tractions across the circular interface |z| = R can then be expressed in terms of
f1(z) and f2(z) as follows:

B1f
+
1 (z) + B1f

−
1 (R2/z) = B2f

−
2 (z) + B2f

+
2 (R2/z), |z| = R, (18)

or equivalently

B1f
+
1 (z) − B2f

+
2 (R2/z) = B2f

−
2 (z) − B1f

−
1 (R2/z), |z| = R. (19)

By applying Liouville’s theorem, we can finally arrive at the following relationship:

B2f2(R2/z) − B1f1(z) = B1f1(R2/z) − B2f2(z) = g(z) (20)

where

g(z) = g1(z) + g2(z) + g3(z), (21)
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with g1(z), g2(z) and g3(z) being defined by

g1(z) = − ln(z − z0)B1(Y1q1 + Y2b1) + ln(z − R2/z0)B1(Y1q1 + Y2b1) + ln z

2π i
(B2A

T
2q1 + B2B

T
2b1)

− 1

z − z0
B1(Y3q1 + Y4b1) − R2z−2

0

z − R2/z0
B1(Y3q1 + Y4b1),

g2(z) = − 1

2π i
B2

〈
ln(z − ξ̂α)

〉 (
AT
2q2 + BT

2b2
) − 1

2π i
B2〈ln z − R2/ξ̂α

z
〉(AT

2q2 + B
T
2b2),

g3(z) =
[
B1i2φ′(0) − B2k

]
z + R2 [B2k − B1i2φ′(0)

]
z−1

(22)

where i2 = [
0 1 0

]T and ξ̂α = ω−1
α (ẑα) = ẑα+√

ẑ2α−R2(1+p2α)

1−ipα
with ẑα = x̂1 + pα x̂2.

In Eq. (22), the four matrices Y j ( j = 1, 2, 3, 4) and the vector k are given by

Y1 =
⎡

⎢
⎣

− 1
2π(κ+1) − i

2π(κ+1) 0
κ

2π(κ+1) − iκ
2π(κ+1) 0

0 0 − i
2π

⎤

⎥
⎦ ,Y2 =

⎡

⎣

μ

πi(κ+1)
μ

π(κ+1) 0

− μ

πi(κ+1)
μ

π(κ+1) 0

0 0 μ
2π

⎤

⎦ ,

Y3 = − R2 − |z0|2
2π z0(κ + 1)

⎡

⎣
0 0 0
1 i 0
0 0 0

⎤

⎦ ,Y4 = μ(R2 − |z0|2)
π z0(κ + 1)

⎡

⎣
0 0 0
−i 1 0
0 0 0

⎤

⎦ ,

(23)

k = 1

2
〈1 − ipα〉(BT

2ε∞
1 + AT

2 t
∞
2 ) (24)

where
t∞1 = [

σ∞
11 σ∞

12 σ∞
31

]T
, t∞2 = [

σ∞
12 σ∞

22 σ∞
32

]T
,

ε∞
1 = [

ε∞
11 0 2ε∞

31

]T = −N−1
3 t∞1 − N−1

3 NT
1 t

∞
2 ,

(25)

with N−1
3 being the pseudoinverse of N3 [22].

In Eq. (22), g1(z) is solely induced by the line force and line dislocation applied in the inhomogeneity,
g2(z) is solely induced by the line force and line dislocation applied in the matrix, g3(z) is induced by the
remote uniform loading and by the first-order pole at z=0 with unknown strength R2φ′(0)i2 appearing in f1(z)
defined by Eq. (15).

The continuity condition of displacements across the bonded part of the interface can be expressed in terms
of f1(z) and f2(z) as follows:

A1f
+
1 (z) + A1f

−
1 (R2/z) = A2f

−
2 (z) + A2f

+
2 (R2/z), z ∈ Lb. (26)

It follows from Eq. (20) that

f2(R2/z) = B
−1
2 B1f1(z) + B

−1
2 g(z),

f1(R2/z) = B
−1
1 B2f2(z) + B

−1
1 g(z).

(27)

Substituting Eq. (27) into Eq. (26), we obtain

M∗B1f ′+1 (z) − M∗B2f ′−2 (z) = (M
−1
1 − M

−1
2 )g′(z), z ∈ Lb (28)

where

M−1
1 = iA1B

−1
1 = L−1

1 − iS1L
−1
1 =

⎡

⎢
⎢
⎣

κ+1
4μ

i(κ−1)
4μ 0

− i(κ−1)
4μ

κ+1
4μ 0

0 0 1
μ

⎤

⎥
⎥
⎦ , (29)

M−1
2 = iA2B

−1
2 = L−1

2 − iS2L
−1
2 , (30)
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M∗ = M−1
1 + M

−1
2 = L−1

1 + L−1
2 − i(S1L

−1
1 − S2L

−1
2 ). (31)

It is seen from Eqs. (29) and (30) that bothM−1
1 andM−1

2 are positive definite Hermitian matrices. In view of
Eq. (28), we introduce a sectionally holomorphic function vector h(z) defined by

h(z) =B1f ′1(z) − 1

z − z0
B1(Y1q1 + Y2b1) + 1

(z − z0)2
B1(Y3q1 + Y4b1)

− 1

z − R2/z0
M−1∗ (M

−1
1 − M

−1
2 )B1(Y1q1 + Y2b1) − R2z−2

0

(z − R2/z0)2
M−1∗ (M

−1
1 − M

−1
2 )B1(Y3q1 + Y4b1)

− 1

π i
M−1∗ L−1

2 B2〈 1

z − ξ̂α

〉(AT
2q2 + BT

2b2) − M−1∗
[
(M

−1
1 − M

−1
2 )B1i2φ′(0) + 2L−1

2 B2k
]

+ R2B1i2φ′(0)z−2,

|z| < R;

(32.1)

h(z) =M−1∗ M∗B2f ′2(z) − 2

z − z0
M−1∗ L−1

1 B1(Y1q1 + Y2b1) + 2

(z − z0)2
M−1∗ L−1

1 B1(Y3q1 + Y4b1)

− 1

2π i
M−1∗ M∗B2

〈
1

z − ξ̂α

〉
(
AT
2q2 + BT

2b2
) − 1

2π i
M−1∗ (M

−1
1 − M

−1
2 )B2

〈
1

z − R2/ξ̂α

〉

(A
T
2q2 + B

T
2b2)

+ 1

2π i
M−1∗ (M

−1
1 − M

−1
2 )

[
B2A

T
2 (q1 + q2) + B2B

T
2 (b1 + b2)

]
z−1 − M−1∗ M∗B2k

− R2M−1∗
[
(M

−1
1 − M

−1
2 )B2k − 2L−1

1 B1i2φ′(0)
]
z−2,

|z| > R.

(32.2)

It is observed that h(z) is analytic in |z| < R and |z| > R, and is continuous across the bonded part of the
interface. In addition, h(z) ∼= O(z−2) as z → ∞. Thus, the imposition of the traction-free condition on the
debonded part of the interface will yield the following non-homogeneous Riemann–Hilbert problem of vector
form:

M∗h+(z) + M∗h−(z) = v(z), z ∈ Lc,

h+(z) − h−(z) = 0, z ∈ Lb
(33)

where the superscripts “+” and “-” mean the limiting values by approaching the circular interface from S1 and
S2, respectively, and the vector v(z) is given by

v(z) = − 2

z − z0
L−1
1 B1(Y1q1 + Y2b1) + 2

(z − z0)2
L−1
1 B1(Y3q1 + Y4b1)

− 2

z − R2/z0
M∗M−1∗ L−1

1 B1(Y1q1 + Y2b1) − 2R2z−2
0

(z − R2/z0)2
M∗M−1∗ L−1

1 B1(Y3q1 + Y4b1)

− 1

π i
M∗M−1∗ L−1

2 B2

〈
1

z − ξ̂α

〉
(
AT
2q2 + BT

2b2
) + 1

π i
L−1
2 B2

〈
1

z − R2/ξ̂α

〉

(A
T
2q2 + B

T
2b2)

− 2M∗M−1∗
[
L−1
2 B2k + L−1

1 B1i2φ′(0)
]

− 1

π i
L−1
2

[
B2A

T
2 (q1 + q2) + B2B

T
2 (b1 + b2)

]
z−1

+ 2R2
[
L−1
2 B2k + L−1

1 B1i2φ′(0)
]
z−2.

(34)

We consider the following eigenvalue problem:

M∗w = e2πεM∗w. (35)

Three distinct eigenpairs (ε,w), (−ε,w), (0,w3) with ε and w3 being real and w being complex can be found
such that [10]

M∗w = e2πεM∗w,M∗w3 = M∗w3. (36)

In addition, the real number ε or the oscillatory index can be explicitly given by [22]

ε = 1

2π
ln

1 − β

1 + β
, β =

{
−1

2
tr(

�

S
2
)

}1/2

(37)
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where
�

S = D−1W,D = L−1
1 + L−1

2 ,W = S1L
−1
1 − S2L

−1
2 . (38)

If h(z) is represented by
h(z) = h1(z)w + h2(z)w + h3(z)w3, (39)

Eq. (33) can be decoupled into

h+
1 (z) + e−2πεh−

1 (z) = wTv(z)
wTM∗w

,

h+
2 (z) + e2πεh−

2 (z) = wTv(z)
wTM∗w

,

h+
3 (z) + h−

3 (z) = wT
3 v(z)

wT
3M∗w3

,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

z ∈ Lc;

h+
1 (z) − h−

1 (z) = 0, h+
2 (z) − h−

2 (z) = 0, h+
3 (z) − h−

3 (z) = 0, z ∈ Lb

(40)

whose solution can be expediently given by [20]

h1(z) = 1

wTM∗w
χ1(z)

2π i

∫

Lc

wTv(t)dt

χ+
1 (t)(t − z)

,

h2(z) = 1

wTM∗w
χ2(z)

2π i

∫

Lc

wTv(t)dt

χ+
2 (t)(t − z)

,

h3(z) = 1

wT
3M∗w3

χ3(z)

2π i

∫

Lc

wT
3 v(t)dt

χ+
3 (t)(t − z)

(41)

where
χ1(z) = (z − a)−

1
2−iε(z − a)−

1
2+iε,

χ2(z) = (z − a)−
1
2+iε(z − a)−

1
2−iε,

χ3(z) = (z − a)−
1
2 (z − a)−

1
2 .

(42)

Thebranch cuts for thePlemelj functionsχ1(z), χ2(z) andχ3(z) are chosen as the debondedpart of the interface,
i.e., z ∈ Lc such that χ1(z), χ2(z), χ3(z) ∼= z−1 as z → ∞. It is seen from Eq. (41) that h j (z) ∼= O(z−2)

as z → ∞. Consequently, the asymptotic condition that h(z) ∼= O(z−2) as z → ∞ has been satisfied. By
analytically evaluating the Cauchy integrals in Eq. (41), we can finally obtain the following expressions of
h1(z), h2(z) and h3(z):

wT
jM∗w j (1 + e−2πε j )h j (z) = −2

[
1

z − z0
− χ j (z)

χ j (z0)(z − z0)
− χ j (z)

]
wT

jL
−1
1 B1(Y1q1 + Y2b1)

+2

[
1

(z − z0)2
− χ j (z)

χ j (z0)(z − z0)2
+ χ j (z)χ ′

j (z0)

[χ j (z0)]2(z − z0)

]

wT
jL

−1
1 B1(Y3q1 + Y4b1)

−2

[
1

z − R2/z0
− χ j (z)

χ j (R2/z0)(z − R2/z0)
− χ j (z)

]
wT

jM∗M−1∗ L−1
1 B1(Y1q1 + Y2b1)

−2R2z−2
0

[
1

(z − R2/z0)2
− χ j (z)

χ j (R2/z0)(z − R2/z0)2
+ χ j (z)χ ′

j (R
2/z0)

[χ j (R2/z0)]2(z − R2/z0)

]

×wT
jM∗M−1∗ L−1

1 B1(Y3q1 + Y4b1) (43)

− 1

π i
wT

jM∗M−1∗ L−1
2 B2

〈
1

z − ξ̂α

− χ j (z)

χ j (ξ̂α)(z − ξ̂α)
− χ j (z)

〉
(
AT
2q2 + BT

2b2
)

+ 1

π i
wT

jL
−1
2 B2

〈
1

z − R2/ξ̂α

− χ j (z)

χ j (R2/ξ̂α)(z − R2/ξ̂α)
− χ j (z)

〉

(A
T
2q2 + B

T
2b2)

−2wT
jM∗M−1∗

[
L−1
2 B2k + L−1

1 B1i2φ′(0)
] [

1 − χ j (z)
[
z − Re

{
a(1 + 2iε j )

}]]
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− 1

π i
wT

jL
−1
2

[
B2A

T
2 (q1 + q2) + B2B

T
2 (b1 + b2)

] [1
z

− χ j (z)

χ j (0)z
− χ j (z)

]

+2R2wT
j

[
L−1
2 B2k + L−1

1 B1i2φ′(0)
] [ 1

z2
− χ j (z)

χ j (0)z2
+ χ j (z)χ ′

j (0)

[χ j (0)]2z

]

, j = 1, 2, 3

where w1 = w,w2 = w, ε1 = ε, ε2 = −ε, ε3 = 0.
Up to now, there still remains an unknown complex constant φ′(0) to be determined. It is derived from

Eq. (32.1) that

iT1B
−1
1 [h1(0)w + h2(0)w + h3(0)w3] = φ′(0) + 1

z0
iT1 (Y1q1 + Y2b1)

+ z0R
−2iT1B

−1
1 M−1∗ (M

−1
1 − M

−1
2 )B1(Y1q1 + Y2b1) + R−2iT1B

−1
1 M−1∗ (M

−1
1 − M

−1
2 )B1(Y3q1 + Y4b1)

+ 1

π i
iT1B

−1
1 M−1∗ L−1

2 B2

〈
1

ẑα

〉
(
AT
2q2 + BT

2b2
) − iT1B

−1
1 M−1∗

[
(M

−1
1 − M

−1
2 )B1i2φ′(0) + 2L−1

2 B2k
]

(44)
where i1 = [

1 0 0
]T, and h1(0), h2(0), h3(0) are explicitly given by

wT
jM∗w j (1 + e−2πε j )h j (0) = 2

[
1

z0
− χ j (0)

z0χ j (z0)
+ χ j (0)

]
wT

jL
−1
1 B1(Y1q1 + Y2b1)

+ 2

[
1

z20
− χ j (0)

χ j (z0)z20
− χ j (0)χ ′

j (z0)

z0[χ j (z0)]2
]

wT
jL

−1
1 B1(Y3q1 + Y4b1)

+ 2

[
1

R2/z0
− χ j (0)

R2/z0χ j (R2/z0)
+ χ j (0)

]
wT

jM∗M−1∗ L−1
1 B1(Y1q1 + Y2b1)

− 2

[
1

R2 − χ j (0)

R2χ j (R2/z0)
− χ j (0)χ ′

j (R
2/z0)

z0[χ j (R2/z0)]2
]

wT
jM∗M−1∗ L−1

1 B1(Y3q1 + Y4b1)

+ 1

π i
wT

jM∗M−1∗ L−1
2 B2

〈
1

ξ̂α

− χ j (0)

ξ̂αχ j (ξ̂α)
+ χ j (0)

〉
(
AT
2q2 + BT

2b2
)

− 1

π i
wT

jL
−1
2 B2

〈
1

R2/ξ̂α

− χ j (0)

R2/ξ̂αχ j (R2/ξ̂α)
+ χ j (0)

〉

(A
T
2q2 + B

T
2b2)

− 2wT
jM∗M−1∗

[
L−1
2 B2k + L−1

1 B1i2φ′(0)
] [

1 + χ j (0)Re
{
a(1 + 2iε j )

}]

+ 1

π i
wT

jL
−1
2

[
B2A

T
2 (q1 + q2) + B2B

T
2 (b1 + b2)

] [χ ′
j (0)

χ j (0)
+ χ j (0)

]

+ R2wT
j

[
L−1
2 B2k + L−1

1 B1i2φ′(0)
] 2[χ ′

j (0)]2 − χ j (0)χ ′′
j (0)

[χ j (0)]2 , j = 1, 2, 3.

(45)

φ′(0) can then be uniquely determined by solving the linear algebraic equation for φ′(0) in Eq. (44). For
example, if the composite is only subject to a remote uniform loading by setting q1 = q2 = b1 = b2 = 0, the
linear algebraic equation for φ′(0) can be explicitly obtained as follows:

⎡

⎣1 − R2iT1B
−1
1

3∑

j=1

w jwT
j

[
2[χ ′

j (0)]2 − χ j (0)χ ′′
j (0)

]

wT
jM∗w j (1 + e−2πε j )[χ j (0)]2

L−1
1 B1i2

⎤

⎦φ′(0)

+ iT1B
−1
1

⎡

⎣M−1∗ (M
−1
2 − M

−1
1 ) + 2

3∑

j=1

w jwT
j

[
1 + χ j (0)Re

{
a(1 + 2iε j )

}]

wT
jM∗w j (1 + e−2πε j )

M∗M−1∗ L−1
1

⎤

⎦B1i2φ′(0)
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= iT1B
−1
1

⎡

⎣I −
3∑

j=1

w jwT
j

[
1 + χ j (0)Re

{
a(1 + 2iε j )

}]

wT
jM∗w j (1 + e−2πε j )

M∗

⎤

⎦M−1∗ L−1
2 B2〈1 − ipα〉 (BT

2ε∞
1 + AT

2 t
∞
2

)

+ R2

2
iT1B

−1
1

3∑

j=1

w jwT
j

[
2[χ ′

j (0)]2 − χ j (0)χ ′′
j (0)

]

wT
jM∗w j (1 + e−2πε j )[χ j (0)]2

L−1
2 B2〈1 + ipα〉(BT

2ε∞
1 + A

T
2 t

∞
2 ) (46)

where

iT1B
−1
1 = [−i 1 0

]
,L−1

1 B1i2 = κ + 1

8μ

[−i 1 0
]T

,B1i2 = 1

2

[−i 1 0
]T

,

χ j (0) = 1

Re2ε j (π−θ0)
, χ ′

j (0) = cos θ0 + 2ε j sin θ0

R2e2ε j (π−θ0)
,

χ ′′
j (0) = 1 + 4ε2j + (3 − 4ε2j ) cos 2θ0 + 8ε j sin 2θ0

2R3e2ε j (π−θ0)
.

(47)

In addition, the matrix products B2BT
2 ,B2AT

2 ,B2〈pα〉BT
2 ,B2〈pα〉AT

2 and their conjugates appearing on the
right-hand side of Eq. (46) can be determined by using the identities in Eqs. (9) and (10). In other words,
the solution of φ′(0) will not contain the Stroh eigenvalues p1, p2, p3 for the anisotropic matrix when only
subjected to a remote uniform loading. As a result, the expression of φ′(0) for this loading case is still valid for
any mathematically degenerate materials in which the 6×6 fundamental elasticity matrix N is nonsemisimple
[22]. It is deduced from Eqs. (11) and (12) that φ′(0) is related to the mean stress (σ11 + σ22) and the rigid
body rotation �21 = 1

2 (u2,1 − u1,2) at the center of the circular inhomogeneity through

φ′(0) = σ11 + σ22

4
+ 2iμ�21

κ + 1
, at z = 0, (48)

which gives the physical meaning of φ′(0).
Once φ′(0) is solved, h(z) can be considered as uniquely determined. Consequently, f ′1(z) (or equivalently

φ′(z), ψ ′(z), η′(z)) defined in the inhomogeneity and f ′2(z) defined in the matrix can be further obtained from
Eqs. (32.1,2). Thus, the elastic fields in the inhomogeneity and in the matrix can then be determined by using
the analytic function vectors in the two-phase composite. In particular, along the circular interface, we have

d(u1 − u2)
dθ

= zM∗[h+(z) − h−(z)], z ∈ Lc,

t = −i
z

R
M

−1
∗

[
M∗h+(z) + M∗h−(z) − v(z)

]

= −i
z

R
M

−1
∗

[
2(L−1

1 + L−1
2 )h+(z) − v(z)

]
, z ∈ Lb

(49)

where t = − dϕ1
Rdθ

is the surface traction on the bonded part of the interface. Furthermore, the interfacial normal
and shear stress components along Lb are

tr = [−σθr σrr σ3r
]T = �(θ)t, z = Reiθ , −θ0 < θ < θ0 (50)

where the orthogonal matrix �(θ) is defined by

�(θ) =
⎡

⎣
sin θ − cos θ 0
cos θ sin θ 0
0 0 1

⎤

⎦ . (51)

When the composite is only subjected to a uniform loading at infinity, the surface traction along Lb can be
concisely presented as

t = 4

R
Im

⎧
⎨

⎩

3∑

j=1

e2πε jw jwT
j

[
L−1
2 B2k + L−1

1 B1i2φ′(0)
]

wT
jM∗w j

zχ j (z)
[
z − Re

{
a(1 + 2iε j )

}]
⎫
⎬

⎭
, z ∈ Lb. (52)
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It is impossible to obtain an analytic expression of
∫
h(z)dz when the composite is subjected to general

loadings. However, if the composite is only subject to a remote uniform loading,
∫
h(z)dz can be exactly

derived as
∫

h(z)dz = − 2
3∑

j=1

w jwT
jM∗M−1∗

[
L−1
2 B2k + L−1

1 B1i2φ′(0)
]

wT
jM∗w j (1 + e−2πε j )

[
z − X j (z)

]

− 2R2
3∑

j=1

w jwT
j

[
L−1
2 B2k + L−1

1 B1i2φ′(0)
]

wT
jM∗w j (1 + e−2πε j )

[
1

z
− X j (z)

X j (0)z

]
(53)

where
X j (z) = (z − a)

1
2−iε j (z − a)

1
2+iε j , j = 1, 2, 3. (54)

The branch cuts for X j (z) are also chosen along the arc crack Lc such that X j (z) ∼= z as z → ∞. By using
Eq. (53), the displacements everywhere in the two-phase composite can be arrived at. In particular, the jump
in displacements across the faces of the interface arc crack can be finally derived as

u1 − u2 = 4Im

⎧
⎨

⎩

3∑

j=1

e4πε jM∗w jwT
j

[
L−1
2 B2k + L−1

1 B1i2φ′(0)
]

wT
jM∗w j

X+
j (z)

⎫
⎬

⎭
, z ∈ Lc. (55)

It can be easily proved that the expressions of surface traction and displacement jump in Eqs. (52) and (55) are
both valid for any mathematically degenerate materials. Although the matrix is generally anisotropic, Eqs. (52)
and (55) are strikingly simple and concise. We point out that it is not a simple task to arrive at Eqs. (52) and
(55). During the derivation of these two expressions, we have used the following identities:

Re {a(1 + 2iε1)} = R2χ ′
2(0)

χ2(0)
, Re {a(1 + 2iε2)} = R2χ ′

1(0)

χ1(0)
,Re {a(1 + 2iε3)} = R2χ ′

3(0)

χ3(0)
;

χ1(z) = zχ2(z)

R2χ2(0)
, χ2(z) = zχ1(z)

R2χ1(0)
, χ3(z) = zχ3(z)

R2χ3(0)
, z ∈ Lb;

X+
1 (z) = − R2e2πε2X+

2 (z)

zX2(0)
, X+

2 (z) = − R2e2πε1X+
1 (z)

zX1(0)
, X+

3 (z) = − R2X+
3 (z)

zX3(0)
, z ∈ Lc.

(56)

The stress intensity factors can be extracted from the present complete solution by comparison with the
asymptotic solution derived by Suo [10]. When the composite is only subjected to a remote uniform loading,
the complex and real stress intensity factors K and K3 can be extracted as follows:

K = 2(1 + 2iε)(πR)
1
2 (2R)−iε(sin θ0)

1
2−iε

×
wT

{
eε(π+θ0)− θ0

2 i
[
L−1
2 B2k + L−1

1 B1i2φ′(0)
]

+ eε(π−θ0)+ θ0
2 i

[
L−1
2 B2k + L−1

1 B1i2φ′(0)
]}

wTM∗w
,

K3 =
4(πR)

1
2 (sin θ0)

1
2wT

3Re
{
e

θ0
2 i

[
L−1
2 B2k + L−1

1 B1i2φ′(0)
]}

wT
3M∗w3

,

(57)

at the upper crack tip z = a, and

K = −2(1 + 2iε)(πR)
1
2 (2R)−iε(sin θ0)

1
2−iε

×
wT

{
eε(π−θ0)+ θ0

2 i
[
L−1
2 B2k + L−1

1 B1i2φ′(0)
]

+ eε(π+θ0)− θ0
2 i

[
L−1
2 B2k + L−1

1 B1i2φ′(0)
]}

wTM∗w
,

K3 = −
4(πR)

1
2 (sin θ0)

1
2wT

3Re
{
e− θ0

2 i
[
L−1
2 B2k + L−1

1 B1i2φ′(0)
]}

wT
3M∗w3

,

(58)
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at the lower crack tip z = a.
The normal and shear stresses along Lb are singularly distributed near the two crack tips as follows:

tr = (2πr)−
1
2 �(θ0)

[
Kr iεw + Kr−iεw + K3w3

]
, r = |z − a| → 0, z ∈ Lb;

tr = (2πr)−
1
2 �(−θ0)

[
Kr iεw + Kr−iεw + K3w3

]
, r = |z − a| → 0, z ∈ Lb.

(59)

By assuming that the crack propagates along the interface, the energy release rate can then be conveniently
obtained as

G = wT(L−1
1 + L−1

2 )w |K |2
2 cosh2 πε

+ 1

4
wT
3 (L−1

1 + L−1
2 )w3K

2
3 . (60)

Note that the fracture criterion (11.2) in [10] is formulated in terms of the positive real energy release rate.

4 An example

If the matrix is an orthotropic material with its principal axes along the x1, x2, and x3 directions, the real
matricesH2,L2,S2,N1,N3 for the matrix and the Hermitian matrixM∗ for the bimaterial are explicitly given
by [10,22,24]

H2 =
⎡

⎣
H11 0 0
0 H22 0
0 0 H33

⎤

⎦ ,L2 =
⎡

⎣
L11 0 0
0 L22 0
0 0 L33

⎤

⎦ ,S2 =
⎡

⎣
0 S12 0
S21 0 0
0 0 0

⎤

⎦ ,

N3 = −
⎡

⎣
1/s′

11 0 0
0 0 0
0 0 1/s′

55

⎤

⎦ ,N1 =
⎡

⎣
0 −1 0

s′
12/s

′
11 0 0

0 0 0

⎤

⎦ ,

(61)

M∗ =
⎡

⎣
Y11 −iβ(Y11Y22)

1
2 0

iβ(Y11Y22)
1
2 Y22 0

0 0 Y33

⎤

⎦ (62)

where s′
i j are the reduced elastic compliances, and

√
λH11 =H22√

λ
=

√
2s′

11s
′
22(1 + ρ) −

(√
s′
11s

′
22 + s′

12

)2

√
2s′

11s
′
22(1 + ρ)

, H33 =
√
s′
44s

′
55,

L11√
λ

=√
λL22 = 1

√
2s′

11s
′
22(1 + ρ)

, L33 = 1
√
s′
44s

′
55

,
S21√

λ
= −√

λS12 =
√
s′
11s

′
22 + s′

12
√
2s′

11s
′
22(1 + ρ)

> 0,

Y11 =κ + 1

4μ
+

√
2s′

11s
′
22(1 + ρ)

λ
, Y22 = κ + 1

4μ
+

√
2λs′

11s
′
22(1 + ρ),

β =
√
s′
11s

′
22 + s′

12 − κ−1
4μ√

Y11Y22
, Y33 = 1

μ
+

√
s′
44s

′
55,

(63)

with λ and ρ being two dimensionless parameters defined as

λ =
√
s′
22

s′
11

, ρ = 2s′
12 + s′

66

2
√
s′
11s

′
22

> −1. (64)



2958 X. Wang

In this case, the three eigenvectors w1,w2 and w3 are [10]

w1 =
⎡

⎣
− 1

2 i
1
2 (Y11/Y22)

1
2

0

⎤

⎦ , w2 =
⎡

⎣
1
2 i

1
2 (Y11/Y22)

1
2

0

⎤

⎦ , w3 =
⎡

⎣
0
0
1

⎤

⎦ . (65)

The oscillatory index is still given by Eq. (37). By using the explicit results in Eqs. (61), (62) and (65), all
the terms appearing in Eq. (46) for the determination of φ′(0), Eq. (52) for the surface traction, Eq. (55) for
displacement jump, Eqs. (57) and (58) for the stress intensity factors at the two crack tips are analytically
given.

5 Conclusions

In this work, a rigorous closed-form solution has been obtained to the generalized plane strain problem of
a partially debonded isotropic circular inhomogeneity embedded in a generally anisotropic infinite matrix
by using Muskhelishvili’s complex variable formulation for isotropic elasticity and Stroh’s sextic formalism
for anisotropic elasticity. Interestingly, existing closed-form solutions to perfectly bonded circular elastic
inhomogeneities [21,25–30] and to arc-shaped cracks [14–16,18–20] can all be treated as limiting cases of
the present solution. Finally, we point out that Dundurs’ solution of an edge dislocation near a perfectly
bonded circular inhomogeneity [30] has been applied as Green’s function to study an interfacial arc-shaped
Zener–Stroh crack [31] and a matrix crack near a circular piezoelectric inhomogeneity [32].
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