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Abstract The strip yield zone ahead of a penny-shaped crack in a magnetoelectroelastic material, subjected
to electric, magnetic and axisymmetric mechanical loadings, is evaluated analytically. Hankel transform is
employed to reduce the mixed boundary value problem of the penny-shaped crack to dual integral equations,
which are solved exactly under the assumption of electrically andmagnetically permeable crack face conditions
and the plastic strip yield zone crack model. An analytic solution to the mixed boundary problem has been
obtained to predict the relationship between the length of the strip yield zone and the applied loadings. The
distribution of mechanical, electric and magnetic fields in and outside of the strip yield zone in the cracked
magnetoelectroelastic material has been derived analytically, and the crack opening displacement has been
investigated. The effects of the mechanical, electric and magnetic loadings on the size of the yield zone are
discussed in detail.

1 Introduction

Composite materials consisting of piezoelectric and piezomagnetic phases exhibit a magnetoelectric effect
that is unavailable in single-phase piezoelectric or piezomagnetic materials. Owing to the unique magneto-
electroelastic coupling effect, these kinds of materials can be used in intelligent structures as sensors and
actuators. Studies on the properties of piezoelectric/piezomagnetic composites have drawn considerable atten-
tion in recent years. Some defects (such as dislocations and cracks) could be induced during the manufacturing
processes or during service by the mechanical, electric or magnetic loading, which can adversely influence the
performance of the structures. Therefore, it is necessary to advance our understanding of the characteristics of
a magnetoelectroelastic material with defects [1].

In recent decades, there is a growing interest among researchers in solving fracture mechanics problems
in magnetoelectroelastic media. Gao et al. [2] presented an exact treatment on the problem of an elliptical
hole or a crack in a magnetoelectroelastic solid subjected to the far-field loadings by using the Stroh formu-
lation. A family of closed-form thermomagnetoelectroelastic Green’s functions for problems of defects in a
magnetoelectroelastic solid has been derived by Qin [3] by the use of Stroh’s formalism and conforming map-
ping, and the results can be used to establish boundary element formulation and to analyze relevant fracture
problems. Hu and Li [4] analyzed the singular stress, electric and magnetic fields in a piezoelectromagnetic
strip containing a Griffith crack under longitudinal shear using the theory of linear piezoelectromagneticity.
Li [5] made a transient analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and
in-plane electric and magnetic impacts by using the Fourier and Laplace transforms. The dynamic response
of a penny-shaped crack in a magnetoelectroelastic layer was studied by Feng et al. [6], and the effects of
magnetoelectromechanical loadings, crack surface conditions and crack configuration on crack propagation
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and growth have been examined. The boundary element method has been developed by Rojas-Díaz et al. [7] to
study crack problems in linear magnetoelectroelastic materials under static loading conditions. Wang and Mai
[8] discussed the different electromagnetic boundary conditions on the crack faces in magnetoelectroelastic
materials with coupled piezoelectric, piezomagnetic and magnetoelectric effects. Zhong and Li [9] provided a
fracture analysis of a magnetoelectroelastic solid with a penny-shaped crack by considering the effects of the
opening crack interior. A partially conducting mode I crack in piezoelectromagnetic materials was analyzed
by Zhou and Chen [10] by using the Schmidt method. The problem of a planar magnetoelectroelastic layered
half-plane subjected to generalized line forces and edge dislocations was analyzed by Ma and Lee [11]. Li
and Lee [12] established real fundamental solutions for in-plane magnetoelectroelastic governing equations
and studied collinear unequal cracks in magnetoelectroelastic materials. Li et al. [13] obtained analytical
solutions for an elliptical cylinder inclusion inside an infinite magnetoelectroelastic medium under combined
mechanical–electrical–magnetic loadings via the Stroh formalism, and crack problems of the mode I, mode
II and mode III have been investigated when the inclusion becomes a crack. An embedded mixed-mode crack
in a functionally graded magnetoelectroelastic infinite medium has been studied by Rekik et al. [14] using
the Fourier transform and singular integral equation technique. Wan et al. [15] investigated a mode III crack
crossing the magnetoelectroelastic biomaterial interface under concentrated magnetoelectromechanical loads,
the Riemann-Hilbert problem was formulated and solved based on complex variable method, and analytical
solutions were obtained for the entire plane. Hu and Chen [16] analyzed an opening crack in a magnetoelec-
troelastic strip under in-plane impacts and found that crack curving may occur under some loading conditions.
A pre-kinking analysis of a moving crack in a magnetoelectroelastic material under in-plane loading has been
provided by Hu and Chen [17]. Liu et al. [18] investigated a penny-shaped magnetically dielectric crack in a
magnetoelectroelastic cylinder, and it shows that the impermeable and permeable crack problems are special
cases of their solutions.

The above-mentioned fracture mechanics studies are based on linear theory and predict the singular field
around the crack tip, which is physically unrealistic. The crack propagation problem considering the plastic
behavior may be investigated by applying the Dugdale model [19]. Fan [20] proposed the moving Dugdale
model for the mode I, II and III cracks and verified that dynamic crack opening, sliding and tearing displace-
ments are significant for describing the fracture process of materials with nonlinear behavior. Hoh et al. [21]
carried out an analytical investigation on the plastic zone size and crack tip opening displacement of a Dugdale
crack interacting with a circular inclusion. Fan et al. [22] investigated the interaction among a Zener-Stroh
crack, a nearby inhomogeneity/inclusion and an extra edge dislocation with the distributed dislocation method,
and the plastic zone correction at the crack tips is determined.

Various nonlinear models have been suggested to study the crack problems in piezoelectric material. Gao
et al. [23] generalized the essential idea of Dugdale [19] and proposed a strip yield saturation model of
electrical yielding by assuming that the electrical polarization is saturated in a line segment in front of the
crack tips. Narita and Shindo [24] investigated the mode I crack growth rate for the yield strip model of a
narrow piezoelectric strip. Zhang et al. [25] proposed a strip dielectric breakdown model and predicted the
effect of electric fields on the fracture behavior. Zhao and Fan [26] further proposed the strip electric–magnetic
breakdown (SEMB) model for an electrically and magnetically impermeable crack in a magnetoelectroelastic
medium to study the effect of the nonlinear character of electric field and magnetic field on the fracture of
magnetoelectroelastic materials, and the sizes of the electric breakdown zone and the magnetic breakdown
zone have been obtained. Recently, Hu and Chen [27] studied the Dugdale plastic zone of a penny-shaped
crack in a piezoelectric material under axisymmetric loading using Hankel transform and the technique of dual
integral equations.

It is noted that conventional brittle ceramics can become ductile permitting large plastic deformations
at low temperature if a polycrystalline ceramic was fabricated with a crystal size of a few nanometers, and
the ductility seems to originate from the dislocation slip processes and diffusional flow of atoms along the
intercrystalline interfaces [28,29]. Ferroelectric/ferromagnetic polymers have a ductile mechanical behavior
and good piezoelectric/ piezomagnetic properties which make these materials ideal candidates for ceramic
particle-reinforced ferroelectric/ferromagnetic composites, where significant ductility is retained [30,31].

To the best knowledge of the authors, the problem of a strip yield zone around a penny-shaped crack in a
magnetoelectroelastic material under axisymmetric magnetoelectromechanical loadings has not been reported
in the literature. This paper extends the method of Hu and Chen [27], and the mode I strip yield crack problem
in magnetoelectroelastic materials is solved in this paper. The crack surfaces are assumed to be electrically and
magnetically permeable, and the strip yield zone ahead of the fringe of the penny-shaped crack is considered.
Hankel transforms are applied, and the mixed boundary value problem of the crack is reduced to a pair of
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dual integral equations, which are solved exactly. The mechanical, electric and magnetic fields near the penny-
shaped crack are non-singular, the relation between the yield zone size and the applied loadings is derived, and
the crack opening displacement (COD) has been obtained in closed form. The coupling effect of mechanical,
electric and magnetic fields on the strip yield zone size and crack opening displacement is investigated.

2 Basic equations for magnetoelectroelastic materials

Consider a transversely isotropic magnetoelectroelastic material with the poling direction along the z-axis
and the isotropic plane as the xy-plane. For an axisymmetric problem, the constitutive equations within the
framework of the theory of a linear magnetoelectroelastic medium are:
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where the field quantities are functions of r and z, independent of angle θ ; ur and uz are the radial and axial
components of the elastic displacements, respectively; E j and Hj ( j = r, z) are components of electric field
andmagnetic field, respectively. σrr , σθθ , σzz, σr z are components of stress tensors; Dr and Dz the components
of electric displacement vectors; Br and Bz the components of magnetic induction; C11,C12,C13,C33,C44
the elastic moduli; e15, e31, e33 the piezoelectric constants; h15, h31, h33 the piezomagnetic constants; d11, d33
the magnetoelectric constants; ε11, ε33 the dielectric permittivities; and μ11, μ33 the magnetic permeabilities.

The electric field and magnetic field components may be written in terms of the electric potential φ and
magnetic potential ϕ, respectively, as:

Er = −∂φ

∂r
, Ez = −∂φ

∂z
, (2.1)

Hr = −∂ϕ

∂r
, Hz = −∂ϕ

∂z
. (2.2)

In the absence of body forces and free charges, the equilibrium equations are:
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Substitution of Eq. (1) into the above equations leads to the governing equations for the elastic displacements
ur and uz , electric potential φ and magnetic potential ϕ as follows:
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3 Problem statement and method of solution

A three-dimensional extension of Dugdale’s plastic zone model (Dugdale [19]) in magnetoelectroelastic mate-
rial is considered in this study. For a penny-shaped crack of radius c under remote mechanical, electric and
magnetic loadings applied in the z-direction, a coplanar plastic strip yield ring is formed in front of the crack,
as shown in Fig. 1. The crack surfaces are assumed to be electrically and magnetically permeable, and the
electric andmagnetic fields are not high enough to lead to electric or magnetic breakdown. In order to eliminate
the singularity of the mechanical, electric and magnetic fields near the crack tips, we consider a small-scale
yield zone ahead of the crack in the magnetoelectroelastic material. It is noted that this kind of plastic zone
is an idealized version of the cohesive zone model. Dugdale’s hypothesis approximates the size of the plastic
yield zone by considering the enlarged crack of radius a with yielding condition satisfied in the plastic yield
ring. Cylindrical coordinates r, θ and z are used, the poling direction is along the z-axis, and the penny-shaped
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x 
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z
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a 

Fig. 1 Dugdale-type strip yield penny-shaped crack in magnetoelectroelastic material
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crack occupies the region r ≤ c, z = 0. An axisymmetric normal stress P0, electric field E0, and magnetic
field H0 are applied at infinity, as shown in Fig. 1, and it is assumed that there is no external loading applied
in the lateral surface at infinity.

Due to the symmetry of the problem, it is sufficient to consider the upper-half space of the cracked
magnetoelectroelastic material. The corresponding boundary conditions of the mixed boundary value problem
are:

σzz(r, 0) =
{
0 (0 ≤ r < c)
σY (c ≤ r < a)

, (5.1)

uz(r, 0) = 0 (a ≤ r ≤ ∞), (5.2)

σr z(r, 0) = 0 (r ≥ 0), (6)

φ(r, 0) = 0 (r ≥ 0), (7)

ϕ(r, 0) = 0 (r ≥ 0). (8)

It is noted that the electromagnetic conditions on z = 0 are referred to the undeformed crack plane, not to
the deformed configuration. Small deformation has been assumed, the crack opening displacement (COD) is
small enough to allow such approximation to be reasonable, and the conditions have been adopted widely to
treat crack problems [16,24,27,32,33].

Hankel transforms are applied to Eq. (4), and the general expressions for the elastic displacements, electric
potential and magnetic potential may be obtained as:
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where J0( ) and J1( ) is the zero- and first-order Bessel function of the first kind, respectively. a0, b0, c0, d0
are constants determined from the far-field loading conditions, and a j , b j , d j ( j = 1, 2, 3, 4) are known
coefficients defined as:
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A j (ξ), ( j = 1, 2, 3, 4) are unknowns, and γ j ( j = 1, 2, 3, 4) are the roots of the following characteristic
equation:
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where |M| denotes the determinant of the matrix M.
Note that the eighth-order characteristic Eq. (14) has eight roots which occur in pairs with the same

magnitude but opposite signs, and for complex roots, they always appear in conjugate pairs. In the expressions
(11), the roots γ j ( j = 1, 2, 3, 4) are chosen as Re(γ j ) > 0 by requiring a positive internal energy for the
system to be in a steady state, as stated by Hu and Chen [16,17,34], and Re denotes the real part of a complex
number. The set of eigenvalues obtained fromEq. (14) is connected to those of the Stroh–Lekhnitskii formalism
[35,36] by p j = i · γ j , where p j are their eigenvalues. A similar connection was established by Chiang and
Weng [37] for a penny-shaped dielectric crack in a piezoelectric solid.

The expressions for the stresses, electric displacement and magnetic induction in the cracked magneto-
electroelastic body can be obtained as follows:
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where the coefficients f j , g j , s j , t j ( j = 1, 2, 3, 4) are defined as:

f j = C44(a jγ
2
j + 1) − e15b j − h15d j ,

g j = C13a j + e33b j + h33d j − C33,
s j = e31a j − ε33b j − d33d j − e33,
t j = h31a j − d33b j − μ33d j − h33.

( j = 1, 2, 3, 4) (17)

It can be observed from Eqs. (15, 16) that the far-field loading conditions are satisfied automatically, and
the normal stress P0 may be expressed as

P0 = σ0 − e33E0 − h33H0 (18)

where σ0 is the uniform normal stress at zero electric and magnetic loads.
By substituting Eqs. (9–16) into the boundary conditions (6–8), the following relations hold:

4∑

j=1

f j A j (ξ)/γ j = 0, (19.1)

4∑

j=1

b j A j (ξ)/γ j = 0, (19.2)

4∑

j=1

d j A j (ξ)/γ j = 0. (19.3)

It is noted that Eqs. (19.2) and (19.3) are derived from the boundary conditions in Eqs. (7) and (8), respectively,
and Eqs. (7) and (8) assume that the crack surfaces are electrically and magnetically permeable [16].
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By solving the above linear equations, A j (ξ), ( j = 1 − 4) can be expressed as functions of the only
independent unknown function E(ξ) as:

A j (ξ) = γ j
 j E(ξ), ( j = 1 − 4) (20)

where the constants 
 j ( j = 1 − 4) are given as


1 = b2(d3 f4 − d4 f3) + b3(d4 f2 − d2 f4) + b4(d2 f3 − d3 f2), (21.1)


2 = b1(d4 f3 − d3 f4) + b3(d1 f4 − d4 f1) + b4(d3 f1 − d1 f3), (21.2)


3 = b1(d2 f4 − d4 f2) + b2(d4 f1 − d1 f4) + b4(d1 f2 − d2 f1), (21.3)


4 = b1(d3 f2 − d2 f3) + b2(d1 f3 − d3 f1) + b3(d2 f1 − d1 f2). (21.4)

Satisfaction of the mixed boundary conditions (7) on the crack face leads to the dual integral equations as
follows:

∫ ∞

0
ξ

4∑

j=1

g j A j (ξ)J0(ξr)dξ =
{−P0 (0 ≤ r < c)

−P0 + σY (c ≤ r < a)
, (22.1)
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0

4∑
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A j (ξ)

γ j
J0(ξr)dξ = 0 (r ≥ a). (22.2)

Substitution of the expression of Eq. (20) leads to the dual integral equations for the unknown function
E(ξ):

∫ ∞

0
ξE(ξ)J0(ξr)dξ = F(r), (0 ≤ r < a), (23.1)

∫ ∞

0
E(ξ)J0(ξr)dξ = 0 (r ≥ a) (23.2)

where the function F(r) is defined as:

F(r) =
{

− P0
G0

(0 ≤ r < c)
σY−P0
G0

(c ≤ r < a)
(24.1)

with

G0 =
4∑

j=1

g jγ j
 j . (24.2)

The set of dual integral Eq. (23) may be obtained by introducing a new function defined by

E(ξ) =
∫ a

0
Y (t) sin(ξ t)dt . (25)

It is observed that Eq. (23.2) is satisfied automatically, the satisfaction of Eq. (23.1) leads to an Abel integral
equation for Y (t), and the solution can be expressed as

Y (t) = 2

π

∫ t

0

r F(r)√
t2 − r2

dr. (26)

The detailed derivation of this solution is provided in the Appendix of Hu and Chen [27].
The stress intensity factor KI for the penny-shaped crack can be defined as

KI = lim
x→a+

√
2(r − a)σzz(r, 0) = −G0

Y (a)√
a

. (27)

Based on the assumption of the strip yield crack model, when the penny-shape-cracked body is under remote
axisymmetric loadings, a ring-shaped yield zone is accumulated in the region c < r < a, where a closure
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stress equal to σY is applied to remove the singularity at the crack fronts r = a. Hence, the following condition
must be satisfied:

Y (a) = 0 (28)

for the vanishing stress intensity factor KI . It should be noted that this condition also leads to the non-singular
electric displacement and magnetic induction in the cracked magnetoelectroelastic material, i.e.,

KD = lim
x→a+

√
2(r − a)Dz(r, 0) = −s0

Y (a)√
a

= 0, (29.1)

KB = lim
x→a+

√
2(r − a)Bz(r, 0) = −t0

Y (a)√
a

= 0 (29.2)

where the constants s0 and t0 are given as

s0 =
4∑

j=1

s jγ j
 j ,

t0 =
4∑

j=1

t jγ j
 j . (30)

Due to the linear relationship of the constitutive equations of the magnetoelectroelastic materials, the electric
and magnetic fields in the cracked body are non-singular.

4 Yield zone size

The relationship involving the applied normal stress P0, the normal yield stress σY , the original crack length
c, and the effective crack length a can be obtained from substituting Eqs. (24, 26) into Eq. (28).

Using Eqs. (24) and (26), it follows

F(r) =
{

− P0
G0

= f0 (0 ≤ r < c)
σY
G0

= σS (c ≤ r < a)
, (31)

Y (t) = 2

π

∫ t

0

r [ f0 + σSH(x − c)]√
t2 − r2

dr

=
{ 2

π
f0t (0 ≤ t < c)

2
π
f0t + 2

π
σS

√
t2 − c2 (c ≤ t < a)

(32)

where H(x) is the Heaviside step function.
From the above equations and Eq. (28), the relationship between the size of the yield zone and the applied

load can be determined as

c

a
=
√

1 −
(
P0
σY

)2

. (33)

This result is in agreementwith the solution for aDugdale-type penny-shaped crack in isotropic and transversely
isotropic materials [38,39].

The substitution of Eq. (18) into Eq. (33) leads to the result

c

a
=
√

1 −
(

σ0

σY

)2

(1 − LE − LH )2 (34)

where LE and LH are the parameters for the electric and magnetic loadings, respectively, defined as:

LE = e33E0

σ0
,

LH = h33H0

σ0
. (35)
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5 Non-singular field distribution near crack tip

The stresses, electric displacements, magnetic inductions, electric fields and magnetic fields in the cracked
magnetoelectroelastic material are non-singular due to the assumption of the strip yield zone model and an
electrically and magnetically permeable crack. By substituting Eqs. (20), (25), (32) into Eqs. (15) (see details
in the Appendix) the non-singular stress, electric displacement, magnetic induction, electric field and magnetic
field on the crack face plane can be obtained as:

σzz(r, 0) = P0 + 2

π

{
σY

2

[

tan−1
(

2a2 − c2 − r2

2
√
a2 − c2

√
r2 − a2

)

+ π

2

]

− P0 tan
−1
(

a√
r2 − a2

)}

,

(r ≥ a) (36)

σzz(r, 0) = σYH(r − c), (0 ≤ r < a) (37)

Dz(r, 0) = D0 + 2s0
πG0

{
σY

2

[

tan−1
(

2a2 − c2 − r2

2
√
a2 − c2

√
r2 − a2

)

+ π

2

]

− P0 tan
−1
(

a√
r2 − a2

)}

,

(r ≥ a) (38)

Dz(r, 0) = D0 + s0
G0

[σYH(r − c) − P0] , (0 ≤ r < a) (39)

Bz(r, 0) = B0 + 2t0
πG0

{
σY

2

[

tan−1
(

2a2 − c2 − r2

2
√
a2 − c2

√
r2 − a2

)

+ π

2

]

− P0 tan
−1
(

a√
r2 − a2

)}

,

(r ≥ a) (40)

Bz(r, 0) = B0 + t0
G0

[σYH(r − c) − P0] , (0 ≤ r < a) (41)

Ez(r, 0) = E0 − 2b∗
πG0

{
σY

2

[

tan−1
(

2a2 − c2 − r2

2
√
a2 − c2

√
r2 − a2

)

+ π

2

]

− P0 tan
−1
(

a√
r2 − a2

)}

,

(r ≥ a) (42)

Ez(r, 0) = E0 − b∗
G0

[σYH(r − c) − P0] , (0 ≤ r < a) (43)

Hz(r, 0) = H0 − 2d∗
πG0

{
σY

2

[

tan−1
(

2a2 − c2 − r2

2
√
a2 − c2

√
r2 − a2

)

+ π

2

]

− P0 tan
−1
(

a√
r2 − a2

)}

,

(r ≥ a) (44)

Hz(r, 0) = H0 − d∗
G0

[σYH(r − c) − P0] , (0 ≤ r < a) (45)

where

b∗ =
4∑

j=1

b jγ j
 j ,

d∗ =
4∑

j=1

d jγ j
 j . (46)

It can be observed that the electric and magnetic fields are disturbed by the presence of the crack and the strip
yield zone. If there is no crack in the magnetoelectroelastic material, the stress, electric and magnetic fields
are all constant fields. It is noted that because the prescribed traction in the yield zone has a discontinuity at
r = c, there is a singular point at r = c. From Eqs. (36–41), we can see that the stress, electric displacement
and magnetic induction in the yield zone are uniform, the electric displacement and magnetic induction are of
constant values on the crack faces, while the crack faces are stress-free. Equations (42–45) show the normal
components of the electric field andmagnetic field, which are discontinuous at the physical crack edge (r = c),
as shown in terms of the step function H(r − c), while at the mathematical crack edge (r = a) the normal
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components of the stress, electric displacement,magnetic induction, electric andmagnetic fields are continuous,
as shown in Eqs. (36–45).

The expression of the normal stress near the crack tip can be obtained as:

σzz(r, z) = P0 +
∫ a

0
Y ′(t)

4∑

j=1

∫ ∞

0
δ j exp(−γ jξ z) cos(ξ t)J0(ξr)dξdt . (47)

By using the integral identity

∫ ∞

0
exp(−βx) cos(αx)J0(xt)dx =

√
√
√
√

√
(β2 + t2 − α2)2 + 4α2β2 + β2 + t2 − α2

2
[
(β2 + t2 − α2)2 + 4α2β2

] (48)

we can obtain the explicit expression of the stress around the crack as

σzz(r, z) = P0 +
4∑

j=1

δ j

∫ a

0
Y ′(t)� j (γ j , t, r, z)dt, (r ≥ a), (49)

σzz(r, z) = P0 +
4∑

j=1

δ j

∫ r

0
Y ′(t)� j (γ j , t, r, z)dt, (0 ≤ r < a) (50)

where

� j (γ j , t, r, z) =
∫ ∞

0
exp(−γ j zξ) cos(tξ)J0(rξ)dξ

=

√
√
√
√
√

√
(γ 2

j z
2 + r2 − t2)2 + 4t2γ 2

j z
2 + γ 2

j z
2 + r2 − t2

2
[
(γ 2

j z
2 + r2 − t2)2 + 4t2γ 2

j z
2
] , (51)

δ j = g jγ j
 j . (52)

The detailed expression of the normal stress in different regions can be further given in the following form:

σzz(r, z) = P0 + 2

π

4∑

j=1

δ j

{

f0

∫ a

0
� j (γ j , t, r, z)dt + σS

∫ a

c

t√
t2 − c2

� j (γ j , t, r, z)dt

}

,

(r ≥ a) (53.1)

σzz(r, z) = P0 + 2

π

4∑

j=1

δ j

{

f0

∫ r

0
� j (γ j , t, r, z)dt + σS

∫ r

c

t√
t2 − c2

� j (γ j , t, r, z)dt

}

,

(c ≤ r < a) (53.2)

σzz(r, z) = P0 + 2

π

4∑

j=1

δ j

{

f0

∫ r

0
� j (γ j , t, r, z)dt

}

, (0 ≤ r < c). (53.3)

Similar expressions for the distribution of the electric and magnetic fields can be obtained and are omitted
here. It is noted that the general solution of the mechanical, electric and magnetic fields in the cracked
magnetoelectroelastic material is easily calculated by numerical integration.

COD is an important parameter to represent the fracture mechanics property of cracked materials under
applied loadings, and the concept of COD offers an opportunity to examine size effects in fracture in a logical
and controlled manner [40]. The COD for the current crack problem can be obtained as

COD(r) = 2uz(r, 0)

= 4d0
πG0

{

σY

∫ a

c

√
η2 − c2
√

η2 − r2
dη − P0

√
a2 − r2

}

(0 ≤ r < c), (54.1)
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COD(r) = 4d0
πG0

{

σY

∫ a

r

√
η2 − c2
√

η2 − r2
dη − P0

√
a2 − r2

}

(c ≤ r ≤ a) (54.2)

where d0 =∑4
j=1 
 j and G0 is defined in Eq. (24.2).

The COD at the original crack fringe (r = c), i.e., the crack tip opening displacement (CTOD), can be
obtained as

CTOD = COD(c) = 4d0
πG0

c

[√

σ 2
Y − P2

0 − σY

]

. (55)

It is noted that the CTOD is related to the far-field loadings, the material parameters and the yield stress of the
material. The constants d0 and G0 are related to the characteristic roots of the material and are dependent on
the material properties. When P0 = 0, it is clear that the CTOD vanishes, and when P0 → σY , the CTOD goes
to a limit value of − 4d0

πG0
cσY , which is positive (if σY > 0) and related to the loading and material properties.

6 Numerical results

The magnetoelectroelastic material is taken to be a transversely isotropic material exhibiting full coupling
betweenmechanical, electric andmagnetic fields, with the polarized direction perpendicular to the crack plane.
In the following numerical computation, the yield stress in the yield zone is assumed to be σY = 100 MPa
without loss of generality, and the material constants of BaTiO3-CoFe2O4 composite are [41–43]:

C11 = 17.8 × 1010 (N/m2),C13 = 8.72 × 1010 (N/m2),C33 = 17.28 × 1010 (N/m2),

C44 = 4.32 × 1010 (N/m2), e15 = 10.44 (C/m2), e31 = −3.96 (C/m2),

e33 = 16.74 (C/m2), h15 = 55 (N/Am), h31 = 58.03 (N/Am),

h33 = 69.97 (N/Am), ε11 = 100.9 × 10−10 (C2/Nm2), ε33 = 113.5 × 10−10 (C2/Nm2),

μ11 = 6.35 × 10−5 (Ns2/C2), μ33 = 2.47 × 10−5 (Ns2/C2),

d11 = 5.367 × 10−12 (Ns/VC), d33 = 2737.5 × 10−12 (Ns/VC). (56)

The roots of the characteristic Eq. (14) and the quantities d0 and G0 can be obtained as

γ1 = 1.1480, γ2 = 1.6077, γ3 = 0.9318 + 0.0351i, γ4 = 0.9318 − 0.0351i,

d0 = −4.9781 × 1028i,G0 = 3.3127 × 1039i. (57)

The normalized COD’s of the penny-shaped crack in three dimensions are displayed in Fig. 2. Without loss of
generality, the applied normal stress is taken to be σ0 = 0.2σY , the magnitudes of the electric and magnetic
loading parameters are chosen as LE = −0.3 and LH = −0.2 for the numerical results shown in Fig. 2a,
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Fig. 2 a Normalized COD when σ0 = 0.2σY , LE = −0.3 and LH = −0.2. b Normalized COD when σ0 = 0.4σY , LE = −0.3
and LH = −0.2
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Fig. 3 a Normalized COD versus r under different normal stresses when LE = −0.3, LH = −0.2. b Normalized COD versus r
under different normal stresses when LE = +0.3, LH = +0.2
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Fig. 4 Normalized COD versus r at different electromagnetic loadings L = LE + LH when σ0 = 0.2σY

while the results shown in Fig. 2b correspond to the loading parameters LE = +0.3 and LH = +0.2. It is
noted that “negative” means that the direction of the electric and magnetic loading is opposite to the poling
direction. It can be observed from Fig. 2 that the COD of the penny-shaped crack is axisymmetric due to the
fact that the loadings and material properties are axisymmetric. The magnitude of the COD due to the negative
electric and magnetic loading parameters is larger than that due to the positive electric and magnetic loading
parameters.

The normalized CODs under different normal stresses σ0 are displayed in Fig. 3 for the penny-shaped crack
with a strip yield zone in a magnetoelectroelastic material. The CODs under negative electric and magnetic
loadings are displayed in Fig. 3a, and the CODs under positive electric and magnetic loadings are shown in
Fig. 3b for comparison. The magnitude of the CODs increases as the normal stress σ0 increases, and the size
of the plastic yield zone increases accordingly. The CODs of the penny-shaped crack under negative electric
and magnetic loadings are larger than those under positive electric and magnetic loadings.

Figure 4 shows the normalized CODs at different electric and magnetic loadings L = LE + LH when
σ0 = 0.2σY . It is observed that the magnitude of CODs and the size of the corresponding plastic yield zone
decrease as the loading parameter increases from negative to positive values. It is noted that the COD is zero
when L = LE + LH = 1, as the corresponding normal stress P0 = 0, and there is no plastic yield zone
in this case. This result can also be observed from Eqs. (33) and (34). The normalized crack tip opening
displacements (CTODs) under different normal stresses P0 are displayed in Fig. 5 for the penny-shaped crack
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Fig. 6 Stresses on the crack plane at different electro-magnetic loadings when σ0 = 0.4σY

in a magnetoelectroelastic material. The magnitude of the CTODs increases as the far-field normal stress P0
increases.

It can be observed from Figs. 2, 3, 4, and 5 that the crack opening displacement (COD) is small enough
which guarantees that the result is reasonable based on the approximation of boundary values on the crack
faces which are referred to the undeformed crack plane rather than the deformed configuration.

Figure 6 shows the stresses on the crack face plane at different electromagnetic loadings (L = LE + LH )
when σ0 = 0.4σY . It shows that the crack surfaces are stress-free, the stresses in the plastic zone are equal
to the yielding stress σY , and the stress decreases outside of the yield zone and converges to a steady value
when it is far enough from the crack. The magnitude of the steady value increases as the electric and magnetic
loading parameter L = LE + LH decreases from positive to negative values. When L = 1, there is no far-field
normal stress applied, and the stress level on the crack face plane is zero.

Figure 7 displays the normalized electric field on the crack face plane under different electric loadings LE
when σ0 = 0.4σY and LH = 0. It shows that the electric field on the crack faces is constant and is another
constant in the yield zone. The electric field on the crack face plane changes gradually outside the yield zone
and goes to a steady value which is the same as the far-field electric loading. The normalized magnetic field on
the crack face plane under different magnetic loadings LH when σ0 = 0.4σY and LE = 0 is shown in Fig. 8.
Similar to the distribution of the electric field on the crack faces and in the yield zone, the magnetic field is
constant on the crack faces and in the yield zone. It is noted that this particular distribution of the electric and
magnetic fields on the crack faces and in the yield zone is due to the assumption of the Dugdale-type strip yield
crack and the electrically and magnetically permeable crack model. It can be observed from Figs. 7 and 8 that
the electric and magnetic fields are discontinuous at the edge of the penny-shaped crack, which is analogous to
the distribution of stress on the crack faces and ahead of the crack. This phenomenon is due to the constitutive
equations of the material and the particular boundary conditions of the crack problem.
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7 Conclusions

A Dugdale-type strip yield penny-shaped crack in a magnetoelectroelastic material under in-plane mechan-
ical, electric and magnetic loadings is studied under electrically and magnetically permeable crack surface
conditions. The non-singular fields near the penny-shaped crack are obtained in an explicit form, and the
crack opening displacement and the crack tip opening displacement have been obtained. The yield zone size
is affected by the mechanical, electric and magnetic loadings and the yield stress of the magnetoelectroelastic
material, while the COD is also related to the material properties. Numerical results indicate that negative
electric and magnetic loadings may lead to larger COD, and positive electric and magnetic loadings may lead
to smaller COD. The electric and magnetic fields on the crack faces and in the yield zone are constant values
due to the assumption of the Dugdale-type strip yield crack and the electrically and magnetically permeable
crack model.
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Appendix

The function E(ξ) can be obtained by integration from Eq. (25) as

E(ξ) =
∫ a

0
Y (t) sin(ξ t)dt = −Y (a)

ξ
cos(ξa) +

∫ a

0
Y ′(t)cos(ξ t)

ξ
dt (58)

where the fact that Y (0) = 0 has been applied considering Eq. (26).
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The normal stress on the crack face plane can be obtained as

σzz(r, 0) =
4∑

j=1

g j

∫ ∞

0
ξ A j (ξ)J0(ξr)dξ + P0

= P0 + G0

∫ ∞

0
ξE(ξ)J0(ξr)dξ

= P0 + G0

∫ ∞

0

[

−Y (a) cos(ξa) +
∫ a

0
Y ′(t) cos(ξ t)dt

]

J0(ξr)dξ. (59)

Using the identity

∫ ∞

0
J0(ξr) cos(ξa)dξ =

{
0, (0 < r < a)

1√
r2−a2

, (r > a)
(60)

and considering Eqs. (28) and (32), we can get the following result:

σzz(r, 0) = P0 + G0

[

− Y (a)√
r2 − a2

+
∫ a

0

Y ′(t)√
r2 − t2

dt

]

= P0 + G0

∫ a

0

Y ′(t)√
r2 − t2

dt

= P0 + G0

⎡

⎣
2 f0
π

∫ a

0

1√
r2 − t2

dt + 2σS

π

∫ a

c

1
√

1 − (c/t)2
√
r2 − t2

dt

⎤

⎦ (r ≥ a). (61)

By using the following identities:

∫ a

0

1√
r2 − t2

dt = tan−1
[

a√
r2 − a2

]

∫ a

c

1
√

1 − (c/t)2
√
r2 − t2

dt = 1

2

{

tan−1
[

2a2 − c2 − r2

2
√
a2 − c2

√
r2 − a2

]

+ π

2

}

(62)

and the relations in Eqs. (31), we can get

σzz(r, 0) = P0 + 2

π

{
σY

2

[

tan−1
(

2a2 − c2 − r2

2
√
a2 − c2

√
r2 − a2

)

+ π

2

]

− P0 tan
−1
(

a√
r2 − a2

)}

, (r ≥ a)

(63)

which is the same as shown in Eq. (36).
When c ≤ r < a, considering the identity

∫ ∞

0
J0(ξr) cos(ξ t)dξ =

{
0, (r < t)

1√
r2−t2

, (r > t) , (64)

∫ r

0

1√
r2 − t2

dt = tan−1
[

t√
r2 − t2

]r

0
= π

2
,

∫ r

c

1
√

1 − (c/t)2
√
r2 − t2

dt = 1

2
tan−1

[
2t2 − c2 − r2

2
√
t2 − c2

√
r2 − t2

]r

c
= π

2
, (65)
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we can get the normal component of stress inside the yield zone as:

σzz(r, 0) = P0 + G0

∫ r

0

Y ′(t)√
r2 − t2

dt

= P0 + G0

⎡

⎣
2 f0
π

∫ r

0

1√
r2 − t2

dt + 2σS

π

∫ r

c

1
√

1 − (c/t)2
√
r2 − t2

dt

⎤

⎦ (c ≤ r < a)

= P0 + G0 [ f0 + σS]

= σY . (66)

When 0 ≤ r < c, the normal component of stress on the crack faces can be obtained as

σzz(r, 0) = P0 + G0

∫ r

0

Y ′(t)√
r2 − t2

dt

= P0 + G0

[
2 f0
π

∫ r

0

1√
r2 − t2

dt

]

(0 ≤ r ≤ c)

= P0 + G0 f0
= 0. (67)

Equations (66) and (67) can be combined to be

σzz(r, 0) = σYH(r − c), (0 ≤ r < a) (68)

which is the same as Eq. (37).
Similarly, we can get the results for the normal components of electric displacement andmagnetic induction

on the crack face plane:

Dz(r, 0) = D0 +
4∑

j=1

s j

∫ ∞

0
ξ A j (ξ)J0(ξr)dξ = D0 + s0

∫ ∞

0
ξE(ξ)J0(ξr)dξ, (69)

Bz(r, 0) = B0 +
4∑

j=1

t j

∫ ∞

0
ξ A j (ξ)J0(ξr)dξ = B0 + t0

∫ ∞

0
ξE(ξ)J0(ξr)dξ. (70)

By using the results from Eqs. (59) to (67), we can obtain the results of Dz(r, 0) and Bz(r, 0) as shown in Eqs.
(38–41).

From Eqs. (59) and (68), it is obvious that
∫ ∞

0
ξE(ξ)J0(ξr)dξ = 1

G0
[σYH(r − c) − P0] , (0 ≤ r < a). (71)

The normal components of the electric and magnetic fields on the crack face plane can be obtained as

E(r, 0) = −
4∑

j=1

b j

∫ ∞

0
A j (ξ)J0(ξr)dξ + E0

= E0 − b∗
∫ ∞

0
ξE(ξ)J0(ξr)dξ

= E0 − b∗
G0

[σYH(r − c) − P0] , (0 ≤ r < a) (72)

H(r, 0) = −
4∑

j=1

d j

∫ ∞

0
A j (ξ)J0(ξr)dξ + H0

= H0 − d∗
∫ ∞

0
ξE(ξ)J0(ξr)dξ
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= H0 − d∗
G0

[σYH(r − c) − P0] , (0 ≤ r < a). (73)

Equations (72) and (73) indicate that the normal components of the electric andmagnetic fields on the crack
face plane are discontinuous at the physical crack edge (r = c), and the corresponding values on the crack
face (0 ≤ r < c) and inside the yield zone (c ≤ r < a) are different constants; these results are reasonable
due to the fact that stress components are linearly dependent on the electric and magnetic fields. It should be
noted that the displacement component normal to the surface at the crack tip should be continuous, while the
strain and stress components normal to the surface at the crack tip can allow discontinuities.
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